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1 Reducible second-class theories

The main subject approached in the thesis is the problem of the irreducible analysis of
the second-class constraints reducible of an arbitrary order. The approach in irreducible
manner of the reducible second-class theories is based on the following steps: i) we express
the Dirac bracket for the reducible system in terms of an invertible matrix; ii) we construct
an irreducible second-class system (on a larger phase-space) equivalent to the original
reducible one; iii) we derive of the Dirac bracket with respect to the irreducible second-
class constraints; iv) we prove the fact that the fundamental Dirac brackets derived within
the irreducible and original reducible settings coincide (weakly); v) the application of
the general procedure on various models. We initially approach second-class constraints
reducible of order two and three by implementing the main steps mentioned above, and
then generalize these results to an arbitrary order of reducibility.

1.1 The irreducible approach to second-order reducible second-
class constraints

1.1.1 Second-order reducible second-class constraints

We start with a system locally described by N canonical pairs za = (qi, pi), subject to
some constraints

χα0 (za) ≈ 0, α0 = 1,M0. (1)

In addition, we presume that the functions χα0 are not all independent, but there exist
some nonvanishing functions Z α0

α1
and Z α1

α2
such that

Z α0
α1
χα0 = 0, α1 = 1,M1, (2)

Z α1
α2
Z α0
α1
≈ 0, α2 = 1,M2. (3)

We will assume that the reducibility stops at order two, so the functions Z α1
α2

are by
hypothesis taken to be independent.

The constraints (1) are purely second class if any maximal, independent set of M ≡
M0−M1 +M2 constraint functions χA (A = 1, · · · ,M) among χα0 is such that the matrix

C
(2)
AB = [χA, χB] , (4)

is invertible.
In terms of independent constraints, the Dirac bracket takes the form

[F,G](2)∗ = [F,G]− [F, χA]M (2)AB [χB, G] , (5)

where M (2)ABC
(2)
BC ≈ δAC .

We can rewrite the Dirac bracket (5) without finding a definite subset of independent
second-class constraints as follows. We start with the matrix

C
(2)
α0β0

= [χα0 , χβ0 ], (6)
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which clearly is not invertible because

Z α0
α1
C

(2)
α0β0
≈ 0. (7)

Let Ā α1
α0

be some functions chosen such that satisfy the condition

rang
(
Z α0
α1
Ā β1
α0

)
≡ rang

(
D β1
α1

)
= M1 −M2. (8)

We introduce an antisymmetric matrix M (2)α0β0 through the relation

C(2)
α0γ0

M (2)γ0β0 ≈ D β0
α0
≡ δ β0

α0
− Ā β1

α0
Z β0

β1
, (9)

such that the formula

[F,G](2)∗ = [F,G]− [F, χα0 ]M
(2)α0β0 [χβ0 , G] , (10)

defines the same Dirac bracket like (5) on the surface (1).
It can be proved that for systems with second-stage reducible second-class constraints

the Dirac bracket can be written in terms of an invertible matrix.

Teorema 1 There exists an invertible, antisymmetric matrix µ(2)α0β0 , in terms of which
the Dirac bracket (10) becomes

[F,G](2)∗ = [F,G]− [F, χα0 ]µ
(2)α0β0 [χβ0 , G] . (11)

on the surface (1).

The relationship between the invertible matrix µ(2)α0β0 and the matrix M (2)α0β0 is
given by a relation

M (2)α0β0 ≈ Dα0
λ0
µ(2)λ0σ0Dβ0

σ0
. (12)

1.1.2 Intermediate system

We introduce some new variables, (yα1)α1=1,··· ,M1
with the Poisson brackets

[yα1 , yβ1 ] = ωα1β1 , (13)

and consider the system subject to the reducible second-class constraints

χα0 ≈ 0, yα1 ≈ 0. (14)

The Dirac bracket on the phase-space locally parameterized by the variables (za, yα1),
corresponding to the above second-class constraints reads as

[F,G](2)∗
∣∣∣
z,y

= [F,G]− [F, χα0 ]µ
(2)α0β0 [χβ0 , G]

− [F, yα1 ]ω
α1β1 [yβ1 , G] . (15)

The Dirac bracket (15) coincide (weakly) with that written in terms of invertible matrix
µ(2)α0β0

[F,G](2)∗
∣∣∣
z,y
≈ [F,G](2)∗ . (16)
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1.1.3 Irreducible system

Teorema 2 There exists a set of constraints (on the larger phase-space (za, yα1))

χ̃α0 = χα0 + Aα1
α0
yα1 ≈ 0, χ̃α2 = Zα1

α2
yα1 ≈ 0, (17)

such that:
(i)

χ̃α0 ≈ 0, χ̃α2 ≈ 0⇔ χα0 ≈ 0, yα1 ≈ 0. (18)

(ii)define an irreducible set of second-class constraints, i.e. the matrix

C∆∆′ = [χ̃∆, χ̃∆′ ] , (19)

is invertible, where χ̃∆ = (χ̃α0 , χ̃α2) .

The functions Aα1
α0

are defined by the relation

Āα1
α0

= Aβ1
α0
êα1
β1
, (20)

where êα1
β1

are the elements of an invertible matrix.
The Dirac bracket associated with the irreducible second-class constraints (17) takes

the concrete form

[F,G](2)∗
∣∣∣
ired

= [F,G]− [F, χ̃α0 ]µ
(2)α0β0 [χ̃β0 , G]−

[F, χ̃α0 ]Z
α0
γ1
êγ1σ1
ωσ1λ1Aτ2λ1

D̄β2
τ2

[χ̃β2 , G]−
[F, χ̃α2 ] D̄

α2
λ2
Aλ2
σ1
ωσ1λ1 êγ1λ1

Zβ0
γ1

[χ̃β0 , G]−
[F, χ̃α2 ] D̄

α2
λ2
Aλ2
σ1
ωσ1λ1Aτ2λ1

D̄β2
τ2

[χ̃β2 , G] . (21)

Teorema 3 The Dirac bracket with respect to the irreducible second-class constraints
coincides with that of the intermediate system

[F,G](2)∗
∣∣∣
ired
≈ [F,G](2)∗

∣∣∣
z,y
. (22)

Combining (16) and (22), we reach the result

[F,G](2)∗ ≈ [F,G](2)∗
∣∣∣
ired

. (23)

1.2 Generalization to an arbitrary reducibility order L

1.2.1 Reducible second-class constraints of order L

We will consider the case of a system of second-class constraints, reducible of an arbitrary
order L

Zα0
α1
χα0 = 0, Zα1

α2
Zα0
α1
≈ 0, . . . , ZαL−1

αL
ZαL−2
αL−1

≈ 0, (24)
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with αk = 1,Mk for each k = 1, L. In addition, the reducibility functions of maximum
order (L), Z

αL−1
αL , are assumed to be all independent. Consequently, the number of

independent second-class constraints is equal to M ≡
L∑
k=0

(−)kMk.

The Dirac bracket in terms of M independent functions χA takes the form

[F,G](L)∗ = [F,G]− [F, χA]M (L)AB [χB, G] , A = 1,M, (25)

where C
(L)
ABM

(L)BC ≈ δCA , with C
(L)
AB = [χA, χB].

The matrix of the Poisson brackets among the constraint functions

C
(L)
α0β0

= [χα0 , χβ0 ] (26)

is not invertible due to the relations Zα0
α1
C

(L)
α0β0
≈ 0 but its rank is equal to M .

Let
(
Āαk
αk−1

)
k=1,L

be subject to the relations

rang
(
Zβk−1
αk

Āγk

βk−1

)
≡ rang

(
Dγk
αk

)
≈

L∑
i=k

(−)k+iMi, (27)

Āαk−1
αk−2

Āαk
αk−1
≈ 0. (28)

We introduce an antisymmetric matrix, of elements M (L)α0β0 , through the relation

C
(L)
α0β0

M (L)β0γ0 ≈ Dγ0
α0
≡ δ β0

α0
− Ā β1

α0
Z β0

β1
, (29)

such that
[F,G](L)∗ = [F,G]− [F, χα0 ]M

(L)α0β0 [χβ0 , G] (30)

defines the same Dirac bracket like (25) on the surface (1).
The Dirac bracket for L-order reducible constraints can be expressed in terms of a

noninvertible matrix.

Teorema 4 There exists an invertible, antisymmetric matrix µ(L)α0β0 such that Dirac
bracket (30) takes the form

[F,G](L)∗ = [F,G]− [F, χα0 ]µ
(L)α0β0 [χβ0 , G] , (31)

on the surface (1).

The relationship between the invertible matrix M (L)α0β0 and the matrix µ(L)α0β0 is
given by the relation

M (L)α0β0 ≈ Dα0
λ0
µ(L)λ0σ0Dβ0

σ0
. (32)
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1.2.2 Intermediate system

We introduce some new variables,
(
yα2k+1

)
α2k+1=1,M2k+1

, with k = 0,
[
L−1

2

]
, exhibiting the

Poisson brackets [
yαi
, yβj

]
= ωαiβj

δij, (33)

and consider the system subject to the reducible second-class constraints

χα0 ≈ 0,
(
yα2k+1

)
k=0,[L−1

2 ]
≈ 0. (34)

The Dirac bracket on the phase-space locally parameterized by the variables

(
za,
(
yα2k+1

)
k=0,[L−1

2 ]

)
constructed with respect to the above second-class constraints, reads as

[F,G](L)∗
∣∣∣
z,y

= [F,G]− [F, χα0 ]µ
(L)α0β0 [χβ0 , G]

−
[L−1

2 ]∑
k=0

[
F, yα2k+1

]
ωα2k+1β2k+1

[
yβ2k+1

, G
]
, (35)

and coincide (weakly) with Dirac bracket written in terms of invertible matrix µ(L)α0β0

[F,G](L)∗
∣∣∣
z,y
≈ [F,G](L)∗ . (36)

1.2.3 Irreducible system

Teorema 5 There exists a set of constraints (on the larger phase-space, locally parame-

terized by

(
za,
(
yα2k+1

)
k=0,[L−1

2 ]

)
)

-if L odd

χ̃α0 ≡ χα0 + Aα1
α0
yα1 ≈ 0, (37)

χ̃α2k
≡ Zα2k−1

α2k
yα2k−1

+ Aα2k+1
α2k

yα2k+1
≈ 0, k = 1,

[
L

2

]
; (38)

-if L even

χ̃α0 ≡ χα0 + Aα1
α0
yα1 ≈ 0, (39)

χ̃α2k
≡ Zα2k−1

α2k
yα2k−1

+ Aα2k+1
α2k

yα2k+1
≈ 0, k = 1,

L

2
− 1, (40)

χ̃αL
≡ ZαL−1

αL
yαL−1

≈ 0; (41)

with the following properties:
(i)

(χ̃α2k
)
k=0,[L

2 ]
≈ 0⇔

(
χα0 ≈ 0,

(
yα2k+1

)
k=0,[L−1

2 ]
≈ 0

)
; (42)
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(ii) define an irreducible set of second-class constraints, i.e. the matrix

C∆∆′ = [χ̃∆, χ̃∆′ ] , (43)

is invertible, where χ̃∆ ≡ (χ̃α2k
)
k=0,[L

2 ]
.

The functions A
α2k+1
α2k appearing in the above are defined by the relations:

-if L odd

Āα2k+1
α2k

= Aβ2k+1
α2k

ê
α2k+1

β2k+1
, k = 0,

[
L

2

]
− 1, (44)

ĀαL
αL−1

= AβL
αL−1

D̄αL
βL

; (45)

-if L even

Āα2k+1
α2k

= Aβ2k+1
α2k

ê
α2k+1

β2k+1
, k = 0,

L

2
− 1. (46)

The elements ê
α2k+1

β2k+1
determine an invertible matrix and iar D̄αL

βL
are the elements of the

inverse of the matrix of elements DβL
αL

= Z
γL−1
αL AβL

γL−1
.

The Dirac bracket built with respect to the irreducible second-class constraints (37)
and (38) (or (39)–(41))

[F,G](L)∗
∣∣∣
ired

= [F,G]− [F, χ̃α0 ]µ
(L)α0β0 [χ̃β0 , G]

−
[L

2 ]−1∑
k=0

{
[F, χ̃α2k

]Zα2k
α2k+1

êα2k+1
γ2k+1

ωγ2k+1β2k+1Ā
β2k+2

β2k+1

[
χ̃β2k+2

, G
]

+
[
F, χ̃α2k+2

]
Āα2k+2
α2k+1

ωα2k+1γ2k+1 êβ2k+1
γ2k+1

Zβ2k

β2k+1
[χ̃β2k

, G]

+
[
F, χ̃α2k+2

]
ψα2k+2β2k+2

[
χ̃β2k+2

, G
]}
. (47)

Teorema 6 The Dirac bracket with respect to the irreducible second-class constraints (47)
coincides with that of the intermediate system

[F,G](L)∗
∣∣∣
ired
≈ [F,G](L)∗

∣∣∣
z,y
. (48)

Based on (36) and (48), we are led to the relation

[F,G](L)∗ ≈ [F,G](L)∗
∣∣∣
ired

, (49)

which expresses the fact that second-class constraints reducible of an arbitrary order L
can be systematically approached in an irreducible manner.
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