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1 Reducible second-class theories

The main subject approached in the thesis is the problem of the irreducible analysis of
the second-class constraints reducible of an arbitrary order. The approach in irreducible
manner of the reducible second-class theories is based on the following steps: i) we express
the Dirac bracket for the reducible system in terms of an invertible matrix; ii) we construct
an irreducible second-class system (on a larger phase-space) equivalent to the original
reducible one; iii) we derive of the Dirac bracket with respect to the irreducible second-
class constraints; iv) we prove the fact that the fundamental Dirac brackets derived within
the irreducible and original reducible settings coincide (weakly); v) the application of
the general procedure on various models. We initially approach second-class constraints
reducible of order two and three by implementing the main steps mentioned above, and
then generalize these results to an arbitrary order of reducibility.

1.1 The irreducible approach to second-order reducible second-
class constraints

1.1.1 Second-order reducible second-class constraints

We start with a system locally described by N canonical pairs 2% = (¢', p;), subject to

some constraints
Xao (29) = 0, ag = 1, M. (1)

In addition, we presume that the functions y,, are not all independent, but there exist
some nonvanishing functions Z3° and Z}' such that
ZaOiOXao = 07 = 17 M17 (2)
ZaO;lZaCio ~ 0, Qg = 17 Ms. (3)
We will assume that the reducibility stops at order two, so the functions Z! are by

hypothesis taken to be independent.
The constraints (1) are purely second class if any maximal, independent set of M =

Moy — My + M, constraint functions x4 (A =1,---, M) among X,, is such that the matrix
2
Ciip = Dxaxs], (4)

is invertible.
In terms of independent constraints, the Dirac bracket takes the form

[F, G = [F,G] = [F,xa] MP*P [x5,G, ()

where M®4BCE) ~ 54,
We can rewrite the Dirac bracket (5) without finding a definite subset of independent
second-class constraints as follows. We start with the matrix

2
Cc(yo)ﬂo = [Xocov Xﬁo]’ (6)
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which clearly is not invertible because

Z2CP), ~0. (7)
Let A2" be some functions chosen such that satisfy the condition
rang (Z°ALY) = rang (DY) = My — Ms. (8)
We introduce an antisymmetric matrix M 20% through the relation
CRL MEnobo o p o =5 b0 — Az (9)
such that the formula
[F,G)?" = [F,G] = [F, Xoo) M®™™ [x5,, G (10)

defines the same Dirac bracket like (5) on the surface (1).
It can be proved that for systems with second-stage reducible second-class constraints
the Dirac bracket can be written in terms of an invertible matrix.

Teorema 1 There exists an invertible, antisymmetric matriz n?20% in terms of which
the Dirac bracket (10) becomes

[F7 G](Z)* = [F7 G] - [Fv Xao] N(2)a0ﬂ0 [XBO? G] : (11)
on the surface (1).

The relationship between the invertible matrix p(?20% and the matrix M@ jg
given by a relation
M PaoBo Dg(?u@))\oangg‘ (12>

1.1.2 Intermediate system

We introduce some new variables, (yq, ) .., With the Poisson brackets

a;=1,-
[ym?yﬁl] = Wa1 65 (13>
and consider the system subject to the reducible second-class constraints
Xao & 0, Yo, = 0. (14)

The Dirac bracket on the phase-space locally parameterized by the variables (2%, va,),
corresponding to the above second-class constraints reads as

[Fa G](2)* = [F> G] - [Fa Xao] /L(Q)aOﬁO [Xﬁm G]

Z?y

- [Fa yal] W [yﬁlv G] . (15>

The Dirac bracket (15) coincide (weakly) with that written in terms of invertible matrix
(2)ao0fo
i

[F,G)?" =~ [FG%". (16)

Z7y




1.1.3 Irreducible system

Teorema 2 There exists a set of constraints (on the larger phase-space (2%, Ya,))

Xao = Xao + AgeYar =0, Xay = Z52 Yoy =0, (17)
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such that:
(i) ] )
Xao 0, Xay % 0 ¢ Xag = 0, Yoy ~ 0. (18)
(ii)define an irreducible set of second-class constraints, i.e. the matriz
Can = [Xa, Xa], (19)
is invertible, where Xa = (Xags Xas) -
The functions Ag! are defined by the relation
Ax1 . AB1 so
Ay = At es! (20)

ao B

where égll are the elements of an invertible matrix.

The Dirac bracket associated with the irreducible second-class constraints (17) takes
the concrete form

[Fv G} (2 - [F’ G] - [F7 Xoco] :u(2)a060 [)2[307 G] -

ired
[F, Xao) 2300w AT D2 [, G] —

[F, XCQ] D;;A?r?wm)\l é’Ahl ng [>~(/307 G] -
[Fa )Zaz] DijAc)\r?wgl)\lA;i DE; [56527 G] : (21)

Teorema 3 The Dirac bracket with respect to the irreducible second-class constraints
coincides with that of the intermediate system

[F,G)®"|  ~ [FG)%" (22)
ired 2,y
Combining (16) and (22), we reach the result
[F,G)®" ~ [F,G]*" (23)
ired

1.2 Generalization to an arbitrary reducibility order L
1.2.1 Reducible second-class constraints of order L

We will consider the case of a system of second-class constraints, reducible of an arbitrary
order L
28 =0,  ZUZNx0,...,  Z01Z0 ), (24)

ar—1
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with o = 1, M, for each k = 1, L. In addition, the reducibility functions of maximum
order (L), Za;™" , are assumed to be all independent. Consequently, the number of

L
independent second-class constraints is equal to M = 3 (—)* M.

k=0
The Dirac bracket in terms of M independent functions y 4 takes the form

[F,G)" = [F.G] = [Foxa]l MBI [xp,G), A=TM, (25)

where CMWIBC ~ §¢ with C1) = x4, v5)-
The matrix of the Poisson brackets among the constraint functions

L)
Chohy = DXaos Xa] (26)
is not invertible due to the relations Z5° Cao 5 ~ 0 but its rank is equal to M.
Let (Ag; 1>k _ be subject to the relations
1 k=1L

L
rang (255—1[1521) = rang (D}*) Z M (27)

i=k
Ag’z ;Aak . ~0. (28)

We introduce an antisymmetric matrix, of elements M (X% through the relation

C'(L M DB Dp =4, /J'o _A B1Zﬁo (29)
O{o 0 51 )
such that
[F’ G](L)* = [Fa G] - [F> Xao] M(L)QOﬁO [Xﬁov G] (3())

defines the same Dirac bracket like (25) on the surface (1).
The Dirac bracket for L-order reducible constraints can be expressed in terms of a
noninvertible matrix.

Teorema 4 There exists an invertible, antisymmetric matriz % such that Dirac
bracket (30) takes the form

[, G = [F.G] = [F, Xao) 177 [x30, G (31)
on the surface (1).

The relationship between the invertible matrix M5 and the matrix 0% is

given by the relation
M (E)aobo Dicgu(L)Aoangg. (32)



1.2.2 Intermediate system

with k =0, [ } exhibiting the

We introduce some new variables, (Ya,, +1)a2k+1 T
Poisson brackets
[yai7y/8j:| = Wa;8; 5ij, (33>

and consider the system subject to the reducible second-class constraints

Xao ~ 07 (y02k+1)k:07[%] ~ 0. (34>

The Dirac bracket on the phase-space locally parameterized by the variables (Z“, (ya2k+1 ) ko[L1]>
=05

constructed with respect to the above second-class constraints, reads as

[F7 G](L)* 2y - [F7 G] - [F7 Xao] M(L)QOBO [Xﬂm G]
[£5]
- Z [Fw yazk-s-J WOt [yﬁzm-n G] ) (35)
k=0

and coincide (weakly) with Dirac bracket written in terms of invertible matrix (/)0

7G|~ [FG"" (36)

Z7y

1.2.3 Irreducible system

Teorema 5 There exists a set of constraints (on the larger phase-space, locally parame-

terized by (z“, (ya2k+1)kzw))

-if L odd
Xao = Xap + AgsYay ~ 0, (37)
Xagy = Zgj: "Waoge 1 T Ag;:“ya%ﬂ ~0, k=1, {g}, (38)
-if L even
Xao = Xao + Agglar = 0, (39)
Nook = Zo2 Wagy + Ao Yoy, 20, k=1, g -1, (40)
Xor = 2ot Way_, = 0; (41)

with the following properties:

(i)

~ 0) : (42)
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(i) define an irreducible set of second-class constraints, i.e. the matrix

Canr = [Xa, Xa'], (43)

15 invertible, where xa = ()Za%)k_m,
=03

The functions Aa2¢*" appearing in the above are defined by the relations:
-if L odd

A = Az, k=0, [g] -1, (44
Agr = AP DEE (45)

-if L even
AQzert = AJziggt k=0, g - 1L (46)

The elements ég;:;l determine an invertible matrix and iar DgLL are the elements of the

inverse of the matrix of elements DS- = Zg; A%

The Dirac bracket built with respect to the irreducible second-class constraints (37)
and (38) (or (39)—(41))

[F’ G](L)* = [Fv G] - [Fv Xao] M(L)QOBO [)2[307 G]

ired

_ {[F, )20%] VAL éa2k+1w’72k+1/82k+1121f82k+2 [262“2’ G}

Q2k41 V2k+1 B2k+1
k=

+ [F, Xa2k+2:| A%2k+2,02k+172k+1 é52k+1 Z’B% bzﬂ%’ G]

okt Yok+1 7 Por+1

+ [F, XQ%_H} ¢a2k+2/32k+2 |:5€62k+27 G} } ) (47)

[en]

Teorema 6 The Dirac bracket with respect to the irreducible second-class constraints (47)
coincides with that of the intermediate system

[F.G"| = REYT (43)
ired 2,y
Based on (36) and (48), we are led to the relation
F.G"" ~ [F.G" (49)

which expresses the fact that second-class constraints reducible of an arbitrary order L
can be systematically approached in an irreducible manner.
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