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Abstract

We use the formalism of quantum off-shell fields for the case of pure Yang-Mills fields. In this
formalism one can compute in a systematic way the second order anomalies of the tree sector.
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1 Introduction

The general framework of perturbation theory consists in the construction of the chronological prod-
ucts such that Bogoliubov axioms are verified [1], [3], [2], [4], [13], [14]; for every set of Wick
monomials W1(x1), . . . ,Wn(xn) acting in some Fock space H generated by the free fields of the
model, one associates the operator TW1,...,Wn(x1, . . . , xn); all these expressions are in fact distribution-
valued operators called chronological products. Sometimes it is convenient to use another notation:
T (W1(x1), . . . ,Wn(xn)). The construction of the chronological products can be done recursively ac-
cording to Epstein-Glaser prescription [3], [4] (which reduces the induction procedure to a distribution
splitting of some distributions with causal support) or according to Stora prescription [12] (which re-
duces the renormalization procedure to the process of extension of distributions). These products are
not uniquely defined but there are some natural limitation on the arbitrariness. An equivalent point
of view uses retarded products [15].

Gauge theories describe particles of higher spin. Usually such theories are not renormalizable.
However, one can save renormalizability using ghost fields. Such theories are defined in a Fock space
H with indefinite metric, generated by physical and un-physical fields (called ghost fields). One selects
the physical states assuming the existence of an operator Q called gauge charge which verifies Q2 = 0
and such that the physical Hilbert space is by definition Hphys ≡ Ker(Q)/Ran(Q). The space H is
endowed with a grading (usually called ghost number) and by construction the gauge charge is raising
the ghost number of a state. Moreover, the space of Wick monomials in H is also endowed with a
grading which follows by assigning a ghost number to every one of the free fields generating H. The
graded commutator dQ of the gauge charge with any operator A of fixed ghost number

dQA = [Q,A] (1.1)

is raising the ghost number by a unit. It means that dQ is a co-chain operator in the space of Wick
polynomials. From now on [·, ·] denotes the graded commutator.

A gauge theory assumes also that there exists a Wick polynomial of null ghost number T (x) called
the interaction Lagrangian such that

[Q,T (x)] = i∂µT
µ(x) (1.2)

for some other Wick polynomials Tµ. This relation means that the expression T leaves invariant the
physical states, at least in the adiabatic limit. Indeed, one can write the preceding identity as

[Q,T (f)] = −i Tµ(∂µf) (1.3)

where f is a test function. So, when this test function becomes flatter and flatter we have

[Q,T (f)] ≈ 0 (1.4)

so the interaction Lagrangian leaves invariant the physical states.
In all known models there exists a chain of Wick polynomials Tµ, Tµν , Tµνρ, . . . such that:

[Q,T ] = i∂µT
µ, [Q,Tµ] = i∂νT

µν , [Q,Tµν ] = i∂ρT
µνρ, . . . (1.5)

In all cases Tµν , Tµνρ, . . . are completely antisymmetric in all indices; it follows that the chain of
relation stops at the step 4 (if we work in four dimensions). We can also use a compact notation
T I where I is a collection of indices I = [ν1, . . . , νp] (p = 0, 1, . . . , ) and the brackets emphasize the
complete antisymmetry in these indices. All these polynomials have the same canonical dimension

ω(T I) = ω0, ∀I (1.6)

and because the ghost number of T ≡ T ∅ is supposed null, then we also have:

gh(T I) = |I|. (1.7)
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One can write compactly the relations (1.5) as follows:

dQT
I = i ∂µT

Iµ. (1.8)

For concrete models the chain of descent equations (1.5) can stop earlier. We can construct the
chronological products

T I1,...,In(x1, . . . , xn) ≡ T (T I1(x1), . . . , T In(xn))

according to the recursive procedure. We say that the theory is gauge invariant in all orders of the
perturbation theory if the following set of identities generalizing (1.8):

dQT
I1,...,In = i

n∑
l=1

(−1)sl
∂

∂xµl
T I1,...,Ilµ,...,In (1.9)

are true for all n ∈ N and all I1, . . . , In. Here we have defined

sl ≡
l−1∑
j=1

|I|j . (1.10)

In particular, the case I1 = . . . = In = ∅ it is sufficient for the gauge invariance of the scattering
matrix, at least in the adiabatic limit; this can be argued as in (1.3).

Such identities can be usually broken by anomalies i.e. expressions of the type AI1,...,In which are
quasi-local and might appear in the right-hand side of the relation (1.9). One compute these anomalies
in lower orders of perturbation theory and imposing their cancellation one obtains various restrictions
on the expression of the interaction Lagrangian. In this paper we consider the interaction between
pure Yang-Mills fields. We compute the anomalies of this model in the second order of perturbation
theory using the formalism of off-shell fields. This formalism give a systematic way of computing the
anomalies. Such a formalism was used previously in the literature in the context of classical field
theory. We use here a pure quantum version.

In the next Section we remind our definition of free fields. We avoid explicit formulas using
the reconstruction theorem of Wightmann. In Section 3 we recall the main result concerning the
interaction Lagrangians for the most simple model with higher spin fields, namely the pure Yang-Mills
fields model. In Section 5 we introduce the off-shell formalism. In Section 4 we consider perturbative
quantum field theory in the second order. Then in Section 6 we describe the consequences of the
cancellation of the anomalies in the second order of the perturbation theory.

2 Free Fields

We will adopt the description of free quantum fields given by the reconstruction theorem from ax-
iomatic field theory [11], [16] based on Borchers algebras. In this approach one can construct a
quantum field giving the Wightmann n-points distributions and the statistics. For a free field it is suf-
ficient to give the Wightmann 2-points distribution and generate the rest according to Wick theorem.
We use formal distribution notations for simplicity.

2.1 The Real Scalar Field

We start with the most elementary case of a real scalar field. The field is Φ(x) and the Hilbert space
is generated by vectors of the type

Φ(x1) · · ·Φ(xn) Ω (2.1)

where Ω is the vacuum vector. By definition, the 2-points distribution is

< Ω,Φ(x1)Φ(x2)Ω >= −i D(+)
m (x1 − x2) (2.2)

119



where D(+)
m (x) is the positive frequency part of the Pauli-Jordan causal distribution of mass m. We

assume that the scalar field is a Bose field and the n-points distributions are generated according to
Wick theorem: for n odd

< Ω,Φ(x1) · · ·Φ(xn)Ω >= 0 (2.3)

and for n even:

< Ω,Φ(x1) · · ·Φ(xn)Ω >=
∑
σ

< Ω,Φ(xσ(1))Φ(xσ(2))Ω > · · · < Ω,Φ(xσ(n−1))Φ(xσ(n))Ω >; (2.4)

here the sum is over all permutations σ of the numbers 1, 2, . . . , n. We also postulate that the field Φ
is self-adjoint:

Φ† = Φ. (2.5)

Then one can construct the Hilbert space H from vectors of the type (2.1) with the scalar product
< ·, · > reconstructed from the n-points distributions given above and the self-adjointness assumption.
We first define a sesquilinear form in the Hilbert space between two states of the form (2.1) by

< Φ(xn) · · ·Φ(x1)Ω,Φ(xn+1) · · ·Φ(xm+n)Ω >

≡< Ω,Φ(x1)† · · ·Φ(xn)†Φ(xn+1) · · ·Φ(xm+n)Ω >=< Ω,Φ(x1) · · ·Φ(xm+n)Ω > (2.6)

and one can prove that is positively defined so it induces a scalar product.
Then the action of the scalar field on states of the form (2.1) is defined in an obvious way. One

can prove that the scalar field so defined verifies the Klein-Gordon equation of mass m

KmΦ = (� +m2)Φ = 0; � ≡ ∂2 = ∂ · ∂ = ∂µ ∂
µ (2.7)

and the canonical commutations relation:

[Φ(x1),Φ(x2)] = −i Dm(x1 − x2). (2.8)

Because of this commutation relation the writing of a state from the Hilbert space in the form
(2.1) is not unique.

Moreover, one can introduce in the Hilbert space H a unitary (irreducible) representation of the
Poincaré group according to

UΛ,aΦ(x)U−1
Λ,a = Φ(Λ−1 · (x− a))

UΛ,a Ω = Ω (2.9)

(here Λ ∈ L↑+ is a proper orthochronous Lorentz transform and a is a space-time translation). One can
obtain in an elementary way the action of the operator UΛ,a on vectors of the type (2.1) by commuting
the operator with the factors Φ(xj) till it hits the vacuum and gives the identity. In the same way one
can define the space and time parity operators.

Of course, one can obtain very explicit representations for the scalar field (see e.g. [17], but they
will be not needed in the following. We only mention that one can define in the same way the Wick
(or normal) products : Φn(x) : for any integer n (see [18]).

For an ensemble of real scalar fields Φa, a = 1, . . . , r we only replace (2.2) by

< Ω,Φa(x1)Φb(x2)Ω >= −i δab D(+)
m (x1 − x2) (2.10)

and we make a corresponding modification of the formula (2.4). A complex scalar will be an appro-
priate combination of two real scalar fields. For Fermi fields, the signature of the permutation should
be introduced in formulas of the type (2.4).
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2.2 Yang-Mills Fields

For fields of higher spin one can use the preceding formalism with one major modification: it is
necessary to introduce ghosts fields, which are fields with the “wrong statistics”.

The generic case is the Massless vector field. In this case we consider the vector space H of Fock
type generated (in the sense of Borchers theorem) by the following fields: (vµ, u, ũ) where the non-zero
2-point distributions are

< Ω, vµ(x1)vν(x2)Ω >= i ηµν D
(+)
0 (x1 − x2),

< Ω, u(x1)ũ(x2)Ω >= −i D(+)
0 (x1 − x2), < Ω, ũ(x1)u(x2)Ω >= i D

(+)
0 (x1 − x2). (2.11)

We also assume the following self-adjointness properties:

v†µ = vµ, u† = u, ũ† = −ũ. (2.12)

When we generate the n-point functions according to a formula of the type (2.3) and (2.4) we
assume that the field vµ is Bose and the fields u, ũ are Fermi. When defining the unitary representation
of the Lorentz group we consider that the first field is vector and the last two are scalars. Because
of the “wrong” statistics the sesquilinear form defined by a formula of the type (2.6) will not be
positively defined. Nevertheless, because it is non-degenerated, we can prove that we have Klein-
Gordon equations of null mass:

� vµ = 0 �u = 0 �ũ = 0 (2.13)

and the canonical commutations relation:

[vµ(x1), vν(x2)] = i ηµν D0(x1 − x2)
{u(x1), ũ(x2)} = −i D0(x1 − x2) (2.14)

and all other (anti)commutators are null.
We can obtain a bona fidæ scalar product introducing the so-called gauge charge i.e. an operator

Q defined by:

[Q, vµ] = i ∂µu, {Q, u} = 0, {Q, ũ} = −i ∂µvµ

QΩ = 0. (2.15)

Using these relation one can compute the action of Q on any state generated by a polynomial in the
fields applied on the vacuum by commuting the operator Q till it hits the vacuum and gives zero.
However, because of the canonical commutation relations the writing of a polynomial state is not
unique. One can prove that the operator Q leaves invariant the canonical (anti)commutation relations
given above and this leads to the consistency of the definition. Then one shows that the operator Q
squares to zero:

Q2 = 0 (2.16)

and that the factor space Ker(Q)/Ran(Q) is isomorphic to the Fock space particles of zero mass and
helicity 1 (photons and gluons) [8].

We can generalize this case considering the tensor product of r copies of massless vector fields, i.e.
we consider the set of fields (vµa , ua, ũa), a = 1, . . . , r of null mass and we extend in an obvious way
the definitions of the scalar product and of the gauge charge.

3 Interactions

The discussion from the Introduction provides the physical justification for determining the cohomol-
ogy of the operator dQ = [Q, ·] induced by Q in the space of Wick polynomials. A polynomial p ∈ P
verifying the relation

dQp = i ∂µp
µ (3.1)
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for some polynomials pµ is called a relative co-cycle for dQ. The expressions of the type

p = dQb+ i ∂µb
µ, (b, bµ ∈ P) (3.2)

are relative co-cycles and are called relative co-boundaries. We denote by Zrel
Q , Brel

Q and Hrel
Q the

corresponding cohomological spaces. In (3.1) the expressions pµ are not unique. It is possible to choose
them Lorentz covariant. We have a general description of the most general form of the interaction of
the previous fields [8]. Summation over the dummy indices is used everywhere. For simplicity we do
not write the double dots of the Wick product notations.

Theorem 3.1 Let T be a relative co-cycle in the variables (vµa , ua, ũa), a = 1, . . . , r which is tri-linear
in the fields, of canonical dimension ω(T ) ≤ 4 and ghost number gh(T ) = 0. Then: (i) T is (relatively)
cohomologous to a non-trivial co-cycle of the form:

t = fabc

(
1
2
vaµ vbν F

νµ
c + ua v

µ
b ∂µũc

)
(3.3)

(ii) The relation dQt = i ∂µt
µ is verified by:

tµ = fabc

(
ua vbν F

νµ
c −

1
2
ua ub ∂

µũc

)
(3.4)

(iii) The relation dQt
µ = i ∂νt

µν is verified by

tµν ≡ 1
2
fabc ua ub F

µν
c . (3.5)

and we have dQtµν = 0.
(iv) The constants fabc must be completely antisymmetric

fabc = f[abc] (3.6)

and the expressions given above are self-adjoint iff the constants fabc are real. Here we have defined
the gauge invariants which are not coboundaries

Fµνa ≡ ∂µvνa − ∂νvµa , ∀a = 1, . . . , r (3.7)

There are different ways to obtain the preceding results. One can proceed by brute force, making
an ansatz for the expressions T I and solving the identities of the type (1.8) as it is done in [13]. There
are some tricks to simplify such a computation. The first one makes an ansatz for T and eliminates
the most general relative cocycle. Then one computes dQT and writes it as a total divergence plus
terms without derivatives on the ghost fields. Another trick is to use the so-called descent procedure.
The first line of proof starts from the general form:

T = f
(1)
abcv

µ
av

ν
b ∂µvcµ + f

(2)
abcv

µ
avbµ∂νv

ν
c + f

(3)
abc εµνρσ v

µ
av

ν
b ∂

σvρc

+g(1)
abcv

µ
aub∂µũc + g

(2)
abc∂µv

µ
aubũc + g

(3)
abcv

µ
a∂µubũc. (3.8)

Eliminating relative coboundaries we can fix:

f
(1)
abc = −f (1)

bac, f
(2)
abc = 0, g

(3)
abc = 0, g

(2)
abc = g

(2)
bac. (3.9)

Then we obtain easily:
dQT = iuaTa + total div (3.10)
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where:

Ta = −2f (1)
abc ∂

νvµb ∂µvcν + (f (1)
cba + g

(2)
bac) ∂µv

µ
b ∂νv

ν
c

+(−f (1)
abc + f

(1)
cba + f

(1)
bca + g

(1)
bca) v

µ
b ∂µ∂νv

ν
c

−2f (3)
abc εµνρσ ∂

µvνb ∂σvcρ. (3.11)

Now the gauge invariance condition (1.2) becomes

uaTa = ∂µt
µ (3.12)

for some expression tµ which has, from power counting arguments, the general form

tµ = ua t
µ
a + ∂µua ta + ∂νua t

µν
a (3.13)

where the polynomial tµνa does not contain terms with the factor ηµν . Then the relation (3.12) is
equivalent to:

∂µt
µ
a −m2

a ta = Ta

tµa + ∂µta + ∂νt
νµ
a = 0

tµνa = tνµa . (3.14)

One can obtain easily from this system that

Ta = (� +m2
a) ta. (3.15)

Writing a generic form for ta it is easy to prove that in fact:

Ta = 0; (3.16)

from here we easily obtain the total antisymmetry of the expressions f (1)
abc and f

(3)
abc; also we have

g
(2)
abc = 0. Now one can take f (3)

abc = 0 if we subtract from T a total divergence. As a result we obtain
the (unique) solution:

T = f
(1)
abc(v

µ
av

ν
b ∂νvcµ − vµaub∂µũc) (3.17)

which is the expression from the theorem.
Now we briefly present the descent method in this case. There are two results which must be used

repeatedly [8]. First, we have a version of the Poincaré lemma valid for Wick monomials and then we
have a description of the cohomology group HQ of dQ in terms of invariants: if T is a Wick polynomial
verifying dQ T = 0 then it is of the form T = dQB+T0 where T0 depends only on the gauge invariants
ua, F

µν
a .

By hypothesis we have
dQT = i ∂µT

µ. (3.18)

If we apply dQ we obtain ∂µdQ Tµ = 0. Using Poincaré lemma one finds out some Wick polynomials
T [µν] such that

dQT
µ = i ∂νT

[µν]. (3.19)

Continuing in the same way we find T [µνρ] such that

dQT
[µν] = i ∂ρT

[µνρ]; (3.20)

we also have
gh(T I) = |I|. (3.21)

It means that T [µνρ] is a sum of terms of the type ηµν ua ub ∂ρuc i.e. is a coboundarco-boundary
T [µνρ] = dQB

[µνρ]. We introduce in (3.20) and obtain

dQ(T [µν] − i ∂ρB[µνρ]) = 0. (3.22)
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Using the description of the cohomology of dQ we can easily find that we have:

T [µν] = dQB
[µν] + i ∂ρB

[µνρ] + T
[µν]
0 (3.23)

where the last term depends only on the invariants ua, F
µν
a i.e.

T
[µν]
0 =

1
2
f

(1)
[ab]c ua ub F

µν
c +

1
2
f

(2)
[ab]c ε

µνρσ ua ub Fcρσ; (3.24)

We substitute these expressions in (3.19) and obtain

dQ(Tµ − i ∂νB[µν] − tµ) = 0 (3.25)

where:

tµ ≡ f (1)
[ab]c

(
ua vbν F

νµ
c −

1
2
ua ub ∂

µũc

)
− f (2)

[ab]c ε
µνρσ ua vbν Fcρσ. (3.26)

If we use again the cohomology of dQ we can easily find out that in fact:

Tµ = dQB
µ + i ∂νB

[µν] + tµ. (3.27)

We substitute this in (3.18) and we obtain the restrictions

f
(1)
[ab]c = −f (1)

[ac]b, f
(2)
[ab]c = −f (2)

[ac]b (3.28)

so the constants f (1)
[ab]c, f

(2)
[ab]c are in fact completely antisymmetric and

dQ(Tµ − i ∂νBµν − t) = 0 (3.29)

where

t ≡ f (1)
[abc]

(
1
2
vaµ vbν F

νµ
c + ua v

µ
b ∂µũc

)
− 1

2
f

(2)
[abc] εµνρσ v

µ
a v

ν
b F

ρσ
c . (3.30)

The description of the cohomology of dQ leads to

T = dQB + i ∂µB
µ + t. (3.31)

Finally one proves that the last term from the expression t is a total divergence.

4 Perturbation Theory

Now we proceed to the (second order) of perturbation theory. Our purpose is to compute the scattering
matrix

S(g) ≡ I + i

∫
dxg(x)T (x) +

i2

2

∫
dx dy g(x) g(y) T (x, y) + · · · (4.1)

where g is some test function. The expressions T (x, y) are called (second order) chronological products
because they must verify the causality property:

T (x, y) = T (x)T (y) (4.2)

for x � y i.e. (x− y)2 ≥ 0, x0− y0 ≥ 0; in other words the point x succeeds causally the point y. This
is some generalization of the property

U(t, s) = U(t, r)U(r, s), t > r > s (4.3)

of the time evolution operator from non-relativistic quantum mechanics.
We go to the second order of perturbation theory using the causal commutator

DA,B(x, y) ≡ D(A(x), B(y)) = [A(x), B(y)] (4.4)
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where A(x), B(y) are arbitrary Wick monomials. These type of distributions are translation invariant
i.e. they depend only on x− y and the support is inside the light cones:

supp(D) ⊂ V + ∪ V −. (4.5)

A theorem from distribution theory guarantees that one can causally split this distribution:

D(A(x), B(y)) = A(A(x), B(y))−R(A(x), B(y)). (4.6)

where:
supp(A) ⊂ V + supp(R) ⊂ V −. (4.7)

The expressions A(A(x), B(y)), R(A(x), B(y)) are called advanced resp. retarded products. They are
not uniquely defined: one can modify them with quasi-local terms i.e. terms proportional with δ(x−y)
and derivatives of it.

There are some limitations on these redefinitions coming from Lorentz invariance and power count-
ing: this means that we should not make the various distributions appearing in the advanced and
retarded products too singular.

Then we define the chronological product by:

T (A(x), B(y)) = A(A(x), B(y)) +B(y)A(x) = R(A(x), B(y)) +A(x)B(y). (4.8)

The expression T (x, y) corresponds to the choice

T (x, y) ≡ T (T (x), T (x)). (4.9)

The “naive” definition

T (A(x), B(y)) = θ(x0 − y0)A(x)B(y) + θ(y0 − x0)B(y)A(x) (4.10)

involves an illegal operation, namely the multiplication of distributions. This appears in the loop
contributions (the famous ultraviolet divergences).
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5 The Off-Shell Formalism

It is known that in the second order of the perturbation theory some anomalies can appear and this
is due essentially because the Pauli-Jordan distribution Dm verifies Klein-Gordon equation:

Km Dm = (� +m2) Dm = 0 (5.1)

but the associated Feynman distribution DF
m verifies

Km DF
m = (� +m2) DF

m = δ(x− y). (5.2)

Let us describe in detail this point. One computes the second order causal commutator and finds
out that the tree contribution has the following generic form:

[T I1(x), T I2(y)]tree =
∑
m

[ Dm(x− y) AI1,I2m (x, y) + ∂α Dm(x− y) AI1,I2;α
m (x, y)] (5.3)

where the sum runs over the various masses from the spectum of the model and the expressions AI1,I2m

and AI1,I2;α
m are Wick polynomials. Moreover we have from (1.8) the identity

dQ[T I1(x), T I2(y)] = i
∂

∂xµ
[T I1µ(x), T I2(y)] + (−1)|I1|

∂

∂yµ
[T I1(x), T I2µ(y)] (5.4)

which stays true if we take only the tree graphs. Now one can find out the corresponding chronological
products by simply substituting in the preceding expression the causal distribution by the associated
Feynman propagator: Dm → DF

m i.e.

T I1,I2(x, y)tree =
∑
m

[ DF
m(x− y) AI1,I2m (x, y) + ∂α D

F
m(x− y) AI1,I2;α

m (x, y)]. (5.5)

In this way all Bogoliubov axioms are true (in the second order) but we might break gauge invariance
i.e. the identity (1.9) for n = 2

dQT
I1,I2(x, y) = i

∂

∂xµ
T I1µ,I2(x, y) + (−1)|I1|

∂

∂yµ
T I1,I2µ(x, y) (5.6)

might not be true. Indeed, one can find in the chronological product T I1µ,I2(x, y)tree terms of the type
∂µDF

m(x−y) AI1,I2(x, y). Then, because of the difference between the relations (5.1) and (5.2) we have
in the right hand side of (5.6) an extra-term δ(x−y) AI1,I2(x, y). One must collect all quasi-local terms
appearing in this way and check if they can be put under the form of a co-boundary (dQ−iδ)RI1,I2(x, y)
where RI1,I2(x, y) are quasi-local expressions; then we can restore gauge invariance (at least for the
tree contributions) by redefining the chronological products in an obvious way.

So the first problem is to find out the anomaly i.e. the expression appearing in the right hand side
of (5.6) and the second problem is to see in which conditions it can be eliminated by a redefinition
of the chronological products. Even the first problem is not exactly elementary in complex models
as for instance the case of gravity: in [13] one can see for instance that not only terms of the type
∂µDF

m(x− y) A(x, y) can produce anomalies. So we need a systematic way to compute the anomaly.
This suggests to make the following change in the description of the fields from section 2: we

replace the Pauli-Jordan distribution Dm by some off-shell distribution Doff
m which does not verify

Klein-Gordon equation but converges in some limit (in the sense of distribution theory) to Dm. For
instance we can take

Doff
m ≡

∫
dλρm(λ)Dλ (5.7)

where ρm(λ) is some function converging, say for λ → 0 to the distribution δ(λ − m). In this way
all the fields from Section 2 we become generalized free fields [11] i.e. they will verify all properties
described there except Klein-Gordon equation. The off-shell scalar field we be denoted by Φoff , etc.
However, for simplicity we will skip the index off if no confusion can arise.
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If we keep the definion of the gauge charge unchanged we will loose the property Q2 = 0. If we
keep unchanged the expressions of the interaction Lagrangians from the preceding Section, but replace
all fields by their off-shell counterparts, we also loose the relations (1.8). However, these relations will
be replaced by

dQT
I = i ∂µT

Iµ + SI (5.8)

with SI some polynomials which will be null in the on-shell limit. We will need these expressions in
the following. In the following we will denote Kc ≡ Kmc and we assume that all fields are off-shell
(we do not append the index off). We have by direct computations the following result:

Theorem 5.1 The expressions SI have the following explicit form:

S = S∅ ≡ i fabc ua
(
vµb Kcvcµ +

1
2
ua ub Kcũc

)
. (5.9)

Also
Sµ ≡ i

2
fabc ua ub Kcv

µ
c (5.10)

and
SI = 0, |I| > 1. (5.11)

Then we have:

Theorem 5.2 In the off-shell formalism we can choose the the second order chronological products
such that the following identity is true:

dQT
I1I2(x, y) = i

∂

∂xµ
T I1µ,I2(x, y) + (−1)|I1|

∂

∂yµ
T I1,I2µ(x, y)

+T (SI1(x), T I2(y)) + (−1)|I1| T (T I1(x), SI2(y)). (5.12)

Indeed, if we make the substitution Doff
m → DF,off

m we obtain immediately the identity from (5.4) and
(5.8). Similar identities are true in the higher orders of perturbation theory. Let us consider the
simplest case I1 = I2 = ∅ when we have

dQT (x, y) = i
∂

∂xµ
T [µ],∅(x, y) +

∂

∂yµ
T ∅,[µ](x, y) + [T (S(x), T (y)) + (x↔ y)]. (5.13)

Now we have a very clear origin of the anomalies. It elementary to prove that we have:

T (S(x), T (y))tree =
∑
m

[ KmD
F,off
m (x− y) Am(x, y) + ∂α KmD

F,off
m (x− y) Aαm(x, y)] + · · · (5.14)

where by · · · we mean terms where the Klein-Gordon operator is acting on some off-shell field factor.
So when we make the on-shell limit λ→ 0 we have

T (S(x), T (y))tree → δ(x− y) A(x, y) + ∂αδ(x− y) Aα(x, y) (5.15)

where the expressions A(x, y) and Aα(x, y) are sums of the corresponding expressions Am(x, y) and
Aαm(x, y) respectively. In this way we have a systematic procedure to compute the tree anomalies in
the second order of perturbation theory. For instance, the anomaly of the relation (5.13) is

A(x, y) = {δ(x− y) A(x, y) + [∂αδ(x− y)] Aα(x, y)}+ (x↔ y). (5.16)

We investigate now in what conditions we can eliminate the anomaly by finite renormalizations.
The first trick is to use “partial integration” on the last terms with derivatives on the δ distribution.
We obtain the equivalent form:

A(x, y) = 2 δ(x− y) a(x, y) +
[
∂

∂xα
aα(x, y) + (x↔ y)

]
(5.17)
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where
a(x, y) ≡ A(x, y)− ∂

∂xα
Aα(x, y), aα(x, y) ≡ δ(x− y)Aα(x, y). (5.18)

If we make the redefinition

T (Tµ(x), T (y))→ T (Tµ(x), T (y)) + i aµ(x, y) (5.19)

of the chronological products we will put the anomaly in the form

A(x, y) = 2 δ(x− y) a(x, x) (5.20)

Now we have the following

Lemma 5.3 The preceding anomaly can be eliminated iff the expression a(x) = a(x, x) is a relative
cocycle i.e. we have

a = dQB − i∂µBµ (5.21)

for some Wick polynomials B and Bµ. The Wick polynomials B(x) and Bµ(x) are constrained by:
(a) Lorentz invariance; (b) ghost number restrictions:

gh(B) = 0, gh(Bµ) = 1 (5.22)

and (c) power counting which in our case gives:

ω(B) , ω(Bµ) ≤ 4. (5.23)

The proof is very simple. Suppose that the anomaly (5.20) can be put in the form

δ(x− y) a(x) = dQR(x, y) + i
∂

∂xµ
Rµ(x, y) +

∂

∂yµ
Rµ(y, x). (5.24)

with the expressions R(x, y), Rµ(x, y) quasi-local i.e. of the form

R(x, y) = δ(x− y) B(x) + · · · , Rµ(x, y) = δ(x− y) Bµ(x) + · · · (5.25)

where · · · are terms with higher order derivatives on the δ distribution. Then we immediately obtain
from (5.24) the identity from the lemma. Conversely, if the identity from the lemma is true then we
take

R(x, y) = δ(x− y) B(x), Rµ(x, y) = δ(x− y) Bµ(x) (5.26)

and we have (5.24).
So all we have to do it to compute the expression a(x, y) given by the formula (5.18), collapse the

two variables to obtain the expression a(x) and impose the condition (5.21). For simple models, as pure
Yang-Mills theories, this computation is not very difficult but for more complicated models involving
gravitation, the computation are very long and one can see the benefits of the off-shell method if one
makes the comparison with the usual methods.

In the same way one can treat the other identities of the type (5.12) i.e. for non-trivial sets of
indices I1, I2.
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6 Second Order Gauge Invariance

Now we turn to the question of gauge invariance of the model in the second order of perturbation
theory. The case of Yang-Mills fields has been investigated previously [5], [6]. Using the off-shell
method we have our main result:

Theorem 6.1 The second order chronological products verify the gauge invariance condition

dQT (x, y) = i
∂

∂xµ
T [µ],∅(x, y) + i

∂

∂yµ
T ∅,[µ](x, y) (6.1)

in the second order of perturbation theory iff the constants fabc verify the Jacobi identity:

fabcfdec + fbdcfaec + fdacfbec = 0, (6.2)

The finite renormalization of the chronological product T (x, y) is given by

R(x, y) = δ(x− y) N(x) (6.3)

where
N =

i

2
fabe fcde v

µ
a v

ν
b vcµ vdµ. (6.4)

Proof: We will compute the anomaly using the off-shell method described in the preceding Section.
The expressions A(x, y), Aα(x, y) appearing in (5.15) are:

A(x, y) = fabefcde[−ua(x)vbµ(x)vcν(y)F νµd (y) + ua(x)vµb (x)uc(y)∂µũd(y)
−1/2 ua(x)ub(x)vµc (y)∂µũd(y)] (6.5)

and

Aα(x, y) = fabefcdeua(x)vbν(x)vνc (y)vαd (y) (6.6)

respectively. Then we compute the expression (5.18) and obtain:

a(x, x) = dQN + (face fdbe + fade fbce + fabe fcde) (ua Fbµν vµc v
ν
d − ua ub vµc ∂µũc) (6.7)

where N is the expression from the statement. If we impose the condition (5.21) taking an arbitrary
ansatz for B and Bµ we obtain that the last term in the right hand side must be null i.e. we have
Jacobi identity. �

Remark 6.2 If we substitute the renormalized expression of the chronological product

TR(x, y) ≡ T (x, y) + δ(x− y) N(x)

in the S-matrix (4.1) then we formally obtain the full (classical) Yang-Mills Lagrangian: the tri-
linear part is given by the first order chronological product (3.3) and the quadratic part by the finite
renormalization N .

We can extend the argument for the general second order chronological products: they verify the
gauge invariance condition (5.6) in the second order of perturbation theory iff the constants verify the
Jacobi identity and we have finite renormalizations of the chronological product T I1,I2(x, y) are given
by the following expressions

RI1,I2(x, y) = δ(x− y) N I1,I2(x) (6.8)
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where

N∅∅ =
i

2
fabe fcde v

µ
a v

ν
b vcµ vdµ

N [µ]∅ = −i fabe fcde ua vνb vνc v
µ
d

N [µ][ν] = −i fabe fcde (ua vνb uc v
µ
d − η

µν ua v
ν
b uc vdν)

N [µν]∅ = − i
2
fabe fcde ua ub v

µ
c v

ν
d

N [µν][ρ] = − i
2
fabe fcde [ηµρ ua ub uc vνd − (µ↔ ν)]

N [µν][ρσ] =
i

4
fabe fcde (ηµρ ηνσ − ηνρ ηµσ) ua ub uc ud. (6.9)

7 Conclusions

The preceding result can be extended to the most general case of Yang-Mills fields (massless and
massive), Dirac fields and the gravitational field in interaction [9]. The elimination of the anomalies
in higher orders of perturbation theory is a very complicated problem and, for the moment, it can
be done only for special cases like QED and related models, where we have a special new symmetry
(charge conjugation) [7], [10].
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[11] R. Jost, “The General Theory of Quantized Fields”, AMS, Providence, 1965

[12] G. Popineau, R. Stora, “A Pedagogical Remark on the Main Theorem of Perturbative Renormal-
ization Theory”, unpublished preprint

[13] G. Scharf, “Quantum Gauge Theories. A True Ghost Story”, John Wiley, 2001

[14] R. Stora, “Lagrangian Field Theory”, Les Houches lectures, Gordon and Breach, N.Y., 1971, C.
De Witt, C. Itzykson eds.

[15] O. Steinmann, “Perturbation Expansions in Axiomatic Field Theory”, Lect. Notes in Phys. 11,
Springer, 1971

[16] R. F. Streater, A. S. Wightman, “PCT, Spin and Statistics and all that”, W. A. Benjamin Inc.
New York, 1964

[17] S. Weinberg, “The Quantum Theory of Fields”, vol. 1 and 2, Cambridge Univ. Press, 1995

[18] A. S. Wightman, L. G̊arding, “Fields as Operator-Valued Distributions in Relativistic Quantum
Field Theory”, Arkiv Fysik 28 (1965) 129-184

131




