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Affine evolution equations with
random coefficients

e Discrete time random affine processes used
In Image compression

o Example: the stationary distribution
function of the simplest one dimensional
processes generate complex fractal
structures

e The stationary PDF of general affine
processes has heavy tail asymptotic form
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From physicists point of view, the study of linear stochastic processes with parametric noise is related to the stochastic version of the linear stability analysis of nonlinear systems, in particular with the implicit  natural emergence of stationary PDF with algebraic decay
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Random linear (RL) models, discrete time

Colored noise: fluctuations near stable
equilibrium.

Modelling instabilities: randomise the
multiplicative term.

Discrete time 1d colored noise=fractal equilibrium
PDF [ref.4] Higher dimensions: more complex.
The continuous time models are more easy.

Heavy tail in discrete time models [ref. 1,2] with
noisy In additive and multiplicative terms.
Analytic results only for white noise .



Unexpected complexity of random
linear (RL) models, simple example:

» The stationary PDF Is the Cantor set for this
discrete time system (Tian-You Hu, Ka-
Sing Lau, Adv.Appl. Math. 27 2001, 1):

X, =X 13+ T
f =n1d; f ={0,2/3}
with prob.=1/2
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Even apparent simple stochastic linear systems display complex long time behavior


Moreover: RL models with fractal stationary
PDF used in “image compression’ .

Iterated function systems:
X(t+1)=A(t)x(t)+b(t); A(t), b(t) stationary
random sequences, X(t) =>fractal images .

J. E. Hutchinson, Indiana Univ. Math. J. 30
(1981) 713.

M. Barnsley, “Fractals everywhere”,
Academic Press, Boston MA, 1993.




Discrete time RL models:
condensed matter, SOC physics.

e H. Takayasu, Phys. Rev. Lett. 63, 2563
(1989). H. Takayasu, &all A-H. Sato, and
M. Takayasu, Phys. Rev. Lett. 79, 966
(1997); A-H. Sato, H. Takayasu, and Y.
Sawada, Phys. Rev. E 61, 1081 (2000).

* Explains the heavy tail of stationary PDF,
by RW on the 1d affine group.
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Discrete time  random multiplication processes (RMP) explains the self similar asymptotic behavior in self organized criticality (SOC) models


RL models of complex systems.

Classics: 1-d Black-Scholes model, Nobel
prize in economy. [B. @ksendal, Stochastic
Differential Equations, Springer, 2000].

“Auto-Regressive” models:

Sato, A.-H., Phys. Rev. E 69, 047101-1 -
047101-4, (2004).

D. Nagakura, Statistics and Probability
Letters, 79, 2467-2483, (2009)
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Random multiplication  models was succesfully used in the study of complex systems, including economy


Higher dimensions, “free, (non
commutative) probability”.

H. Furstenberg, Non-Commuting random products, Trans.
Amer. Math. Soc. 108, (1963), 193-229.

A. Brandt, The stochastic equation

Y {n+1}=A {n}Y {n}+B_{n} with stationary
coefficients. Adv. Appl. Prob. 18, (1986),211-220.

H. Kesten, Random Difference Equations and Renewal

Theory for Products of Random Matrices. Acta Math. 131,
(1973), 207-248.

E. Le Page, Theoremes de renouvellement pour les
produits de matrices aléatoires. Equations aux differentes

aléatoires. Seminaires des probabilités, Rennes, 1983.
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Rigorous prove of the existence of heavy tail


Random linear models.
Continuous time, white noise

Black-Scholes: dx=[-a*dt+b*dw(t)]x(t),
used in economy; a>0. No stationary PDF.
With additive independent white noise term,

stationary PDF with algebraic decay.
Simple calculations.

Problem: effect of small intensity noise with
large correlation time (colored noise)?



Random linear model, continuous time, colored
noise

» The process x(t) given by linear SDE, randomised O.-U.
process.[ Model of boiling water fission reactor]

o Ref: G. Steinbrecher, B. Weyssow. PRL, 92, 125003,
(2004)

e Rand. process: dx(t)=-(a dt-dY(t)) x(t)+dU(t)+e dt.

w, (t) = independent  Wiener processes, (dw; (t)dw; (t)) = ;dt

Define: Y(T):ZN:bi.T[yi(t)dt ;U(I'):ZN:ci]yi(t)dt; noises

RANDOMISED 0O.-U. PROCESS
dx=—(adt—dY () x(t)+dU (t)+edt; a>0; e=arbitrary const.



Stability criteria for stochastic
systems

Definitions and example of LP stability.
Linear SDE, LP stability and heavy tall

Linear Hamiltonian systems with
parametric noise: Stochastic analogue of
parametric resonance.

Central Limit Theorem, case of correlated
summands.
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Technical details




Main problem: stochastic linear
stability study

e The parametric resonance in deterministic linear
systems give rise to exponential increase of the
amplitude

e The resonance effect of the additive periodic
forcing is linearly increasing at most

* For linear stable systems the additive Gaussian
noise has no spectacular effects: the output Is
Gaussian coloured noise, no heavy talil,
concentrated near stable point.



LP stability

e The effect of multiplicative
(parametric) noise on the stability
of the linear system, Is
characterized by a scale of LP
norms, not an single norm with

fixed p.




Definitions: LP spaces

Let X random variable, po(x) its PDF
X, elriff (X,|") <o or

o0

[ X]" p(x)dx < oo;

—0Q0

for p>1:X,| :[<‘X”‘p>w]%
for 0< p<1:X,|, :<‘X“"p>w



Remark: all Lp spaces are
complete metric spaces

+ With this conventiond(X,Y) =[X =Y has
the properties of distance, defines limit.

* The addition and scalar multiplication are
continuous with respect to norm

o Al LP spaces are complete,=> calculus can
be extended, including O<p<1.




Definitions: convergence,

__boundedness, probability measure
e Convergent and bounded sequences in LP.

Letd, ¥V (1<n<o0) random variables.

Def : ¥ — ® (converg.in L°)Iff (O<p <)
lim <\‘Ifn — CD\'O> = 0; Equivalent :

Nn—oo

¥, —®| — 0,whenn — oo

Def : W_is bounded in L iff foralln
.| <M forsome M or

Y
<\\Pn I°>< M




Remarks

In the framework of probability theory, the norm
IS defined by mean value. Then results

If p>q, then from convergence or boundedness In
LP results the corresponding property in L4

Increasing ‘p’ the “ topology of LP became strictly
stronger’.

The LP spaces with 0<p<1 are very unusual for
math. too, they are used for very heavy tail effects



Example:Black-Scholes model,
slightly adapted

o Similar to stability problem of x=0 equilibrium

Ito form : dxgt(t) =(a+oé (t))ox (1)

dx (t) =(fadt+odw (t))ox (t)
Instability growth perturbed by & (t) = white noise

dw (t) =< (t)dt; w (t)=standard Wiener process
NYSE :'+'; We use : (stability) :'—";a>0



B-S —the solution

ITO : use familiar calculus!

X (t)=x (0)exp[-at+ow (1)]

X (0) = A=deterministic

Recall : (exp(iAw, () =exp(-At/2)

(x,®]") =|A"exp(-apt)(exp(pow, (1)),
il=po= <\xw (t)\p>w = |A"exp((po?/2—-a)pt)




B-S model: Critical exponent p..

2

Denote: D =G—; P.... =i; t = nAt
2 D
(%, t)|") o exp(n(p— p,,)DpAt)

Denote: W = x (t );Consider n — o«

P<Pp.. :<\xw (t) p>w — 0; <= |V,

—>0
P

|_IO

<Y —0;=x(t) =0 iIsstablein L”

For p> p,_, : ¥,

—> o0
P

crit

The x(t) =0solution iIs unstablein L’




Linear SDE, LP stability and heavy tall

Generalization to 1 dimensional SDE.
1 d, soluble model with heavy tail.
Heavy tail and critical index

Relation to noise-driven intermittency
Higher dimensional linear SDE.



Approximation of the nonlinear
problem:

o Study of the linear stability of the
u(r,t)=const solution, with coupling to
rapidly varying fields.

o Approximate the rapid varying fields with
their time average + random field

* Improvement to the classical averaging
method (Gauss principle,...)




Generalization of B-S model 1
In the BS model, for the multiplicative process

Y (t)=ocw, (t); Because <[ww (t)]2>w =t
we have <[Yw (t)]2>w — 2Dt

Consider a more general driving process:
Exists D ="diffusion coefficient's.t.

([Y,®F) =2Dt+o(t)



Generalization of B-S model 2

o G. Steinbrecher, B. Weyssow, Phys. Rev.
Lett. 92, 125003 (2004): Linear equation,
driving noises from sum of colored noise

o (. Steinbrecher, X. Garbet, B. Weyssow, “Large
time behavior in random multiplicative
processes”, arXiv:1007.0952v1, math.PR, (2010):

non linear additive term, general noise.



Generalized B-S model: p.=a/D

Consider a more general SDE
dx (t)=(-adt+dY (t))x (t)+U (t)dt

a = Instability theres

N0lC

Y (t)=parametric, v

ulti

U (t) = additive noise.

Result:Exists L* limit: Z_,for p<p,, =

nlicative noise

crit

O | o

%, -2,]") o=exp((p- p,, )Dpt)



Remark

The rate of convergence/divergence Is
exponential

For high p no convergence
Additive noise has no influence on p;;

For low ‘@’ or high D, convergence only In
the exotic LP spaces.’Very heavy tail’.

Edge turbulence on DIII-D: p.
<0.1.(Steinbrecher, Weyssow, 2004)



The heavy tail of limit PDF
Let p, (X) the PDFof the limitRV :Z

prob(x < Z, < x+dx)= p, (x)dx

<‘Zw‘p>w — Tl X|" p,(x)dx <oo IFFp Pt

Whenp > p_. <‘Xw (t)‘p>w -

We have , for | x|—> o: p (X) o] x|™”

HT exponent=/=0p_. :%



Example 1

dx(t) = (—adt + o,dw, (t)) o X(t) + o, dw, (t);
w, (t), w, (t) :independent, Wiener .

ITO form. Notation: a'=a-o, /2

dx = (—a'dt + o, dw, (1)) x(t) + o,dw,(t);
Addition of Independent normal variables



distribution

o Xxdw (t)+o,dw,(t) = o(x)dw(t)
o(X)* =(o,x)* +(0o,)"; (Errors, Gauss)
dx(t) =V (x,t)dt + o (x)dw(t)

Fokker — Planck :




0,p(x,t)+0,Vo(x,t)]=0,

V(x,t) =-a'x;

1
—O

2

“p(x,1)

0, p(X,t) =0; Stationary solution

const

p(0) = x|

2 2
(01 X* + 0, )2D



Higher dimensional linear stochastic
differential equation SDE

 Analytic results: only for white noise.

e |t is possible to compute the LP norms only
for even values of p

|t s possible to obtain closed set of linear
equations for correlation functions of any
order.

e Second order correlation functions
physically interesting



K. Ito formula, Wiener process
ITO SDE

dx, () =V, (x, (), dt + X0, (x, (), ) dw, , (1

From ITO formula results:

gt<f(xw<t>,t>w=<§i+iafvk<xw,t>+kiit>k,.(xw,t> > >

=1 OX, -1 OX, OX,

[HEN

D, (4 =371, (X7, (.1

Apply tolinear system, N dimensions,
Einstein summation convention



The linear SDE 1
dx, =L x, dt+r _x dw _(t)

I,m m I,Mm,a m

Summation with m, a
L . r constants

I, m? I,m.a

(w, (Hw,, (') =36,, min(t,t')



The linear SDE 2
First order moments:
f(x, t) =X,
Denote : <X@,k(t)>w = X, (1);

Results:

ka(t) — Lkam :
dt ’




The linear SDE 3
Second order moments:

f(x,t) = X, X,
Denote : (x, (x, (1)) =Y, (1);
Si,m;k,n — r-i,m,a r-k,n,a
Results :
dyY. (t
I’k()zl—imYmk_I_I—knYin
dt ’ ’ S
+ S Y

I, m:k,n " m,n



The linear SDE 4

Third order moments:
(X, ) = X, X, X,

Denote: (x,x X, ) =U, (t);

Results :
dU. . (t

I(’jj_ék( ) — I—i,mLijk + L Ulnk
L, U, . +S ..U t...perm



Linear SDE driven by Markov process
Markov process, M states

dp,(t) U
a — R t
dt é_ a,b pb( )
INn state 'a’' we have
dX T LI k:a k

Denote : X, (1) = (X, (t))_
Y, e () = (X ()X, (1))



Closed evolution equations

d>(i;a
dt - I_i,k;axk;a + Ra,bxi’b
in,j;a
dt = Li,k;aYk,j;a T Lj,k;aYi,k;a T Ra,in,j,b

Example :LCcircuit with random capacitance, driven
by dichotomous Markov chain

OX =X,; OX =—m, X
at P, = ﬂ“(pz o pl)
at P, = _ﬂ'(pz - pl)



Random LC circuit, results

First order moments are bounded

Second order moments Increase
exponentially in time=>energy transfer
from the noise to oscillator.

The process Is universal, no fine tunning

K. Lindenberg, V. Seshadri, B. J. West,
Phys. Rev.A 22, 2171 (1980)



Linear partial SDE

Method: discretization, apply previous
method, back to continuum limit

Example: Stochastic destabilization of the
random Klein-Gordon equation, Langmuir
waves G. Steinbrecher, X. Garbet, 2009.

Result: The lowest eigenmodes are
destabilized first.

Model for inverse cascade



The linear system results from the
approximation of the nonlinear problem:

o Study of the linear stability of the
u(r,t)=const solution, with coupling to
rapidly varying fields.

o Approximate the rapid varying fields with
their time average + random field

* Improvement to the classical averaging
method (Gauss principle,...)




Problem: stability of Langmuir
waves

 Perturbation: temporal white noise with
possible spatial correlations

 Perturbation models the background charge
density fluctuation of plasma near
equilibrium

 Formally: Klein-Gordon equation with
random mass term




Results: critical white noise
Intensity

 In thermodynamical limit, 3 d, non zero k, and
small spatio-temporal white noise intensity, there
exist a threshold, such that for smaller noise
Intensity, the mode k remains stable(!). (Naive
expectation=> complete destabilization)

 [n all other cases (1d, 2d) all of the modes are
destabilised by arbitrary weak spatial and temporal
white noise.
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The unexpected result is the stability of the short wave modes, under parametric w.n, spatial perturb


Time evolution of the moments, only 2
order, possible for higher. Warning!

« With driving white noise, the time evolution of
the integer order moments can be found, for
general linear SDE .

e Even if the second order moment converges, it Is
possible that higher order moments diverges

exponentially; S.G., B.W., 2004. Shaw, W. T.,
2008.

* The critical order of diverging/converging
moments is equal to the heavy tail exponent ==




Remarks

The fundamental mode k=0 is most sensitive to
the stochastic perturbations. The eigenvalue is real
and positive.

The poles in the I.h.s of the eigenvalue equation
lies on the imaginary axis. For small perturbations
the eigenvalues are near poles.

The time reversal symmetry in the eigenvalue
equation is broken.

Definition of stability: different Banach norms are
Inequivalents




Results in the thermodynamic limit:

 The fundamental mode k=0 is always
destabilized, for arbitrary small noise.

e The destabilization for non zero k 1S
dimension dependent.

e Ford=1 & d=2, arbitrary small noise
destabilizes all of the modes




New result, dimension 3. Critical
noise intensity

* For non zero k, and small noise intensity
there exist a threshold, such that, for smaller
noise intensity the mode k remains stable.

e For small |Kk| the value of this threshold of
noise intensity has the asymptotic form:




Long range spatial correlations

o |f the driving multiplicative process Is the
spatial and temporal white noise, with
small intensity, then the long wavelength
modes are destabilized first. => Long range

spatial correlations dominates, If the driving
noise Is weak.

e This result was derived by the linear
approximation.




The new effect of parametric
spatial and temporal white noise:

+ In 3 dim and thermodynamical limit, low noise
~intensity, the modes with high |k| remains stable.
The threshold for the noise intensity, such that
above that threshold the mode k is destabilized,

Increases with |k|. Short wavelength modes are the
~ most robust.
« Spatial white noise with small intensity, by
~parametric amplification, generates long range
spatial correlations.

___________________________________________________________________________________________________________




|ong range spatial correlations in 3d

* \When the driving multiplicative process Is
the spatial and temporal white noise, then
for small intensity, the long wavelength
modes are destabilized first. => Long range

spatial correlations dominates for weak
noise.

* The shortest wavelength modes are more
robust under white noise perturbations
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This result could explain the ocurence of LR corelation, even from uncorelated noise, by parametric amplification. If the parametric noise has same corelations, even better


* In the opposite extreme case, when the
driving (temporal white) noise has
complete spatial correlations, the all of the
modes are destabilized and the problem is
trivial.

* The method used here can be extended to
the study of the dissipative systems, and the
of the higher order moments.




Conclusions

* The divergence of the second order
moments IS a signature of the heavy tall
with exponent less then 2, In the stationary
PDF of the field variables. Results that in
the case of the multiplicative noises the
linear approximation has a restricted range
of applicability.
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