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The SM as an EFT

There are two general approaches in the search for physics beyond the Standard
Model (SM) of particle physics. One is to search directly for new particles and forces
and the other is to look for deviations from the SM predictions in the experimental
data. Currently no new particles have been discovered, and the SM predictions are in
good agreement with the experimental data, which creates the need of high-precision
computations in a UV model independent framework. The use of the Effective Field
Theory (EFT) approach seems to fit perfectly in this situation, since we can use EFT
to systematically parameterise corrections to the theoretical SM predictions.
The EFT description of the SM, abbreviated as SMEFT, extends the (renormalisable)
SM Lagrangian with all independent operators with dimension greater than 4 (effec-
tive operators) without introducing any new fields or symmetries. The most general
SMEFT Lagrangian can be schematically presented as

LSMEFT = LSM +

∞∑
p=1

∑
i

cp,i
Λp
Q

(4+p)
i ,

where Λ is the typical UV scale of the new physics and cp,i are the dimensionless
Wilson coefficients multiplying the gauge invariant effective operators Q(4+p)

i . For
practical computations we neglect the operators with dimension greater than dmax,
and for most applications it is sufficient to consider the case dmax = 6.
SMEFT is, by construction, a highly complicated model. While only 1 operator
class exists at dimension 5, at dimension 6 there are 59 baryon-number conserving
and 4 baryon-number violating independent operator classes. Taking into account
fermion generations, flavour structure and Hermitian conjugated operators, there are
in total 2499 independent free parameters. Due to the large number and complicated
structure of the new terms in the Lagrangian, theoretical calculations of physical
processes within the SMEFT can be very challenging — for some examples of ana-
lytical computations at NLO in SMEFT see [4, 5] and references therein. Thus, it is
important to develop methods and technical tools to automatise such calculations.

Operators in Warsaw basis

The classification of all independent d ≤ 6 operators in the SMEFT was given in
ref. [1] and is referred to as the “Warsaw basis”. In the following table we present
all the d = 6 operator classes other than the 4-fermion ones in the Warsaw basis:
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The quantisation and the Feynman rules for the d = 6 SMEFT in the Warsaw basis
after spontaneous symmetry breaking was presented for the first time in ref. [2], in
which the initial version of smeftFR was briefly introduced.

The smeftFR package

The package smeftFR is a Mathematica package designed to generate the Feynman
rules for the SMEFT with operators up to d = 6. Feynman rules are generated with
the use of FeynRules package, directly in the physical (mass eigenstates) basis for
all fields. The complete set of interaction vertices can be derived, including all or
any chosen subset of SMEFT operators. As an option, the user can also choose the

gauge fixing, by choosing between unitary or Rξ-gauges. The derived Lagrangian in
the mass basis can be exported in various formats supported by FeynRules, such
as UFO, FeynArts, etc. Initialisation of numerical values of d = 6 Wilson coeffi-
cients used by smeftFR is interfaced to WCxf format. The package also includes a
dedicated LATEXgenerator, allowing to print the result in human-readable form. Fur-
ther options allow the user to treat neutrino fields as massless Weyl or (in the case of
non-vanishing dimension-5 operator) as massive Majorana fermions.
Feynman rules are calculated first in FeynRules format and are expressed in terms
of physical SM fields and canonically normalised Goldstone and ghost fields. Ex-
pressions for interaction vertices are analytically expanded in powers of inverse Λ,
with all terms of dimension higher than 6 consistently truncated. The Feynman rules
can be further exported in other formats: UFO (importable to Monte Carlo generators
like MadGraph5, Sherpa, CalcHEP, Whizard), FeynArts which generates
inputs for loop amplitude calculators like FeynCalc, or FormCalc, and others
output types supported by FeynRules. Therefore, the user is provided with many
options either for numerical or analytical calculations in the SMEFT.

Code Flowchart

The structure of the smeftFR code is summarised in the following figure:
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The package smeftFR is maintained by prof. Janusz Rosiek and can be down-
loaded from the address www.fuw.edu.pl/smeft
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