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Abstract

In this paper we are dealing with a few direct methods for �nding
solutions of various type of nonlinear PDEs. The focus will be put on two
methods, both proposed by our group. The �rst one consider the use of
an auxiliary equation, with well known solutions, in terms of which will
be expressed the solutions of more complicated PDEs. More precisely, we
will use the procedure called functional expansion". The second procedure
we are using here allows to reduce the order of di¤erentiability by using a
so called "potential representation". The two methods will be exempli�ed
on few well known models of PDEs.

1 Introduction

There is not a general approach allowing to solve nonlinear equations, despite
of their huge importance in physics and other �elds, their solutions o¤ering us
a better understanding of the phenomenas. Classes of solutions are given by
speci�c techniques and approaches as for example:
- Symmetry method and similarity reduction,
- Inverse scattering method,
- Hirota bilinear method
- Lax pair operators, etc.
In this presentation we will focus on with a direct approach based on the

auxiliary equation technique. It supposes to look for a speci�c class of solutions
(traveling wave solutions) of a quite complicated nonlinear equation in terms of
a simpler auxiliary equation with already known solutions. Here are the main
steps of the classical algorithm for �nding such solutions for a PDE of the form:

�(u(t; x; y; :::); ut; ux;uy; :::) = 0:

1) The PDE is reduced to an ODE by introducing the "wave transformation":

� = f(t; x; y; :::)

1



By that u(t; x; y; :::)! U(�) and:

�(u) = 0! F (U;U 0; U"; :::) = 0:

2) An ODE with known solutions G(�) is considered as auxiliary equation.
3) The solutions of F (U) = 0 are expressed in terms of those of the auxiliary

equation. Usually, the expression U = U(G) is chosen as an expansion (a serie)
and many such expansions were considered by various authors:
- expansions directly in terms of the solutions G(�) (ex: tanh method), or

following powers of G0=G
- expansions with constant coe¢ cients or with coe¢ cients depending on �;
- expension in Taylor type series or, more general, in Laurent series (with

terms at negative powers).
Each of the previous mentioned steps could generate various problems and

many improvments have been proposed. From our perspective, we focused on
a possible way of simpli�cation the ODE F (U) = 0, by reducing its di¤eren-
tiability order. My proposal was to atach to the solution U(�) of F (U) = 0 a
potential function or a �ow function given by:

U 0(�) = V (U)

The ODE F (U) = 0 becomes a simpler equation of the form F 0(V ) = 0. We
will exemplify this approach on few important models of nonlinear equations
from Mathematical Physics.

2 The general method

We consider nonlinear partial di¤erential equations in the general form:

ut = �(u; ux; :::; umx);umx =
@mx

@xm
(1)

which are encountered in di¤erent �elds of mathematics, physics, chemistry and
biology. The given partial nonlinear equation (1) can be converted into an
ordinary di¤erential equation introducing the transformation u � U(�) , where
� is given by � = x� �t.

F (�; U; U 0; :::; U (m)) = 0;U (m) =
dmU

d�m
(2)

The main idea of the method we are proposing consists in attaching to the
�master�equation a supplementary, �ux type equation, of the form:

U 0 = V (U): (3)

The quantity V (U) can be a polynomial or a function of U(�): The method is
a "reduction method", leading to an equation in V (U) with a reduced order
of di¤erentiability. We will apply the method both for the BBM equation,
generalized Boussinesq equation, Tzitzteica equation and Whitman-Broer-Kaup
equations.
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3 Examples

3.1 Benjamin-Bona-Mahony

The BBM equation describes the uni-directional propagation of small-amplitude
long waves on the surface of the water in a channel and also for hydromagnetic
and acoustic waves. For a quantity u(x; t) described in a 2-dimensional space,
its mathematical form is:

ut � uxxt + ux(1 + un) = 0 (4)

for n = 1 the equation represents the BBM equation itself. We note that for
this case BBM it is an alternative of the Korteweg-de-Vries equation. It is well
known that the KdV equation is a basic model in nonlinear wave theory and
has been regarded as the classical model for studying soliton phenomena. The
KdV and BBM are two typical examples associated to e¤ects of dissipation and
disspersion. The similarity between the two equations becomes more obvious
when we implement the change of variables, looking for traveling wave solutions.
In this case the attached ODEs are similar.
for n = 2 the equation represents the modi�ed BBM equation
As far as our approach, we will reduce (??) to an ordinary di¤erential equa-

tion by using a wave transformation of the independent variables of the form:

� = x� �t: (5)

Using this wave transformation and adopting the notation u(x; t) = U(�),
the equation (??) becomes:

�U 000 � U 0(�� 1� Un) = 0 (6)

n = 1
By integrating the ODE once with respect to �, will result the next equation:

�U 00 + U(1� �+ 1
2
U2) = 0 (7)

We will try to �nd traveling wave solutions of (6) , considering the supple-
mentary requirement U 0 = V (U)

�V (U)
dV

dU
+ U(1� �+ 1

2
U2) = 0 (8)

The above equation can be solved, assuming the integration constant 0:

V (U) = � U

�
p
3

p
�(3�� 3� U) (9)

� =
2�
p
3 tanh�1(

p
3�(��1)��Up
3�(��1)

)p
3�(�� 1)

(10)
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Finnaly we get the solution of BBM equation:

u(x; t) =
3(�� 1)

cosh2( 12� (x� �t)
p
�(�� 1))

(11)

n = 2
By integrating (6) once with respect to �, will result the next equation:

�U 00 + U(1� �+ 1
3
U3) = 0 (12)

�V (U)
dV

dU
+ U(1� �+ 1

3
U3) = 0 (13)

V (U) = � 1

�
p
6

p
��U(�6�+ 6 + U2) (14)

� =
�p

�(�� 1)
ln

 
12�(�� 1) + 2

p
6�(�� 1)

p
6�(�� 1)� �U2

U

!
(15)

u(x; t) =
24�(�� 1) (coshA+ sinhA)

cosh 2A+ sinh 2A+ 24�2(�� 1)
(16)

where A = (x��t)
p
��1p

�

3.2 Nerve pulse propagation Equation (Generalized Boussi-
nesq)

We will consider the equation describing the propagation for the sound in cylin-
drical bio-membranes. It is quite similar to the equation which describes the
propagation of nerve pulses through neurons. Propagation is accompanied by a
signi�cant change of density, so we may say that elastic constants are sensitive
functions of density. The equation has the form:

@2��

@t2
=
@

@x

�
c2(��)

@��

@x

�
� h@

4��

@x4
(17)

The function c2(��) describes the square of the pulse velocity in the mem-
brane while the last term, proportional with the fourth-order derivative of the
density variation, describes dispersion, with h a positive parameter indicating
dispersion�s magnitude. More general, we can write:

@2u

@t2
=
@

@x
(A(u)

@u

@x
)� h@

4u

@x4
() u2t �A0(u)u2x �A(u)u2x + hu4x = 0 (18)

Here prime denotes the derivative with respect to u. The dependence of the
square of pulse velocity up the density�s variation is usually considered as having
the form:

c2(u) � A(u) = �u2 + �u+ c20 (19)
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where c0 is a constant denoting the sound velocity through air, while parameters
�; � describe nonlinear elastic properties of the membrane. The case � = 0
corresponds to the already known Boussinesq equation, while the case � 6= 0 is
a most general situation.

3.2.1 Case � 6= 0

We will consider now the equation:

u2t � (2�u+ �)u2x � (�u2 + �u+ c)u2x + hu4x = 0 (20)

where c = c20. Using the wave transformation and adopting the notation
u(x; t) = U(�), the above equation becomes:�

�2 � c� �U2 � �U
�
U 00 � (2�U + �)U 02 � hU (4) = 0 (21)

By integrating twice with respect to �, will result the equation:

�2U � �
3
U3 � �

2
U2 � cU � hU 00 = 0 (22)

using U 0 = V (U) and we obtain a new equation for V :

�2U � �
3
U3 � �

2
U2 � cU � hV (U)dV (U)

dU
= 0 (23)

The solution is:

V (U) = �

q
�6hU(�U2 + 2�U � 6�2 + 6c

6h
(24)

Considering the solutions for V (U) we get the solution U of the ODE:

U(�) =
144h(c� �2)(coshB + sinhB)

24h�(coshB + sinhB) + coshB + sinhB + 144h2�2 + 864�h2(�2 � c)
(25)

where

B =
(x� �t)

q
�h(c� �2)
h

: (26)

3.2.2 Case � = 0

After the double integration with respect to �, we will have:

�2U � �
2
U2 � cU � hU 00 = 0 (27)

using U 0 = V (U) and we obtain a new equation for V :

�2U � �
2
U2 � cU � hV (U)V 0(U) = 0 (28)
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V (U) = �

q
�3hU(�U � 3�2 + 3c

3h
(29)

U(�) = �
3
�
c� �2

�
� cosh

�
�
p
�h(c��2)
2h

� (30)

u(x; t) = �
3
�
c� �2

�
� cosh

�
(x��t)

p
�h(c��2)
2h

� (31)

3.3 Whitham�Broer�Kaup equations

Let us consider the Whitham�Broer�Kaup (WBK) equations:

ut + uux + hx + �u2x = 0

ht + (hu)x + �u3x � �h2x = 0 (32)

which is a complete integrable model ntroduced by Whitham, Broer and Kaup
which describes the dispersive long wave in shallow water.The �eld of horizontal
velocity is represented by u(x; t), and h(x; t) is the height that deviates from
the equilibrium position of the liquid, and � and � are constants that represent
di¤erent disspersive power.
Using the wave transformation � = x � �t and adopting the notations

u(x; t) = U(�), h(x; t) = H(�) the above equations become:

��U 0 + UU 0 +H 0 + �U 00 = 0

��H 0 +H 0U +HU 0 + �U 000 � �H 00 = 0 (33)

Integrating, the �rst equation of the system, once in respect to � we can express
H(�)

H = �U � 1
2
U2 � �U 0 (34)

Using the last relation, we introduce it in the secon equation of the system and
it will result a second order di¤erential equation:

(�2 � �)U 00 � �2U + 3�
2
U2 � 1

2
U3 = 0 (35)

using U 0 = V (U) and we obtain a new equation for V :

(�2 � �)V (U)V 0(U)� �2U + 3�
2
U2 � 1

2
U3 = 0 (36)

From the above equation we �nd:

V (U) =
U (U � 2�)
2
p
�2 + �

(37)
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Using the speci�c form for V (U) from (37) we can �nd the solution of equation
(35):

U = ln(2�)� ln(exp( ���p
�2 + �

� 1))� ���p
�2 + �

(38)

Coming back in (34) we can �nd the form of H(�) and easily �nd the solutions
of WBK equations:

u(x; t) = � 2�(coshA+ sinhA)

coshB + sinhB � (coshA+ sinhA)

h(x; t) = � 2�2(
p
�2 + �+ �)(coshC + sinhC)p

�2 + �(coshB + sinhB � coshA� sinhA)2
(39)

where A = �2tp
�2+�

; B = �xp
�2+�

; C = �(x+�t)p
�2+�

.

3.4 Generalized Tzitzeica-Dodd-Bullough-Mikhailov Type

Now we consider the following nonlinear evolution equation:

uxt = �e
mu + �enu (40)

where �, � are two non-zero real numbers and m, n are two integers. We call
it generalized Tzitzeica-Dodd-Bullough- Mikhailov equation because it contains
Tzitzeica equation, Dodd-Bullough-Mikhailov equation and Tzitzeica-Dodd-Bullough
equation. The Dodd-Bullough-Mikhailov equation and Tzitzeica-Dodd-Bullough
equation appeared in many problems varying from �uid �ow to quantum �eld
theory. When � = 1, � = �1, m = 1, n = �2 or � = �1, � = 1, m = �2, n = 1
the above equation becomes the classical Tzitzeica equation as follows:

uxt = e
u � e�2u (41)

which was originally found in the �eld of geometry in 1907 by G. Tzitzeica
and appeared in the �elds of mathematics and physics alike. Using the wave
transformation � = x� �t and adopting the notation u(x; t) = U(�), the above
equation becomes:

��U 00 � eu + e�2u = 0 (42)

using U 0 = V (U) and we obtain a new equation for V :

��V (U)dV (U)
dU

� eu + e�2u = 0 (43)

V (U) = � 1
�

q
��(2eU + e�2U � 3) (44)

U = � ln(2)� 2 ln
 
cos

�
p
3

2
p
�

!
+ ln

 
2 cos2

�
p
3

2
p
�

!
(45)

u(x; t) = � ln(2)� 2 ln
 
cos

(x� �t)
p
3

2
p
�

!
+ ln

 
2 cos2

(x� �t)
p
3

2
p
�

!
(46)
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