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Abstract

Hirota bilinear method for constructing integrable discretizations
of solitonic equations is presented. For illustrating the full procedure
we reunite the results presented in literature for several semidiscrete
integrable forms of KdV, mKdV, multicomponent Ablowitz-Ladik and
general Volterra system.
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1 Introduction

Building integrable discretizations of partial differential or differential-difference
equations is a challenging topic in the field of integrable systems, subject of
interest for many scientists in the last decades. Constructing integrable full
discretizations is important for numerical simulation, since the integrable
structure of the equation is preserved. There are several integrability crite-
rion like complexity growth [1], singularity confinement [2], cube consistency
[3] or the existence of the Lax pairs [4, 5, 6, 7], but in this paper we focus on
the existence of the multi-soliton solution, the integrability criterion in the
Hirota bilinear formalism [8, 9, 10, 11, 12]. The method proposed by Hirota
proved to be a very effective tool in constructing integrable discretizations
for an important number of solitonic equations [13, 14].

In this review paper, we are going to present several integrable discretiza-
tions of differential-difference equations/systems [16, 17, 18, 19], constructed
with the Hirota method. The paper is organized as follows: after a brief intro-
duction, in Section 2 we present the three steps of the Hirota bilinear method
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for building integrable discretizations. In Section 3, we exemplify the appli-
cation of the Hirota method steps on several well known equations/systems,
each presented in a different subsection: discrete KdV, discrete mKdV, dis-
crete multicomponent Ablowitz-Ladik and discrete general Volterra system.
In Section 4 we summarize our conclusions.

2 The Hirota bilinear method for integrable

discretization

The main motivation for deriving fully discretized versions of nonlinear equa-
tions is that the discrete integrable systems are fundamental compared to the
continuous ones, as the dynamics is way richer and they can lead to cellular
automaton forms. The Hirota bilinear method for building integrable dis-
cretizations has three steps [8, 9, 10, 11]. The starting point is a semidiscrete
bilinear form of an integrable system/equation.

Step 1. The first step consists in the direct discretization of the Hirota
operator Dt and the replacement of t with mδ. At first, one has to to replace
the ordinary derivatives in

Dtf · g ≡
df

dt
g − f dg

dt
with the finite differences

∆mf · g ≡ [∆tf ]g − f [∆tg], ∆tf = [f(t+ δ)− f(t)]/δ.

Afterwords, all t that appear in the equation must be replaced with mδ.
Above f, g are the tau functions, t is the continuous time variable, m is the
discretized time variable and δ is the discretisation step on the time axis;

Step 2. In the second step one must impose the gauge invariance to the
bilinear equations obtained:

T (∆m,∆n, ...)f · g = 0,

in other words, the bilinear equations must be invariant with respect to the
transformations:

f → feθn+σm, g → geθn+σm,

where θ and σ are arbitrary constants.
Step 3. In the third step two problems must be solved: computing the

multi-soliton solution and, the most difficult part, recovering the nonlinear
form of the analyzed system/equation.
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3 Fully discretized equations with Hirota method

3.1 Discrete KdV equation

The semidiscrete form of KdV (Korteweg de Vries) equation:

u̇n =
dun
dt

= u2n(un+1 − un−1)

was casted in the following bilinear form [16]:

DtG · F = GF −GF (1)

G2 − FF = 0,

using the projective nonlinear substitution involving two τ functions namely
u = G/F . The significance of the notation used in (1) is: G = G(n +
1, t), G = G(n − 1, t), F = F (n + 1, t), F = F (n − 1, t) (n is the
discrete space variable with step 1, while t is the continuous time variable).

Applying step 1 (discretization of Dt and replacing t with δm) and step
2 (imposing gauge-invariance) the bilinear form (1) turns into:

G̃F −GF̃ = δ(G̃F −GF̃ ), (2)

GG̃− F̃F = 0,

where we used the notation G̃ = G(δ(m+1), n), G̃ = G(δ(m+1), n+1), G =

G(δm, n−1), F̃ = F (δ(m+1), n), F̃ = F (δ(m+1), n+1), F = F (δm, n−1).
The system (2) is completely integrable as it admits multi-soliton solution

[20]. Taking G = f̃f , F = ff̃ , the second equation turns into an identity
whilst for the first equation the N -soliton solution in term of f is:

f =
∑

µi,j=0,1

exp(
N∑
i

µiηi +
∑
i<j

aijµiµj),

where:

ηi = kin+ ωim, sinhωi = δ sinh ki, exp aij =

(
eki − ekj
ekiekj − 1

)2

.

To complete the third step one must find the nonlinear form. For that, one
must divide the first equation of (2) with FF̃ , denote X = G/F and use the
second equation of (2). The fully integrable discrete KdV equation obtained
in [12, 16] is:

X̃ −X = δ( ˜̄X −X)XX̃.
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3.2 Discrete mKdV equation

The classical semidiscrete mKdV equation (self-dual nonlinear network) [21],
[22]:

u̇n = (1 + u2n)(un+1 − un−1) (3)

or the potential semidiscrete mKdV equation proposed in [17]:

v̇n = 2vn
vn+1 − vn−1
vn+1 + vn−1

(4)

were casted in the following bilinear form:

DtG · F = GF −GF (5)

2GF = GF +GF,

using the nonlinear substitutions un = i
2
d
dt

log G(n,t)
F (n,t)

for (3) and vn = G(n,t)
F (n,t)

for

(4). Both forms of the semidiscrete mKdV presented above are completely
integrable as they poses multi-soliton solution.

Replacing time derivatives in (5) with finite differences and imposing the
bilinear gauge invariance, the following bilinear system was obtained:

GF −GF = δ(G̃F −GF̃ )

2GF = GF +GF.

The above system admits the following N -soliton solution:

Fm
n =

∑
µ1,µ2,..µn∈{0,1}

(
N∏
i=1

aµii (pni q
mδ
i )µi

)
N∏
i<j

A
µiµj
ij ,

Gm
n =

∑
µ1,µ2,..µn∈{0,1}

(
N∏
i=1

bµii (pni q
mδ
i )µi

)
N∏
i<j

A
µiµj
ij ,

with the same phase factors and interaction terms as in the differential-
difference case:

bi = −ai = 1

Aij =
cosh(ki − kj)− 1

cosh(ki + kj)− 1
, i < j = 1, N
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but different dispersion relation:

qi =

(
1− δp−1i
1− δpi

)1/δ

, i = 1, N,

where pi = eki , qi = eωi , i = 1, N (ki is the wave number and ωi is the angular
frequency).

The nonlinear form of semidiscrete mKdV is recoverd using the following

notations ω = G
F

, Γ = FF̃

F F̃
:

ω̃ − ω = δΓ(ω̃ − bω)

Γ =
ω + ω

ω + ω̃

ω̃

ω
Γ

Eliminating Γ and Γ one can obtain the higher order nonlinear lattice
mKdV equation [17]:

ω̃ − ω
ω̃ − ω

=
ω̃ − ω
ω̃ − ω

ω̃ + ω̃

ω + ω

ω

ω̃

3.3 Discrete coupled Ablowitz-Ladik system

The general system of coupled Ablowitz-Ladik with M equations [23]:

iq̇1 = (1 + |q1|2)(q2 + qM)

iq̇2 = (1 + |q2|2)(q3 + q1)

iq̇3 = (1 + |q3|2)(q4 + q2)

..... .... .......................

iq̇M−1 = (1 + |qM−1|2)(qM + qM−2)

iq̇M = (1 + |qM |2)(q1 + qM−1)

was casted in the Hirota bilinear form:

iDtGµ · Fµ = Gµ+1Fµ−1 +Gµ−1Fµ+1

F 2
µ + |Gµ|2 = Fµ+1Fµ−1, (6)

where F0 = FM , FM+1 = F1, G0 = GM , GM+1 = G1 (FM are real functions,
while GM and complex valued functions), using the nonlinear substitutions:
qµ = Gµ/Fµ, µ = 1,M .
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Using the Hirota bilinear formalism [11] in (6) and the Hirota-Tsujimoto
approach [24], the fully integrable discretzation was obtained [18]:

i(G̃µFµ −GµF̃µ) = δ(G̃µ+1Fµ−1 +Gµ−1F̃µ+1)

F 2
µ + |Gµ|2 = Fµ+1Fµ−1, µ = 1,M,

where Fµ = Fµ(mδ, n), Fµ = Fµ(mδ, n+1), Fµ = Fµ(mδ, n−1), F̃µ = Fµ((m+

1)δ, n), F̃µ = Fµ((m + 1)δ, n + 1), Gµ = Gµ(mδ, n), Gµ = Gµ(mδ, n + 1),

Gµ = Gµ(mδ, n− 1), G̃µ = Gµ((m+ 1)δ, n), G̃µ = Gµ((m+ 1)δ, n+ 1). The
N -soliton solution for multicomponent Ablowitz-Ladik system with branched
dispersion relation was also constructed:

Gµ =
∑
ν=0,1

D2(ν) exp

(
2N∑
i=1

νi[ηi + (µ− 1) log(εi)] +
2N∑

1≤i<j

νiνjφij

)

Fµ =
∑
ν=0,1

D1(ν) exp

(
2N∑
i=1

νi[ηi + (µ− 1) log(εi)] +
2N∑

1≤i<j

νiνjφij

)

where:

eφij =



1
2

(
ε2i+ε

2
j

2εiεj
cosh(ki + k∗j ) +

ε2i−ε2j
2εiεj

sinh(ki + k∗j )− 1
)−1

if i = 1, ...N and j = N + 1, ...2N ;

2
(
ε2i+ε

2
j

2εiεj
cosh(ki − kj) +

ε2i−ε2j
2εiεj

sinh(ki − kj)− 1
)
,

if i = 1, ...N and i = 1, ...N

or i = N + 1, ...2N and j = N + 1, ...2N ;

and:

ηj = kjn+ ωjδm+ η
(0)
j , ηj+N = η∗j , kj+N = k∗j , j = 1, ...N

log(εj+N) = log(εj)
∗, ωj+N = ω∗j , log(εj) ∈ {l

2πi

M
}, l = 1, ...M.
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D1(µ) =

1, when
N∑
i=1

µi =
N∑
i=1

µi+N ;

0 otherwise;

D2(µ) =

1, when
N∑
i=1

µi = 1 +
N∑
i=1

µi+N ;

0 otherwise.

Each of the N solitons can have any of the M branches of dispersion:

exp δ ωj(kj) =
i+ δε−1j e−kj

i− δεjekj
, εj ∈

{
el

2πi
M

}
, l = 1,M, j = 1, N

where kj is the wave number and j is the index of the soliton. The system
is completely integrable since it admits the N soliton solution.

Considering the following notations qµ = Gµ/Fµ and Γµ = F̃µ+1Fµ−1/FµF̃µ
the fully discrete Ablowitz-Ladik was constructed [18]:

i(q̃µ − qµ) = δ(q̃µ+1 + qµ−1)Γµ

Γµ+1

Γµ
=

1 + |q̃µ+1|2

1 + |qµ|2
, µ = 1,M.

Eliminating Γµ also a higher order fully discrete Ablowitz-Ladik system was
constructed:(

q̃µ+1 − qµ+1

q̃µ+2 + qµ

)(
q̃µ+1 + qµ−1

q̃µ − qµ

)(
1 + |qµ|2

1 + |q̃µ+1|2

)
= 1, µ = 1,M.

3.4 Discrete general Volterra system

The general differential-difference Volterra system with any number of cou-
pled equations [25]:

q̇1 = (c0 + c1q1 + c2q
2
1)(q2 − qM)

q̇2 = (c0 + c1q2 + c2q
2
2)(q3 − q1)

..... (7)

q̇M−1 = (c0 + c1qM−1 + c2q
2
M−1)(qM − qM−2)

q̇M = (c0 + c1qM + c2q
2
M)(q1 − qM−1),
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where qν = qν(n, t), qν = qν(n+ 1, t), qν = qν(n− 1, t) for any ν = 1,M , was
casted as:

u̇1 = (1 + u21)(u2 − uM)

u̇2 = (1 + u22)(u3 − u1)
.....

u̇M−1 = (1 + u2M−1)(uM − uM−2)
u̇M = (1 + u2M)(u1 − uM−1),

using the scalings and translations uν(n, t) = 2c2√
4c0c2−c21

(qν(n, t) + c1
2c2

) with

ν = 1,M [26]. In the above case uν(n, t)→ α as n→ ±∞ and the value for
α = c1(4c0c2 − b21)−1/2. For negative argument of the square root in α, the
system turns into the defocusing form [26].

Using the nonlinear substitutions:

uν = α− i

2

∂

∂t
ln
gν(n, t)

fν(n, t)
, ν = 1,M,

the Hirota bilinear form was obtained [19]:

Dtgνfν = (1 + α2)(gν+1fν−1 − gν−1fν+1), ν = 1,M

(1 + iα)gν+1fν−1 + (1− iα)gν−1fν+1 = 2gνfν ,

where g0 = gM , gM+1 = g1, f0 = fM , fM+1 = f1.
Applying the Hirota steps presented in Section 2, the bilinear equations

for general Volterra system with any M coupled equations were obtained:

g̃νfν − gν f̃ν = δ(1 + α2)(g̃ν+1fν−1 − gν−1f̃ν+1),

(1 + iα)g̃ν+1fν−1 + (1− iα)gν−1f̃ν+1 = g̃νfν + gν f̃ν , ν = 1,M.

The N -soliton solution was constructed:

gν =
∑

µ1...µN∈{0,1}

(
N∏
i=1

(εν−1i βip
n
i q

δm
i )µi

N∏
i<j

A
µiµj
ij

)
, ν = 1,M

fν =
∑

µ1...µN∈{0,1}

(
N∏
i=1

(εν−1i γip
n
i q

δm
i )µi

N∏
i<j

A
µiµj
ij

)
,
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where:

pj = ekj , Aij =

(
εie

ki − εjekj
εiεjeki+kj − 1

)2

, i < j = 1, N

βj =
K

2

(
εje

kj + 1

εjekj − 1

α

1 + δ(1 + α2)
+ i

)
, γj =

K

2

(
εje

kj + 1

εjekj − 1

α

1 + δ(1 + α2)
− i

)
,

with the M possible branches of dispersion for each of the N solitons:

qj = eωj =

[
(εje

kj)−1δ(1 + α2)− 1

εjekjδ(1 + α2)− 1

]1/δ
, εj ∈ eν

2πi
M , ν = 1,M, j = 1, N.

In the final step, the nonlinear form of lattice Volterra system with M coupled
equation was recovered:

tan(φ̃ν − φν) =
δ(1 + α2) tan(φ̃ν+1 − φν+1)

1 + α tan(φ̃ν+1 − φν+1)
, ν = 1,M (8)

where φν = i
2

log(gν/fν) and φ0 = φM , φM+1 = φ1.
It is important to notice that for α→ 0, system (8) becomes the coupled

lattice self-dual network of Hirota [22]:

tan(φ̃ν − φν) = δ tan(φ̃ν+1 − φν+1), ν = 1,M.

Taking α→ 0 and M = 1 in (8), one finds the well known nonlinear form
of discrete mKdV [27]:

tan(φ̃− φ) = δ tan(φ̃− φ),

different from the one presented in Subsection 3.2, which was higher order.

4 Conclusions

In this review paper, we have presented the Hirota bilinear method proposed
for deriving integrable discretizations of solitonic equations. The method
was illustrated for differential-difference forms of well known equations and
systems: KdV, mKdV, multicomponent Ablowitz-Ladik and Volterra sys-
tems with branched dispersion relation. The three steps involved can be
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summarized as it follows: starting form an integrable semidiscrete form of
the studied equation, one has to discretize the differential Hirota bilinear
operator, impose gauge invariance, build the multi-soliton solution and then
recover the nonlinear form with the aid of some auxiliary functions. This
approach may lead to higher order nonlinear equations, as we have seen in
most cases analysed.
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