

Solitonic solutions for RK-RLW equation with different order of nonlinearity

Aurelia Florian, Mihai Stoicescu

Department of Physics, University of Craiova 13, A.I. Cuza, 200585 Craiova, Romania

In this poster we investigate the solutions of the important nonlinear partial differential equation **Rosenau-Kawahara-RLW**.

By coupling the generalized Rosenau-RLW equation with the generalised Rosenau-Kawahara equation the generalised Rosenau-Kawahara-RLW equation is obtained [6]:

 $u_t + u_x + u_x u^n + u_{4xt} + u_{3x} - u_{2xt} - u_{5x} = 0$

(1)

We will study this equation in the form of $u_t - \alpha u_{2xt} + \beta u_{4xt} + \gamma u_x + \delta u^n u_x + \tau u_{3x} + \lambda u_{5x} = 0$ which multiplied with 2u

gives:

 $u_t - \alpha u_{2xt} + \beta u_{4xt} + \gamma u_x + \delta u^n u_x + \tau u_{3x} + \lambda u_{5x} = 0$

(2)

After integration in relation to x between the limits $x_1 < 0$ and $x_2 > 0$ large enough, so that if the solution is a soliton, its peak is placed between the two values x_1 and x_2 , and $u(x_1,t) = u(x_2,t) = 0, \forall t$.

By doing the calculations we obtain (energy conservation law):

$$\frac{\partial}{\partial t} \int_{x_1}^{x_2} \left(u^2 + \alpha (u_x)^2 + \beta (u_{2x})^2 \right) dx = 0 \tag{3}$$

The expression $E = \int_{x_1}^{x_2} \left(u^2 + \alpha(u_x)^2 + \beta(u_{2x})^2 \right) dx$ is constant over time.

We can reduce the number of degrees of fredom in the previous equation, by transforming the NPDE into a NODE, by using as unique variable $\xi = x - vt$: $(\gamma - v)u_{\xi} + (\alpha v + \tau)u_{3\xi} + (\lambda - \beta v)u_{5\xi} + \frac{\delta}{n+1}(u^{n+1})_{\xi} = 0$ (4)

By integrating (4) in relation to ξ and vanishing the integration constant, we get:

$$(\gamma - v)u + (\alpha v + \tau)u_{2\xi} + (\lambda - \beta v)u_{4\xi} + \frac{\delta}{n+1}u^{n+1} = 0$$
(5)

We can apply the sin-cos method for the equation (5). Thus, we can express a general solution to this equation in the form:

 $u(\xi) = A\cos^{\eta}(B\xi)$

(6)

From the balance of the maximum powers of the cos function we find:

 $\eta - 4 = \eta(n+1) \Rightarrow \eta = -\frac{4}{n}$

(7)

We group the terms according to his powers $\cos(B\xi)$ and equaling zero coefficients. We get an algebraic system of 3 equations with unknowns A, B, v:

$$\cos^{\eta}(B\xi) : (\gamma - v)A - (\alpha v + \tau)AB^{2}\eta^{2} + (\lambda - \beta v)AB^{4}\eta^{4} = 0$$

$$\cos^{\eta - 2}(B\xi) : (\alpha v + \tau)AB^{2}\eta(\eta - 1) - 2(\lambda - \beta v)AB^{4}\eta(\eta - 1)(\eta^{2} - 2\eta + 2) = 0$$
(8)

$$\cos^{\eta - 4}(B\xi) : (\lambda - \beta v)AB^{4}\eta(\eta - 1)(\eta - 2)(\eta - 3) + \frac{\delta}{n + 1}A^{n + 1} = 0$$

The solutions of the equation system are:

$$B = \pm \sqrt{\frac{(\alpha v + \tau)}{2 (\lambda - \beta v) (\eta^2 - 2\eta + 2)}}$$

$$A = \left[-\frac{(n+1)\eta (\eta - 1) (\eta - 2) (\eta - 3) (\alpha v + \tau)^2}{4\delta (\lambda - \beta v) (\eta^2 - 2\eta + 2)^2} \right]^{1/n}$$

$$v = \frac{-b \pm \sqrt{\Delta'}}{a}, \text{ unde } \Delta' = b^2 - ac, \ a = \alpha^2 \eta^2 (\eta^2 - 2)^2 - 4\beta (\eta^2 - 2\eta + 2)^2,$$

$$b = \alpha \tau \eta^2 (\eta^2 - 2)^2 + 2(\eta^2 - 2\eta + 2)^2 (\gamma \beta + \lambda), c = \eta^2 \tau^2 (\eta^2 - 2)^2 - 4\gamma \lambda (\eta^2 - 2\eta + 2)^2$$
(9)

References:

[1] Dongdong He, Kejia Pan, A linearly implicit conservative difference scheme for the generalized Rosenau-Kawahara-RLW equation, Applied Mathematics and Computation 271 (2015).

[2] Razborova, P., Triki, H., Biswas, A.: Perturbation of dispersive shallow water waves, Ocean Eng. 63, 1-7 (2013).

[3] P. Razborova, A. H. Kara, A. Biswas, Additional conservation laws for Rosenau--KdV--RLW equation with power law nonlinearity by Lie symmetry Nonlinear Dyn (2015) 79:743--748

[4] P. Rosenau, A quasi-continuous description of a nonlinear transmission line, Phys. Scr. 34 (1986) 827-829.

[5] X. Pan, L. Zhang, On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation, Appl. Math. Model. 36 (2012) 3371-3378. [6] J.-M. Zuo, Y.-M. Zhang, T.-D. Zhang, F. Chang, A new conservative difference scheme for the general Rosenau-RLW equation, Boundary Value Prob. 2010 (2010) 13. Article ID 516260.

[7] A. Esfahani, Solitary wave solutions for generalized Rosenau-KdV Eq, Commun. Theor. Phys. 63 (2013) 1-7.

[8] P. Razborova, B. Ahmed, A. Biswas, Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity, Appli. Math. Info. Sci., 8 (2014) 485-491.

[9] T. Kawahara, Oscillatory solitary waves in dispersive media, J. Phys. Soc. Japan 33, (1972) 260-26

[10] D. He, K. Pan , A linearly implicit conservative difference scheme for the generalized Rosenau--Kawahara-RLWequation, Applied Mathematics and Computation (2015),

[11] J.-M. Zuo, Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations, Appl. Math. Comput. 215 (2) (2009) 835-840.

[12] J. Hu, Y. Xu, B. Hu and X. Xie, Two Conservative Difference Schemes for Rosenau-Kawahara Equation, Adv. Math. Phys. 2014 (2014) 11. Article ID 217393.
[13] A. Biswas, H. Triki, and M. Labidi, Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity, Phys. Wave. Phenom. 19
(2011) 24-29.

[14] J.-M. Zuo, Soliton solutions of a general Rosenau-Kawahara-RLW equation, J. Math. Research, 7 (2015) 24-28.