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Abstract

It is shown that in the de Sitter expanding universe the Boltzmann
equation can be rewritten in terms of conserved momentum which is
different from the canonical one but has the advantage to be conserved.
In this manner the Boltzmann equation takes simple forms that can
be analytically solvable. A solution of the Boltzmann-Marle model in
the comoving charts of the de Sitter expanding universe is derived for
the first time.
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1 Introduction

The de Sitter spacetime is a hyperbolic manifold having the maximal symme-
try given by the SO(1, 4) isometry group. These symmetries are generating
conserved quantities on geodesics including three components of a conserved
momentum that differ from those of the covariant one. Thus, the relativistic
Boltzmann equation on the de Sitter spacetime can be rewritten in new vari-
ables by using the coordinates and the conserved momentum instead of the
canonical covariant one. Then the Boltzmann equation becomes very simple
and can be analytically solved at least in the case of the Boltzmann-Marle
model. We studied this model in the static de Sitter and Anti-de Sitter charts
showing how this model can be solved [1].

Another type of local charts of special interest in the de Sitter expanding
universe are the so called co-moving ones in which we can introduce different
types of coordinates among them the conformal (or Euclidean) coordinates
and the FLRW ones are the most popular. Our aim is to study in this
paper the Boltzmann equation in the co-moving charts by using the conserved
momentum instead of the canonical one. Thus we obtain a simpler equation
of the Boltzmann-Marle model in these charts whose solutions are derived
and discussed here for the first time.

The paper is organized as follows. In the second section we present a
rapid method of changing variables in the relativistic Boltzmann equation
[2] that allows us to obtain simple equations when the momentum vari-
ables are conserved. The next section is devoted to the geodesic motion
on de Sitter spacetimes that can be observed from natural frames as well as
from orthogonal (non-holonomic) local ones. The fourth section presents our
principal results concerning the structure of the distribution function of the
Marle model. We show that its equilibrium part is of the Maxwell-Jüttner
form having a temperature increasing to infinity when one approaches to the
de Sitter event horizon. Moreover, it is remarkable that the corresponding
macroscopic velocity complies with the Hubble law [3].

2 Changing canonical variables

A mesoscopic system on curved backgrounds, (M, g), constituted by identical
particles of mass m, is successfully described by the relativistic Boltzmann
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equation [2],

∂fB(x, p)

∂xµ
pµ − Γiαβp

αpβ
∂fB(x, p)

∂pi
= Q(fB, f

′
B) , (1)

determining the scalar distribution function fB(x, p) which depends on the
local coordinates xµ (α, µ, ν, ... = 0, 1, 2, 3) and momentum components pµ =
muµ = mdxµ

ds
along geodesics. These satisfy the geodesic equation and the

normalization condition gµνp
µpν = m2 such that we remain only with three

independent momentum independent variables, say pi (i, j, k, ... = 1, 2, 3).
The first problem we need to discuss here is how could we to replace

these variables with other three arbitrary variables. We start by choosing
n vectors fields Ka, a, b, ... = 1, 2, ...n and introduce the new parameters
ka = Ka

µp
µ. In this manner we obtain a system of n+ 1 equations (including

the normalization condition) assumed to be complete such that we can solve
the momentum components pµ = pµ(x, k) in terms of the new variables ka.
The next step is to define the function f(x, k) = fB(x, p(x, k)) observing
that,

df

ds
=

∂f

∂xµ
uµ +

∂f

∂ka
∂ka

∂xµ
uµ . (2)

On the other hand, we have

dka

ds
= Ka

µ

duµ

ds
+
∂Ka

µ

∂xν
uνuµ = Ka

µ;νu
µuν , (3)

since u satisfy the geodesic equation. Thus we obtain the new general equa-
tion

∂f(x, p)

∂xµ
pµ(x, k) +

∂f(x, p)

∂ka
Ka
µ;ν(x)pµ(x, k)pν(x, k) = Q(f, f ′) , (4)

depending on the variables (x, k). The simplest case is when Ka are Killing
vector fields since then we have Ka

µ;νp
µpν = 0 remaining with the simpler

equation
∂f(x, k)

∂xµ
pµ(x, k) = Q(f, f ′) . (5)

The Boltzmann equation can be rewritten at any time in the orthogonal
non-holonomic local frames. In general, these are defined by the system of
tetrad fields eα̂ = eµα̂∂µ and the corresponding co-frames given by the 1-forms

ωα̂ = ωα̂µdx
µ labelled by the local indices α̂, β̂... = 0, 1, 2, 3 of the Minkowskian

3



metric η = diag(1,−1,−1,−1) giving the line element as ds2 = gµνdx
µdxν =

ηα̂β̂ω
α̂ωβ̂. Under such circumstances, we may identify K α̂

µ = ωα̂µ finding that

the new variables denoted now by kα̂ → pα̂ = ωα̂µp
µ that are just the local

components of momentum that obey the normalization condition

ηα̂β̂p
α̂pβ̂ = gµνp

µpν = m2 , (6)

leaving us again with three independent variables, pî (̂i, ĵ, ... = 1, 2, 3). Then
the duality property of the tetrad fields allows us to solve the covariant
components of momentum as pµ(x, pî) = eµα̂(x)pα̂. Furthermore, we calculate

K α̂
µ;ν = ∇νω

α̂
µ = ∂νω

α̂
µ − Γσνµω

α̂
σ = −Γ̂α̂

νβ̂
ωβ̂µ , (7)

where Γ̂α̂
νβ̂

= ωγ̂ν Γ̂α̂
γ̂β̂

are the components in local frames of the connection Γν
defined by the identity

∂νω
α̂
µ − Γσνµω

α̂
σ + Γ̂α̂

νβ̂
ωβ̂µ = 0 . (8)

In this manner we obtain simply the well-known form of the Boltzmann
equation in local frames [2],

∂f(x, pî)

∂xµ
eµα̂p

α̂ − ∂f(x, pî)

∂pĵ
Γ̂ĵ
γ̂β̂
pγ̂pβ̂ = Q(f, f ′) , (9)

written in terms of coordinates and local components of momentum.

3 de Sitter geodesic motion

Let us consider the de Sitter spacetime (M, g) defined as the hyperboloid
of radius 1/ω 1 in the five-dimensional flat spacetime (M5, η5) of coordi-
nates zA (labeled by the indices A, B, ... = 0, 1, 2, 3, 4) and metric η5 =
diag(1,−1,−1,−1,−1). The local charts {x} can be introduced on (M, g)
giving the set of functions zA(x) which solve the hyperboloid equation [4],

η5ABz
A(x)zB(x) = − 1

ω2
. (10)

1We denote by ω the Hubble de Sitter constant since H is reserved for the energy
operator
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The Euclidean chart {tc, ~x} with the conformal time tc and Cartesian spaces
coordinates xi is defined by

z0(x) = − 1

2ω2tc

[
1− ω2(tc

2 − ~x2)
]

zi(x) = − 1

ωtc
xi , (11)

z4(x) = − 1

2ω2tc

[
1 + ω2(tc

2 − ~x2)
]

This chart covers the expanding portion of M for tc ∈ (−∞, 0) and ~x ∈ R3

while the collapsing portion is covered by a similar chart with tc > 0. Both
these charts have the conformal flat line element,

ds2 = η5ABdz
A(x)dzB(x) =

1

ω2tc
2

(
dtc

2 − d~x2
)
. (12)

In what follows we restrict ourselves to the expanding portion where
conformal time tc ∈ (−∞, 0] is related to the proper (or ’physical’) time

t = − 1

ω
ln(−ωtc) ∈ R+ (13)

of the FLRW chart {t, ~x} of the metric ds2 = dt2 − e2ωtd~x · d~x, or of the de
Sitter-Pailevé one, {t, ~xs}, where ds2 = (1−ω2~x2s)dt

2+2ω~xs ·d~xsdt−d~xs ·d~xs,
that depends on the comoving Cartesian coordinates,

xis = − 1

ωtc
xi = xieωt , |~xs| <

1

ω
, (14)

that coincide to those of the static chart [4, 5]. In both these charts an
obsever staying at rest in ~xs = 0 has a finite event horizon on the sphere of
the radius |~xs| = 1

ω
.

The charts {tc, ~x} and {t, ~x} have diagonal metrics which allow us to
introduce orthogonal local frames by using a common diagonal gauge defined
by the vector fields

e0̂ = −ωtc∂tc = ∂t , eî = −ωtc∂xi = e−ωt∂xi , (15)

and the corresponding 1-forms

ω0̂ = − 1

ωtc
dtc = dt , ω î = − 1

ωtc
dxi = eωtdxi . (16)
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In the chart {t, ~xs} the same gauge is no longer diagonal since

e0̂ = ∂t , eî = ωxis∂t + ∂xis , (17)

ω0̂ = dt , ωî = dxis − ωxisdt . (18)

The de Sitter spacetime is an homogeneous space of the group SO(1, 4)
that leave invariant the metric η5 of the embedding manifold M5 and implic-
itly Eq. (10). Therefore, each transformation g ∈ SO(1, 4) defines the isom-
etry x → x′ = φg(x) derived from the system of equations z[φg(x)] = gz(x).
In the standard parametrization g = g(ξ) of the group SO(1, 4) with real
skew-symmetric parameters ξAB = −ξBA, each isometry can be expanded
as φg(x) = x + ξABk(AB)(x) + ... where k(AB) are the basis Killing vectors
(in this parametrization) of the de Sitter manifold. These can be related to
the Killing vectors in the pseudo-Euclidean spacetime (M5, η5) that have the
form

K
(AB)
C dzC = zAdzB − zBdzA = k(AB)

µ dxµ (19)

allowing us to extract the components k(AB)µ = η5ACη
5
BDk

(CD)
µ . In the chart

{tc, ~x} the corresponding contravariant components have simpler forms [6],

k0(0i) = k0(4i) = ωtcx
i , kj(0i) = kj(4i) −

1

ω
δji = ωxixj − δjiχ , (20)

k0(ij) = 0 , kl(ij) = δljx
i − δlixj ; k0(04) = tc , ki(04) = xi , (21)

where

χ =
1

2ω

[
1− ω2(t2c − ~x2)

]
. (22)

Let us focus now on the geodesics of a particle of mass m in the confor-
mal chart {tc, ~x} assuming that this has the conserved momentum ~P whose
components defined as P i = ω(k(0i)µ−k(4i)µ)pµ differ from those of the usual
momentum that read [6]

p0 = −ωt
√
m2 + ω2P 2t2c , pi = (ωtc)

2P i , (23)

(where we denote P = |~P |). Hereby we deduce the geodesic trajectory,

xi(tc) = xi0 +
P i

ωP 2

(√
m2 + P 2ω2tc 0

2 −
√
m2 + P 2ω2t2c

)
, (24)

of a massive particle of momentum ~P passing through the point ~x0 at time
tc 0. Thus, as was expected, we find that the geodesics of a massive particle
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is completely determined by the initial conditions, tc 0, ~x0, and the conserved
momentum ~P . Particularly, when ~P = 0 then the mobile stays at rest in
~x = ~x0 on a world line along the vector field −ωtc∂tc .

In other respects, we observe that the geodesic equation can be brought
in a simpler form if we introduce the new functions

ξi(tc, ~x) = xi +
P i

ωP 2

√
m2 + P 2ω2t2c . (25)

Indeed, then Eq. (24) can be written as ~ξ(tc, ~x) = const. = ~ξ(tc 0, ~x0) where
the integration constants are determined by the initial conditions. Another
advantage of this notation is that the conserved energy,

E = ωk(04)µp
µ = ω ~x(tc) · ~P +

√
m2 + P 2ω2t2c , (26)

can be written now as
E = ω ~ξ(tc, ~x) · ~P . (27)

In the orthogonal local frames defined by the diagonal tetrad fields (15) the
components of the momentum,

p0̂ =
√
m2 + ω2P 2t2c = ω ~P · (~ξ − ~x) , pî = −ωtcP i (̂i = i) , (28)

can also be expressed in terms of coordinates and above introduced conserved
quantities.

4 Distribution function of the Marle model

In what follows we study the Merle model on de Sitter sapcetimes assuming
that the distribution function f(t, ~x, ~P ) depends on coordinates and con-

served momentum, ~P , while the Boltzmann equation of this model takes the
simpler form

p0∂tcf + pi∂if = −m
τ

(f − f (eq)) , τ > 0 , (29)

where the momentum components are given by Eqs. (23). Our principal
goal is to discuss the properties of the analytical solutions of this equation.

Let us observe first that the equilibrium distribution f (eq) must be a
solution of the homogeneous equation p0∂tcf

(eq) + pi∂if
(eq) = 0 even though,

in general, this restriction is no mandatory. Then we obtain our main result
that is given by the following theorem.
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Theorem 1 The general solution of the Boltzmann equation (29), when f (eq)

satisfies the homogeneous version of this equation, reads

f(tc, ~x, ~P ) = F (~ξ, ~P ) +H(~ξ, ~P ) (−ωtc)
1
ωτ

(
1 +

√
1 +

ω2P 2t2c
m2

)− 1
ωτ

, (30)

where F = f (eq) and H are arbitrary functions of ~ξ and ~P .

Proof: By using suitable algebraic codes on computer we find that the
solution of the homogeneous equation is the arbitrary function f (eq) = F
that depends only on the conserved quantities ~ξ and ~P . Then we derive the
solution f − f (eq) of the complete equation (29) that is determined up to an

arbitrary function H ≡ H(~ξ, ~P ).
Furthermore, based on the above result, we can find the form of f (eq).

Corollary 1 The restriction f (eq) = F (~ξ, ~P ) fixes f (eq) up to two free pa-
rameters: the total number of particles and the the temperature at the origin
(~x = 0).

Proof: In the Marle model for the collision term, f (eq) is given by the
Maxwell-Jüttner distribution:

f (eq) =
Z

(2π)3
exp

(
βEµE − βEUα̂pα̂

)
, (31)

where Z denotes the degrees of freedom and Uα̂ are the components of the
macroscopic velocity in the local frames defined by Eqs. (15) and (16). The
quantities βE and Uα̂ are point-wise functions that have to be determined
assuming that βEUα̂p

α̂ depends only on ~ξ and ~P . According to Eqs. (28) we
can write

βEUα̂p
α̂ = ωβE

[
U0̂
~P · ~ξ − ~P · (U0̂~x− tc~U)

]
(32)

where we denoted ~U = (U 1̂, U 2̂, U 3̂) = (−U1̂,−U2̂,−U3̂). In order for f (eq) to

depend only on ~ξ and ~P , we must take βEU0̂ = const. while the second term

above must vanish. This constrains the macroscopic velocity U = (U 0̂, ~U)

to satisfy ~U = U 0̂ ~x
tc

which combined with the normalization condition 1 =

(U 0̂)2 − ~U · ~U leads to two possible solutions between which we chose

U = − 1√
1− ~x2

t2c

(
1,
~x

tc

)
, (33)
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on the expanding portion of M . Moreover, we can write

βE = β0

√
1− ~x2

t2c
, (34)

assuming that β0 is a positively defined arbitrary constant. Thus, f (eq) can
be put in the definitive form,

f (eq) =
Z

(2π)3
exp

(
βEµE − β0ω ~P · ~ξ

)
, (35)

that depends on the arbitrary constants Z and β0.
It can be seen that β0 corresponds to the inverse temperature at the origin

of the coordinate system and it represents a free parameter. Moreover, the
product βEµE should also be constant, since any dependence on ~ξ or ~P
implies also a dependence on pα̂, which is not allowed by the form of the
Maxwell-Jüttner distribution (31). The connection between βEµE and the
particle number density will be investigated in section 5.

The Euclidean chart used so far offered us some technical advantages but
shadowing the physical meaning because of the unusual nature of the con-
formal time. Therefore, the physical meaning of the above obtained results
can be better understood in the charts {t, ~x} or {t, ~xs} with the proper time
(13). The distribution function in the FLRW chart has the form,

f(t, ~x, ~P ) = f (eq)(~ξ, ~P ) +H(~ξ, ~P ) e−
t
τ

(
1 +

√
1 +

P 2

m2
e−2ωt

)− 1
ωτ

, (36)

pointing out the term exp(− t
τ
) which is independent on the Hubble de Sitter

parameter ω. In the limit of t → ∞ (when tc → 0) this produces the
relaxation

lim
t→∞

f(t, ~x, ~P ) = f (eq)(~ξ0, ~P ) , (37)

where

ξi0 = lim
tc→0

ξi = xi +
mP i

ωP 2
. (38)

The conclusion is that the system tends to equilibrium in the limit of t→∞.
The inverse temperature (34) corresponding to f (eq) can be written in

FLRW or de Sitter-Painlevé coordinates as,

βE = β0
√

1− ω2~x2e2ωt = β0
√

1− ω2~x2s , (39)

9



giving the temperature distribution observed by an observer staying at rest
in ~x = ~xs = 0. This observes that when one approaches to the event horizon,
|~xs| → 1

ω
, the temperature increases to infinity since then βE → 0.

The local components of the four-velocity (33) can be expressed in the
local frames of the chart {t, ~x} as

U =
1√

1− ω2~x2e2ωt

(
1, ω~xeωt

)
, (40)

allowing us to define the three-velocity

~V = ω~xeωt = ω~xs (41)

which recovers just the Hubble law [3] (for details see also Ref. [7]). This
suggests that the distribution function (30) is a suitable candidate to describe
the current state of our Universe.

Finally, we consider the problem of the flat limit, when ω → 0, which
is more sensitive since the solution of the Merle model on the Minkowski
spacetime is somewhat trivial. Nevertheless, we observe that in this limit we
have

βE → β0 , ω~ξ · ~P →
√
m2 + P 2 = E0 , (42)

while the last term of Eq. (36) vanishes. This means that in the limit
ω → 0 the function f → f (eq) becomes proportional with the traditional
form exp(−β0E0) we meet in special relativity.

5 Conclusion

We derived solved here the Boltzmann-Marle model in the co-moving frames
of the de Sitter expanding universe. The obtained distributions have rela-
tively simple forms such that the compatibility conditions and the momenta
giving physical quantities can be solved analytically. Thus we may have a
framework for studying transport phenomena in the rarefied gases or plasmas
in our expanding universe.
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