
One-Casimir bi-Hamiltonian chains on

Riemannian manifolds and related dispersionless

bi-Hamiltonian field systems

Maciej BÃlaszak
Institute of Pysics, A. Mickiewicz University

61-614 Poznań, Poland

Abstract

One-Casimir bi-Hamiltonian theory of separable Stäckel systems on
Riemannian manifolds is presented. A systematic passage to bi-Hamiltonian
dispersionless field systems is constructed.

1 Preliminaries

The separation of variables is one of the most important methods of solving
nonlinear ordinary differential equations of Hamiltonian type. It is known since
19th century, when Hamilton and Jacobi proved that given a set of appropri-
ate coordinates, the so called separated coordinates, it is possible to solve a
related Liouville integrable dynamic system by quadratures. Unfortunately in
the 19th century and most of the 20th century, for a number of models of clas-
sical mechanics the separated variables were either guessed or found by some
ad hoc methods. A fundamental progress in this field was made in 1985, when
Sklyanin adopted the method of soliton systems, i.e. the Lax representation, to
systematic construction of separated variables (see his review article [1]). In his
approach, the appropriate Hamiltonians appear as coefficients of the spectral
curve, i.e. the characteristic equation of the Lax matrix. Recently, a new con-
structive separability theory was presented, based on a bi-Hamiltonian property
of integrable systems. In the frame of canonical coordinates the theory was de-
veloped in a series of papers [2]-[7] (see also the review article [8]), while the
general case was considered in [9]-[13].

In this paper we briefly summarize the results of the theory in the special
case of one-Casimir Poisson pencils on Riemannian manifolds, which is very
important from the physical point of view. Moreover we show the relation of
considered systems with a special class of dispersionless field systems in (1+1)
dimension, which are also bi-Hamiltonian with infinite hierarchy of symmetries
and conservation laws.
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Let M be a differentiable manifold, TM and T ∗M its tangent and cotangent
bundle. At any point u ∈ M, the tangent and cotangent spaces are denoted
by TuM and T ∗uM , respectively. The pairing between them is given by the
map < ·, · >: T ∗uM × TuM → R. For each smooth function F ∈ C∞(M),
dF denotes the differential of F . M is said to be a Poisson manifold if it
is endowed with a Poisson bracket {·, ·} : C∞(M)× C∞(M) → C∞(M), in
general degenerate. The related Poisson tensor π is defined by {F, G}π(u) :=<
dG, π ◦ dF > (u) =< dG(u), π(u)dF (u) >. So, at each point u, π(u) is a
linear map π(u) : T ∗uM → TuM which is skew-symmetric and has vanishing
Schouten bracket with itself, i.e. the related bracket fulfils the Jacobi identity.
Any function c ∈ C∞(M), such that dc ∈ kerπ, is called a Casimir of π. Let
π0,π1 : T ∗M → TM be two Poisson tensors on M. A vector field K is said to
be bi-Hamiltonian with respect to π0 and π1 if there exist two smooth functions
H,F ∈ C∞(M) such that

K = π0 ◦ dH = π1 ◦ dF. (1.1)

The Poisson tensors π0 and π1 are said to be compatible if the associated pencil
πξ = π1 − ξπ0 is itself a Poisson tensor for any ξ ∈ R.

In this paper we consider a particular Poisson manifold M of dim M = 2n+1
equipped with a linear Poisson pencil πξ of maximal rank. Assuming that a
Casimir of the pencil is a polynomial in ξ of an order n

hξ = h0ξ
n + h1ξ

n−1 + ... + hn (1.2)

one gets a bi-Hamiltonian chain

πξ ◦ dhξ = 0 ⇐⇒

π0 ◦ dh0 = 0
π0 ◦ dh1 = K1 = π1 ◦ dh0

π0 ◦ dh2 = K2 = π1 ◦ dh1

...
π0 ◦ dhn = Kn = π1 ◦ dhn−1

0 = π1 ◦ dhn.

(1.3)

where {hi}n
i=1 is a set of independent functions in involution with respect to

both Poisson structures, so defines a Liouville integrable system on M .
In the following paper we restrict to a special case of quadratic in momenta

constants of the motion, i.e. to the case of M = T ∗Q × R, where Q is some
Riemann space. So, let (Q, g) be a Riemann (pseudo-Riemann) manifold with
covariant metric tensor g and local coordinates q1, ..., qn. Moreover, let G := g−1

be a contravariant metric tensor satisfying
∑n

j=1 gijG
jk = δk

i . The Levi-Civita
connection components are defined by

Γi
jk =

1
2

n∑

l=1

Gil(∂kglj + ∂jgkl − ∂lgjk), ∂i ≡ ∂

∂qi
. (1.4)

The equations

qi
tt + Γi

jkqj
t q

k
t = Gik∂kV (q), i = 1, ..., n, qt ≡ dq

dt
(1.5)
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describe the motion of a particle in the curved space with the metric g. Eqs.(1.5)
can be obtained by varying the Lagrangian

L(q, qt) =
1
2

∑

i,j

gijq
i
tq

j
t − V (q). (1.6)

One can pass in a standard way to the Hamiltonian description of dynamics,
where the Hamiltonian function takes the form

H(q, p) =
n∑

i=1

qi
t

∂L
∂qi

t

− L =
1
2

n∑

i,j=1

Gijpipj + V (q), pi :=
∂L
∂qi

t

(1.7)

and equations of motion are
(

q
p

)

t

= θ0 ◦ dH =
(

0 I
−I 0

) (
∂H
∂q
∂H
∂∂p

)
= XH

m (1.8)

qi
t =

∂H

∂pi
, pit = −∂H

∂qi
.

XH denotes the Hamiltonian vector field and the whole dynamics takes place
on the phase space M = T ∗G in local coordinates (q1, ..., qn, p1, ..., pn).

Of a special importance is the geodesic motion V (q) ≡ 0, with Lagrangian
equations

qi
tt + Γi

jkqj
t q

k
t = 0, i = 1, ..., n (1.9)

and Hamiltonian representation
(

q
p

)

t

= θ0 ◦ dE = XE , E =
1
2

n∑

i,j=1

Gijpipj . (1.10)

2 Stäckel manifolds and separable dynamic sys-
tems of Benenti type

2.1 Separable geodesics

The Stäckel space is the Riemann space with diagonal metric of such a form
that the corresponding geodesic equations are separable. In 1893 Stäckel gave
the first characterization of the Riemann (pseudo-Riemann) manifold (Q, g) on
which the equations of geodesic motion can be solved by separation of variables.
He proved that if in a system of orthogonal coordinates (λ, µ) there exists a non-
singular matrix ϕ = (ϕl

k(λk)), called a Stäckel matrix such that the geodesic
Hamiltonians Er are of the form

Er =
1
2

n∑

i=1

(ϕ−1)i
rµ

2
i , (2.1)
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then Er are functionally independent, pairwise commute with respect to the
canonical Poisson bracket and the Hamilton-Jacobi equation associated to E1

is separable.
Then, Eisenhart gave a coordinate-free representation for Stäckel geodesic

motion introducing special family of Killing tensors. As it is known, a (1, 1)-type
tensor B = (Bi

j) (or a (2, 0)-type tensor B = (Bij)) is called a Killing tensor
with respect to g if

{ ∑
(BG)ijpipj , E

}
θ0

= 0 (or
{ ∑

(B)ijpipj , E
}

θ0
= 0).

He proved [14] that the geodesic Hamiltonians can be transformed into a Stäckel
form (2.1) if the contravariant metric tensor G = g−1 has (n − 1) commuting
independent contravariant Killing tensors Ar of a second order such that

Er =
1
2

∑

i,j

Aij
r pipj , (2.2)

admitting a common system of closed eigenforms αi

(A∗r − vi
rG)αi = 0, dαi = 0, i = 1, ..., n, (2.3)

where vi
r are eigenvalues of (1, 1) Killing tensor Kr = Arg (K∗

r = gA∗r). In local
coordinates q on Q we have

Kr =
∑

i,j

(Kr)i
j

∂

∂qi
⊗ dqj , K∗

r =
∑

i,j

(Kr)
j
idqi ⊗ ∂

∂qj
, (2.4)

Ar =
∑

i,j

Aij
r

∂

∂qi
⊗ ∂

∂qj
, (Kr)i

j =
∑

k

Aik
r gkj .

Among all Stäckel systems a particular important subclass consists of these
considered by Benenti [15]-[17] and constructed with the help of a so called
special conformal Killing tensor.

Definition 1 Let L = (Li
j) be a second order mixed type (i.e. (1, 1)-) tensor

on Q and let L : M → R be a function on M defined as L = 1
2

n∑

i,j=1

(LG)i,jpipj,

where LG is a (1, 1) tensor with components (LG)ij =
n∑

i,j=1

Li
kGkj. If

{L,E}θ0 = αE, where α =
n∑

i,j=1

Gij ∂f

∂qi
pj , f = Tr(L), (2.5)

then L is called a special conformal Killing tensor with the associated potential
f = Tr(L).

For the Riemannian manifold (Q, g, L), geodesic flow has n constants of
motion of the form

Er =
1
2

n∑

i,j=1

Aij
r pipj =

1
2

n∑

i,j=1

(KrG)ijpipj , r = 1, ..., n, (2.6)
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(KrG)ij =
n∑

k=1

(Kr)i
kGkj

where Ar and Kr are Killing tensors of type (2, 0) and (1, 1), respectively. More-
over, as was shown by Benenti [15],[16], all the Killing tensors Kr with a common
set of eigenvectors, are constructed from L by

Kr+1 =
r∑

k=0

ρkLr−k, (2.7)

where ρr are coefficients of characteristic polynomial of L

det(ξI − L) = ξn + ρ1ξ
n−1 + ... + ρn, ρ0 = 1. (2.8)

¿From (2.7) we immediately find that

Kr+1 − L ◦Kr = ρrI, −L ◦Kn = ρnI, K1 = I. (2.9)

Lemma 2 ¿From (2.7) and (2.9) it follows that appropriate Killing tensors Kr

are given by the following ’cofactor’ formula

cof(ξI − L) =
n−1∑

i=1

Kn−iξ
i, (2.10)

where cof(A) stands for the matrix of cofactors, so that cof(A)A = (det A)I.
Notice that K1 = I, hence A1 = G and E1 ≡ E.

Proof.

(ξI − L)(
n−1∑

i=1

Kn−iξ
i) =

n−1∑

i=1

(Kn−iξ
i+1 − L ◦Kn−iξ

i)

= −L ◦Kn + (Kn − L ◦Kn−1)ξ + ...

+ (K2 − L ◦K1)ξn−1 + K1ξ
n

= I(ρn + ρn−1ξ + ... + ρ1ξ
n−1 + ξn) = I det(ξI − L).

According to the above results, the functions Er, satisfy

{Es, Er}θ0 = 0, (2.11)

and thus constitute a system of n constants of motion in involution with respect
to the Poisson structure θ0. So, for a given metric tensor g, the existence of a
special conformal Killing tensor L is a sufficient condition for the geodesic flow
on M to be a Liouville integrable Hamiltonian system.

It turns out that with the tensor L we can (generically) associate a coordinate
system on M in which the geodesic flows associated with all the functions Er

separate. Namely, let (λ1(q), ..., λn(q)) be n distinct, functionally independent
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eigenvalues of L, i.e. solutions of the characteristic equation det(ξI − L) = 0.
Solving these relations with respect to q we get the transformation λ → q

qi = αi(λ), i = 1, ..., n. (2.12)

The remaining part of the transformation to the separation coordinates can
be obtained as a canonical transformation reconstructed from the generating
function W (p, λ) =

∑
i piαi(λ) in the following way

µi =
∂W (p, λ)

∂λi
=⇒ pi = βi(λ, µ) i = 1, ..., n. (2.13)

In the (λ, µ) coordinates the tensor L is diagonal

L = diag(λ1, ..., λn) ≡ Λ, (2.14)

while geodesic Hamiltonians have the following form [2]

Er = −1
2

n∑

i=1

∂ρr

∂λi

fi(λi)
∆i

µ2
i , r = 1, ..., n, (2.15)

where
∆i =

∏

k=1,...n, k 6=i

(λi − λk), (2.16)

ρr(λ) are symmetric polynomials (Viéte polynomials) defined by the relation

det(ξI − Λ) = (ξ − λ1)(ξ − λ2)...(ξ − λn) =
n∑

r=0

ρrξ
r (2.17)

and fi are arbitrary smooth functions of one real argument. From (2.15) it
immediately follows that in (λ, µ) variables the contravariant metric tensor G
and all the Killing tensors Kr are diagonal

Gij =
fi(λi)

∆i
δij , (Kr)i

j = −∂ρr

∂λi
δi
j . (2.18)

Remark 3 When fi(λi) is a polynomial of order ≤ n the space is flat, if the
order of f is equal n + 1 the space is of constant curvature.

What are the separated coordinates ? How to solve equations by quadra-
tures? Let us consider a set of coordinates {λi, µi}n

i=1 on M canonical with
respect to θ0. On can try to linearize the system (1.10) through a canonical
transformation (λ, µ) → (b, a) in the form bj = ∂W

∂ai
, µi = ∂W

∂λi , where W (λ, a) is
a generating function that solves the related Hamilton-Jacobi (HJ) equations

Er(λ,
∂W

∂λ
) = ar, r = 0, ..., n. (2.19)
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In general, the HJ equations (2.19) are nonlinear partial differential equations
that are very difficult to solve. In general it is a hopeless task!!! However, there
are rare cases when one can find a solution of (2.19) in the separable form

W (λ, a) =
n∑

i=1

Wi(λi, a) (2.20)

that turns the HJ equations into a set of decuple ordinary differential equations
that can be solved by quadratures. Such (λ, µ) coordinates are called sepa-
rated coordinates. In the (a, b) coordinates the flow d/dtj associated with every
Hamiltonian Ej is trivial

dai

dtj
= 0,

dbi

dtj
= δij , i, j = 1, . . . , n (2.21)

and the implicit form of the trajectories λ(tj) is given by

bi(λ, a) =
∂W

∂ai
= δijtj + const, i, j = 1, ..., n. (2.22)

Equivalently to (2.20), separated coordinates are defined by n relations of the
form

ϕi(λi, µi, E1, ..., En) = 0, i = 1, ..., n (2.23)

joining each pair (λi, µi) of conjugate coordinates and all Hamiltonians Ei, i =
1, ..., n. Fixing the values of Hamiltonians Ej = const = aj one obtains an
explicit factorization of the Liouville tori given by the equations

ϕi(λi, µi, a1, ..., an) = 0, i = 1, ..., n

m (2.24)

ϕi(λi,
dWi

dλi
, a1, ..., an) = 0, i = 1, ..., n

i.e. a decuple system of ordinary differential equations. To ensure that in the
(λ, µ) coordinates the geodesic Hamiltonians (2.15) are separable it is sufficient
to observe that in these coordinates they actually have the Stäckel form

Er =
1
2

n∑

i=1

(ϕ−1)i
rµ

2
i , r = 1, ..., n, (2.25)

with the related Stäckel matrix

ϕ =




(λ1)n−1

f1(λ1)
(λ1)n−2

f1(λ1) · · · λ1

f1(λ1)
1

f1(λ1)

...
... · · · ...

...
(λn)n−1

fn(λn)
(λn)n−2

fn(λn) · · · λn

fn(λn)
1

fn(λn)


 . (2.26)
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Inverting eqs. (2.25) one obtains exactly n relations (2.23) in the form

E1(λi)n−1 + E2(λi)n−2 + ... + En =
1
2
fi(λi)µ2

i , i = 1, ..., n. (2.27)

For fi(λi) = f(λi) eqs. (2.27) can be represented by n different points (ξ, µ) =
(λi, µi), i = 1, ..., n of some curve

E1ξ
n−1 + E2ξ

n−2 + ... + En =
1
2
f(ξ)µ2 (2.28)

called separation curve.
Let us now solve explicitly the Hamilton-Jacobi equations (2.19) and dy-

namic equations, with respect to the evolution parameter tr, written in (λ, µ)
coordinates: ∑

i

(ϕ−1)i
r

(
∂W

∂λi

)2

= ar, r = 1, ..., n

⇓

f(λi)
(

∂W

∂λi

)2

= a1(λi)n−1 + a2(λi)n−2 + ... + an ≡ aλi

⇓ W =
n∑

i=1

Wi(λi, a)

1
2
f(λi)

(
dWi

dλi

)2

= a1(λi)n−1 + a2(λi)n−2 + ... + an ≡ aλi

⇓

Wi(λi, a) =
∫ λi √

aξ
1
2f(ξ)

dξ

⇓

W (λ, a) =
n∑

k=1

∫ λk √
aξ

1
2f(ξ)

dξ

⇓

bi =
∂W

∂ai
=

n∑

k=1

∫ λk

ξi−1

√
1
2f(ξ)aξ

dξ

⇓
√

1
2
f(ξ)aξ ≡ ψ(ξ)

n∑

k=1

∫ λk

ξi−1

ψ(ξ)
dξ = trδri + consti, i = 1, ..., n, (2.29)

where the eqs.(2.29) are implicit solutions called the inverse Jacobi problem.
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2.2 Bi-Hamiltonian chains

The special conformal Killing tensor L can be lifted from Q to a (1, 1)-type
tensor on M = T ∗Q where it takes the form

N =
(

L 0n

F LT

)
, F i

j =
∂

∂qi
(Lp)j − ∂

∂qj
(pT L)i. (2.30)

The lifted (1, 1) tensor N is called a recursion operator. An important property
of N is that when it acts on the canonical Poisson tensor θ0 it produces another
Poisson tensor

θ1 = N ◦ θ0 =
(

0 L
−LT F

)
, (2.31)

compatible with the canonical one (actually θ0 is compatible with Nkθ0 for any
integer k). In the (λ, µ) coordinates the recursion operator and the tensor θ1

attain the form

N =
(

Λ 0
0 Λ

)
, θ1 =

(
0 Λ
−Λ 0

)
. (2.32)

It is now possible to show that the geodesic Hamiltonians Er satisfy on M =
T ∗Q the set of relations [19]

θ0 ◦ dEr+1 = θ1 ◦ dEr + ρrθ0 ◦ dE1, En+1 = 0, r = 1, ..., n.

m (2.33)

dEr+1 = N∗ ◦ dEr + ρrdE1, N∗ = θ−1
0 ◦ θ1,

which is called a quasi-bi-Hamiltonian chain [18]. On the extended phase space
M ′ = T ∗Q× R, the extended geodesic Hamiltonians

er = Er + cρr, r = 1, ..., n, e0 = c, (2.34)

where c is an additional coordinate, satisfy the following bi-Hamiltonian chain
[19]

π0 ◦ de0 = 0
π0 ◦ de1 = X1 = π1 ◦ de0

π0 ◦ de2 = X2 = π1 ◦ de1

...
π0 ◦ den = Xn = π1 ◦ den−1

0 = π1 ◦ den

(2.35)

with the Poisson operators π0 and π1

π0 =
(

θ0 0
0 0

)
, π1 =

(
θ1 θ0 ◦ de1

−(θ0 ◦ de1)T 0

)
(2.36)

Both Poisson tensors π0 and π1 are compatible and degenerated. The Casimir
of π0 is e0 and the Casimir of π1 is en and they start and terminate the bi-
Hamiltonian chain (2.35). The projections of π0, π1 onto a symplectic leaf of
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π0 (c = const) reconstructs our nondegenerate Poisson tensors θ0, θ1. If we
introduce the Poisson pencil πξ = π1 − ξπ0, the chain (2.35) can be written in
a compact form

πξ ◦ deξ = 0, eξ =
n∑

r=0

en−rξ
r, (2.37)

where eξ is a Casimir of the Poisson pencil πξ depending polynomial on ξ. The
projection of (2.35) onto symplectic leaf of π0 : c = 0 reconstructs the quasi-bi-
Hamiltonian chain (2.33) in a compact form

θξ◦d(Eξ)+ρξθ0◦d(E1) = 0, Eξ =
n−1∑
r=0

En−rξ
r, ρξ = det(ξI−L) =

n∑
r=0

ρn−rξ
r.

(2.38)
If we start with a bi-Hamiltonian chain (2.35) or a quasi-bi-Hamiltonian chain
(2.33) written in the ’physical’ (original) coordinates (q, p) then we can usu-
ally find the functions q(λ) that constitute the first half of the transformation
(λ, µ) → (q, p) (and then complete it with the help of the generating function
W - as in (2.13) - to the complete transformation (λ, µ) → (q, p)) simply by
taking the functions ρr(q) in the Hamiltonians (2.34) and solving the system of
equations ρr(q) = ρr(λ) , r = 1, . . . , n with respect to q.

2.3 Separable potentials

What potentials can be added to geodesic Hamiltonians Er without destroying
their separability within the above schema? It turns out that there exists a
sequence of generic separable potentials V

(k)
r , k = ±1,±2, ..., which can be

added to geodesic Hamiltonians Er such that the new Hamiltonians

Hr(q, p) = Er(q, p) + V (k)
r (q), r = 1, ..., n, (2.39)

are still separable in the same coordinates (λ, µ). It means that Hr follow the
quasi-bi-Hamiltonian chain (2.33)

dHr+1 = N∗ ◦ dHr + ρrdH1, Hn+1 = 0, r = 1, ..., n, (2.40)

while for potentials we have

dVr+1 = L∗ ◦ dVr + ρrdV1, r = 1, ..., n, (2.41)

m

dVr+1 =
r∑

k=0

ρk(L∗)r−k ◦ dV1

m (2.7)

dVr+1 = K∗
r+1 ◦ dV1 =⇒ d(K∗

r+1 ◦ dV1) = 0. (2.42)

The relations (2.42) were derived for the first time by Benenti [15], [16].
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Theorem 4 The generic separable potentials V
(m)
r are given by the following

recursion relation [5], [11]

V (k+1)
r = V

(k)
r+1 − V (1)

r V
(k)
1 , V (1)

r = ρr, k = 1, 2, ..., (2.43)

and its inverse

V (−k−1)
r = V

(−k)
r−1 − V (−1)

r V (−k)
n , V (−1)

r = ρr−1/ρn, k = 1, 2, ... . (2.44)

Proof. The proof is inductive. We show it for positive potentials. Assuming
that potentials V

(m)
r fulfil condition (2.41), we prove that potentials V

(m+1)
r

fulfil the same condition. The condition (2.41) is true for the first nontrivial
potentials V

(1)
r = ρr, which are coefficients of characteristic polynomials of

special conformal Killing tensor L [19]

dρr+1 = L∗ ◦ dρr + ρrdρ1, r = 1, ..., n. (2.45)

Then we have

L∗ ◦ dV (m+1)
r + ρrdV

(m+1)
1

= L∗ ◦ d(V (m)
r+1 − ρrV

(m)
1 )− ρrd(V (m)

2 − ρ1V
(m)
1 )

= L∗ ◦ dV
(m)
r+1 − ρrL

∗ ◦ dV
(m)
1 − V

(m)
1 (L∗ ◦ dρr + ρrdρ1) + ρr(dV

(m)
2 − ρ1dV

(m)
1 )

= L∗ ◦ dV
(m)
r+1 − ρrL

∗ ◦ dV
(m)
1 − V

(m)
1 dρr+1 + ρrL

∗ ◦ dV
(m)
1

= L∗ ◦ dV
(m)
r+1 − V

(m)
1 dρr+1

= dV
(m)
r+2 − ρr+1dV

(m)
1 − V

(m)
1 dρr+1

= d(V (m)
r+2 − ρr+1V

(m)
1 )

= dV
(m+1)
r+1 .

Now, again the extended Hamiltonians hr : M × R→ R

hr = Hr + cρr (2.46)

satisfy the bi-Hamiltonian chain (compare with (2.35))

π0 ◦ dh0 = 0
π0 ◦ dh1 = X1 = π1 ◦ dh0

π0 ◦ dh2 = X2 = π1 ◦ dh1

...
π0 ◦ dhn = Xn = π1 ◦ dhn−1

0 = π1 ◦ dhn

(2.47)

with π0 as in (2.36) and with

π1 = .

(
θ1 θ0 ◦ dh1

−(θ0 ◦ dh1)T 0

)
. (2.48)
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If we use the following notation

Hξ(q, p) = Eξ(q, p) + Vξ(q), Vξ =
n−1∑

j=0

Vn−jξ
j ,

then the recursion formulas (2.43) and (2.44) can be written in a compact form
[20]

V
(k+1)
ξ = λV

(k)
ξ − det(ξI − L)V (k)

1 (2.49)

and

V
(−k−1)
ξ =

1
ξ

(
V

(−k)
ξ − det(ξI − L)

detL
V (−k)

n

)
(2.50)

and our bi-Hamiltonian chain (2.47) is given by

πξ ◦ dhξ(q, p, c) = 0, hξ(q, p, c) = Hξ(q, p) + cρξ, (2.51)

while the corresponding quasi-bi-Hamiltonian (2.38) chain takes the form

θξ ◦ dHξ(q, p) + ρξθ0 ◦ dH1(q, p) = 0. (2.52)

In our (λ, µ) coordinates the full (i.e. with a non-zero potential part) Hamilto-
nians (2.46) of our bi-Hamiltonian chain (2.47) attain the form

hr(λ, µ, c) = −
n∑

i=1

∂ρr

∂λi

1
2fi(λi)µ2

i + γi(λi)
∆i

+ cρr(λ) , r = 1, ..., n, (2.53)

Lemma 5 Potentials V
(k)
r and V

(−k)
r k = 1, 2, ... enter separation curve

H1ξ
n−1 + H2ξ

n−2 + ... + Hn =
1
2
f(ξ)µ2 + γ(ξ) (2.54)

as γ(ξ) = ξn+k−1, ξ−k and hence γi(λi) = (λi)n+k−1 and γi(λi) = (λi)−k,
respectively.

Proof. Potentials V
(1)
r = ρr are coefficients of characteristic equation of the

special conformal Killing tensor L

ξn + ρ1ξ
n−1 + ... + ρn = 0. (2.55)

Then, we define V (k+1) potentials as

ξn+k + V
(k+1)
1 ξn−1 + ... + V (k+1)

n = 0. (2.56)

The recursion formula (2.43) is reconstructed as follows. From (2.56) we have

ξn+k+1 + V
(k+1)
1 ξn + ... + V (k+1)

n ξ = 0. (2.57)

Substituting (2.55) we find

ξn+k+1+(V (k+1)
2 −ρ1V

(k+1)
1 )ξn−1+ ...+(V (k+1)

n −ρn−1V
(k+1)
1 )ξ−ρnV

(n+1)
1 = 0
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⇓ (2.58)

V (k+2)
r = V

(k+1)
r+1 − ρrV

(k+1)
1 .

For the inverse potentials we have from (2.55)

1
ρn

ξn−1 +
ρ1

ρn
ξn−2 + ... +

ρn−1

ρn
+ ξ−1 = 0, (2.59)

so V
(−1)
r = ρr−1

ρn
. Then, we define V (−k) potentials as follows

V
(−k)
1 ξn−1 + ... + V (−k)

n + ξ−k = 0. (2.60)

The recursion formula (2.44) is reconstructed as follows. From (2.60) we have

V
(−k)
1 ξn−2 + ... + V (−k)

n ξ−1 + ξ−k−1 = 0. (2.61)

Substituting (2.59) we have

V
(−k)
1 ξn−2 + ... + V (−k)

n (− 1
ρn

ξn−1 − ...− ρn−1

ρn
) + ξ−k−1 = 0

⇓ (2.62)

V (−k−1)
r = V

(−k)
r−1 − ρr−1

ρn
V (−k)

n .

Finally notice, that the inverse Jacobi problem (2.29) is modified via ψ(ξ) =√
1
2f(ξ)(aξ + γ(ξ)).

2.4 Example: Henon-Heiles system

In last decade a considerable progress has been made in construction of new in-
tegrable finite dimensional dynamic systems showing bi-Hamiltonian property.
The majority of them originate from stationary flows, restricted flows or nonlin-
earization of Lax equations of underlying soliton systems [21]-[33], [4]. Here we
illustrate all previous considerations on the example of the Hamiltonian system
with two degrees of freedom, i.e. the integrable case of the Henon-Heiles system
related to the stationary flow of the 5th order Korteveg de Vries soliton equation
[24]. The Newton equations of motion are the following

q1
tt = −3(q1)2 − 1

2
(q2)2 + c, q2

tt = −q1q2. (2.63)

With conjugate coordinates p1 = q1
t , p2 = q2

t the system (2.63) is a part of the
bi-Hamiltonian chain [24]

π0 ◦ dh0 = 0
π0 ◦ dh1 = X1 = π1 ◦ dh0

π0 ◦ dh2 = X2 = π1 ◦ dh1

0 = π1 ◦ dh2

(2.64)
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where

h0 = c,

h1 =
1
2
p2
1 +

1
2
p2
2 + (q1)2 +

1
2
q1(q2)2 − cq1, (2.65)

h2 =
1
2
q2p1p2 − 1

2
q1p2

2 +
1
16

(q2)4 +
1
4
(q1)2(q2)2 − 1

4
c(q2)2,

the first Poisson structure is canonical

π0 =




0 I 0
−I 0 0
0 0 0




and the second one takes the form

π1 =




0 0 q1 1
2q2 p1

0 0 1
2q2 0 p2

−q1 − 1
2q2 0 1

2p2 −2q1 − 1
2 (q2)2 − c

− 1
2q2 0 − 1

2p2 0 −q1q2

−p1 −p2 2q1 + 1
2 (q2)2 + c q1q2 0




.

(2.66)
¿From Hamiltonian functions (2.50) and the second Poisson structure (2.66) one
can reconstruct the contravariant metric tensor G, the special conformal Killing
tensor L and Killing tensors A1, A2

G =
(

1 0
0 1

)
, L =

(
q1 1

2q2

1
2q2 0

)
, A1 = G, A2 =

(
0 1

2q2

1
2q2 −q1

)
.

(2.67)
The first pair of separated coordinates are eigenvalues of L calculated from
coefficients of characteristic polynomial of L, given also directly in (2.55)

ρ1 = −λ1 − λ2 = −q1, ρ2 = λ1λ2 = −1
4
(q2)2,

⇓
q1 = λ1 + λ2, q2 = 2

√
−λ1λ2.

The missing part of the transformation we reconstruct from the generating func-
tion W (p, λ) = p1(λ1 + λ2) + 2p2

√−λ1λ2 (2.13)

p1 =
λ1µ1

λ1 − λ2
+

λ2µ2

λ2 − λ1
, p2 =

√
−λ1λ2

(
µ1

λ1 − λ2
+

µ2

λ2 − λ1

)
.

Expressing Hamiltonians (2.65) in new coordinates one finds

1
2
fi(λi)µ2

i + gi(λi) =
1
2
λiµ2

i + (λi)4, i = 1, 2 (2.68)

and hence the inverse Jacobi problem (2.29)
2∑

k=1

∫ λk

(ξ)i−1

ψ(ξ)
dξ = trδri+consti, r, i = 1, 2, ψ(ξ) =

√
1
2
ξ(−ξ4 + cξ2 + a1ξ + a2) .

(2.69)
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3 Bi-Hamiltonian dispersionless field systems in
(1+1) dimension

There is a quite well developed theory of the passage between an integrable,
infinite dimensional Hamiltonian system (soliton system) and its various con-
strained flows which are themselves completely integrable Hamiltonian systems.
Actually, by using the Hamilton-Jacobi method with respect to two evolution
parameters x and t, N -gap solutions and N -soliton solutions of a given PDE
can be constructed directly from solutions of related ODEs (constrained flows)
[34]-[38].

In the following section we are interested in, instead of soliton systems, the
first order quasi-linear PDEs of the form

qi
t =

n∑

j=1

wij(q)qj
x, qi = qi(x, t), i = 1, ..., n, (3.1)

called hydrodynamic or dispersionless systems. More precisely, we consider these
systems among (3.1), which have bi-Hamiltonian structure, infinite hierarchy of
symmetries and conservation laws.

Let again, as in the previous section, gij and Gij be a covariant and con-
travariant metric tensors such that

∑

k

gikGkj = δj
i . (3.2)

Coefficients of the Levi-Civita connection Γi
jk(q) are given by (1.4), while the

components of the tensor of Riemannian curvature Ri
jkl(q) are

Ri
jkl(q) =

∂Γi
jl

∂qk
− ∂Γi

jk

∂ql
+

∑
p

(
Γi

pkΓp
jl − Γi

plΓ
p
jk

)
. (3.3)

One can rise and lower indices using g and G metrices

Γij
k (q) =

∑
s

GisΓj
sk(q), Γi

jk(q) =
∑

s

gjsΓsi
k ,

Rij
kl(q) =

∑
s

GisRj
skl(q), Ri

jkl(q) =
∑

s

gjsR
si
kl. (3.4)

Definition 6 [39] Two Riemannian or pseudo-Riemannian contravariant met-
rices Gij

1 (q), Gij
2 (q) are called compatible if for any linear combination of these

metrices
Gij(q) = Gij

1 (q) + ξGij
2 (q), ξ ∈ R, (3.5)

such that det(Gij) 6= 0, the coefficients of the corresponding Levi-Civita connec-
tions and the components of the corresponding tensor of Riemannian curvature
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are related by the same linear formula:

Γij
k (q) = Γ1

ij
k (q) + ξΓ2

ij
k (q), (3.6a)

Rij
kl(q) = R1

ij
kl(q) + ξR2

ij
kl(q). (3.6b)

Then we say that G1 and G2 form a pencil of metrices.

The simplest case is the one of two flat metrices where (3.6a) is fulfilled and
Rij

kl(q) = 0. Another important case is the one with constant curvature, then

R1
ij
kl = K1(δi

lδ
j
k − δi

kδj
l ), R2

ij
kl = K2(δi

lδ
j
k − δi

kδj
l )

⇓ (3.7)

Rij
kl = (K1 + ξK2)(δi

lδ
j
k − δi

kδj
l ),

where K1,K2 are arbitrary real constants.
For the flat case a local Poisson structure of the hydrodynamic (dispersion-

less) type or Dubrovin-Novikov [40] structure is defined by a tensor

θij(q) = Gij(q)∂x −
∑

k

Γij
k qk

x. (3.8)

For a constant curvature case, a nonlocal Poisson structure of hydrodynamic
type, or Mokhov-Ferapontov [41] structure is defined by a tensor

θij(q) = Gij(q)∂x −
∑

k

Γij
k qk

x + Kqi
x∂−1

x qj
x, (3.9)

where Gij(q) is a contravariant metric of constant curvature K. That is, for
arbitrary functionals F [q] and H[q] on the space of fields qi(x), i = 1, ..., n a
bracket of the form

{F, H}θ =
∫

Ω

δF

δq
θ(q)

δH

δq
dx (3.10)

is a Poisson bracket.

Lemma 7 Two Poisson tensors θ1 and θ2 are compatible if related metrices are
compatible.

Theorem 8 [39] Any nonsingular pair of matrices is compatible if and only if
there exist local coordinates λ = (λ1, ..., λn) such that

Gij
1 (λ) = gi(λ)δij , Gij

2 (λ) = χi(λi)gi(λ)δij , (3.11)

where χi(λi) are arbitrary, different from zero, smooth functions.

¿From this theorem and the results of previous sections we find a direct
passage from integrable Stäckel finite-dimensional systems to bi-Hamiltonian
dispersionless field systems. Actually, having some Riemann manifold with a
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special conformal Killing tensor, i.e. a triple (Q,G, L), we have immediately a
pair of compatible metrices

G1 ≡ G, G2 = LG, (3.12)

as in λ coordinates they are of the special form of (3.11)

gi(λ) =
fi(λi)

∆i
, χi(λi) = λi. (3.13)

Here we illustrate the results of this section constructing appropriate bi-
Hamiltonian dispersionless field hierarchy, related to the Henon-Heiles system
considered in the previous section. From (2.67) we have

G1 = G =
(

1 0
0 1

)
, G2 = LG =

(
q1 1

2q2

1
2q2 0

)
, (3.14)

which, according to (2.18), (2.68) and the Remark 2, are compatible flat metri-
ces. So, related Dubrovin-Novikov Poisson structures are

θ0 =
(

1 0
0 1

)
∂x,

θ1 =
(

q1 1
2q2

1
2q2 0

)
∂x +

(
1
2q1

x 0
1
2q2

x 0

)
(3.15)

=
1
2
∂x

(
q1 1

2q2

1
2q2 0

)
+

1
2

(
q1 1

2q2

1
2q2 0

)
∂x +

(
0 − 1

4q2
x

1
4q2

x 0

)
.

Bi-Hamiltonian chain is constructed starting with the Casimir γ0 =
(

2
0

)
=

δ
∫
Ω

2q1dx of the first Poisson structure θ0. Applying the second Poisson struc-
ture θ1 we get the first trivial flow

(
q1

q2

)

t1

= θ1 ◦ γ0 = σ1 =
(

q1
x

q2
x

)
, (3.16)

which is bi-Hamiltonian, as σ1 = θ0 ◦ γ1, where

γ1 =
(

q1

q2

)
= δ

∫

Ω

[
1
2
(q1)2 +

1
2
(q2)2

]
dx. (3.17)

The first nontrivial dispersionless flow we find acting with θ1 on γ1

(
q1

q2

)

t2

= θ1 ◦ γ1 = σ2 =
(

3
2q1q1

x + 1
2q2q2

x
1
2q1q2

x + 1
2q2q1

x

)
, (3.18)

which also is bi-Hamiltonian, as

σ2 = θ0 ◦ γ2, γ2 =
(

3
4 (q1)2 + 1

4 (q2)2
1
2q1q2

)
= δ

∫

Ω

[
1
4
(q1)3 +

1
4
q1(q2)2

]
dx.

(3.19)
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The infinite hierarchy of commuting bi-Hamiltonian vector fields σn one can
construct with the help of the recursion operator

N = θ1 ◦ θ−1
0 =

(
q1 1

2q2

1
2q2 0

)
+

(
1
2q1

x 0
1
2q2

x 0

)
∂−1

x , (3.20)

as σn+1 = Nn ◦ σ1.
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