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Abstract

Lorentzian Kac-Moody algebras control the asymptotic dynamics
of gravitational theories in the vicinity of a cosmological singularity.
The list of the Lorentzian Kac-Moody algebras that have already been
encountered in this context is explicitly given.

1 Introduction

Motivated by the classic work of Belinskii, Khalatnikov and Lifshitz [1], it was
recently found that the dynamics of the Einstein-dilaton-p-form system in any
number of spacetime dimensions can be described, near a (past or future)
spacelike singularity, as a billiard motion in a region of hyperbolic space
[2, 3]. The dimension of the billiard, which is called “Einstein billiard”, as
well as its precise shape, depend on the theory at hand. For four-dimensional
vacuum gravity, one recovers the billiards described in [4, 5].

The billiard picture emerges once one realizes that the spatial points ef-
fectively decouple as one approaches the singularity, and that the non trivial
asymptotic dynamics of the system essentially reduces to the evolution of
the local scale factors (controlling how distances along independent direc-
tions scale) and of the dilaton(s). The emergence of hyperbolic geometry is
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related to the fact that the De Witt “supermetric” [6] in the space M of the
scale factors and the dilaton(s) has Lorentzian signature. Spatial derivatives
and p-form terms in the Hamiltonian define exponential potentials in M,
which become sharp wall potentials in the asymptotic limit. The resulting
available region is the “billiard table”. The motion of the scale factors and
the dilaton(s) is a free motion interrupted by collisions with the billiard walls.
A detailed derivation of the billiards is given in [7].

It was further realized in [3] that the billiards associated (i) with the low
energy bosonic sectors of 11-dimensional supergravity, or of types IIA and IIB
supergravities in 10-dimensions, or with 10-dimensional type I supergravities
(ii) with or (iii) without a vector multiplet, could be identified with the
fundamental Weyl chamber of the Kac-Moody algebra E10 (case (i)), BE10

(case (ii)) or DE10 (case (iii)), which are all of indefinite type. This is because
the linear forms αi that determine the (dominant) walls define a matrix
through

Aij = 2
(αi|αj)

(αi|αi)
(1)

which can be identified with the (generalized) Cartan matrix of the Kac-
Moody algebra at hand, the linear forms themselves being identified with the
simple roots. These striking symmetry properties of the billiards relevant
to the asymptotic dynamics hold also for pure gravity in any number of
spacetime dimensions D = d + 1, for which the billiard turns out to be the
fundamental Weyl chamber of AEd [8]. The billiard dynamics is chaotic when
the Kac-Moody algebra is hyperbolic [8], which is the case for E10, BE10,
DE10 and AEd with d ≤ 9. Vacuum gravity is no longer chaotic in spacetime
dimensions ≥ 11, as observed previously in [9].

Many other models have been investigated since then, including pure D =
4 supergravity theories, with similar conclusions [10, 11]: in each case, the
billiard has remarkable symmetry properties, i.e., is the fundamental Weyl
chamber of a Lorentzian Kac-Moody algebra. The purpose of this review is
to provide the explicit list of all the Lorentzian Kac-Moody that have already
been uncovered in this context. We refer to the original references [3, 8, 10,
11] for the detailed derivation, which includes the explicit identification of
the dominant wall forms αi and the computation of the generalized Cartan
matrix through the use of (1).
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2 A few definitions

Kac-Moody algebras are defined in [12]. A Kac-Moody algebra is Lorentzian
if its Cartan matrix is non degenerate and symmetrizable, and such that the
invariant metric in the Cartan subalgebra has Lorentzian signature−, +, · · · , +.
It is hyperbolic if, in addition, its Dynkin diagram is such that if one removes
any node from it, one gets the Dynkin diagram of an affine or finite Kac-
Moody algebra. Hyperbolic Kac-Moody algebras exist only in ranks ≤ 10.

Given a finite-dimensional simple Lie algebra G, there is a standard way
to derive from it a Lorentzian Kac-Moody algebra G∧∧, called its “double
extension”, “overextension” or “canonical Lorentzian extension” [13, 12, 14].
On first adds the affine root that turns G into its untwisted affine extension
G∧; one then adds a further root attached to the affine root by a single link.
There are other ways to make Lorentzian Kac-Moody algebras out of a finite-
dimensional simple Lie algebra, in which the intermediate affine step involves
a twist [11].

It turns out that for each finite-dimensional simple Lie algebra G, a model
exists that exhibits its overextension G∧∧ [10]. These models have in fact
been studied previously in [15, 16] with different purposes. Some twisted
extensions appear in pure D = 4 supergravities [11]. They are listed below.

3 Models leading to A∧∧
n

In each case, we give the Lagrangian of the theory (in the maximum dimen-
sion = “endpoint of the oxidation sequence” [16]) and the generalized Cartan
matrix of the underlying Lorentzian Kac-Moody algebra.

The model leading to A∧∧
n is pure gravity in spacetime dimensions D =

n + 3,
LD = R ? 1, D = n + 3 (2)

The computation of the relevant walls and of the Cartan matrix has been
done in [8], where it was indeed found to be just the generalized Cartan
matrix of the overextension A∧∧

n of the Lie algebra An. [A∧∧
n is also denoted
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AE(n+2)]. For D > 4, the generalized Cartan matrix reads




2 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 −1
0 −1 2 −1 · · · 0 0 0
...

...
...

... · · · ...
...

...
0 0 0 0 · · · 2 −1 0
0 0 0 0 · · · −1 2 −1
0 −1 0 0 · · · 0 −1 2




For D = 4, one has 


2 −2 0
−2 2 −1
0 −1 2




The algebra is hyperbolic for n < 8. The extension AE9 ≡ A∧∧
7 is the

last hyperbolic algebra in the family; AE10 ≡ A∧∧
8 is not hyperbolic.

4 Models leading to B∧∧
n

The model leading to B∧∧
n is formulated in D = n + 2 spacetime dimensions

and contains the metric, a dilaton, a 2-form, B, and a 1-form, A. The
Lagrangian reads [16]

LD = R ? 1− ?dφ ∧ dφ− 1

2
ea
√

2φ ? G ∧G− 1

2
ea

√
2

2
φ ? F ∧ F, (3)

where a2 = 8/n and

G = dB +
1

2
A ∧ dA, F = dA. (4)
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A straightforward computation yields the dominant walls and the following
generalized Cartan matrix of the overextension B∧∧

n [10]



2 −1 0 0 · · · 0 0 0 0
−1 2 0 −1 · · · 0 0 0 0
0 0 2 −1 · · · 0 0 0 0
0 −1 −1 2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 −1 · · · 2 −1 0 0
0 0 0 0 · · · −1 2 −1 0
0 0 0 0 · · · 0 −1 2 −1
0 0 0 0 · · · 0 0 −2 2




The overextension B∧∧
n is hyperbolic for n ≤ 8. For n = 8, one recovers

the Kac-Moody billiard of BE10 given in [3], which controls the asymptotic
dynamics of the low-energy bosonic sectors of the heterotic and type I super-
strings. The hyperbolic character of BE10 is another way to see that these
models are chaotic.

5 Models leading to C∧∧
n

There is no known formulation in D > 4 spacetime dimensions. The La-
grangian of the C∧∧

n theories is given in D = 4 dimensions by [16]

L4 = R ? 1− ?d~φ ∧ d~φ− 1

2

∑
α

e2~σα.~φ ? (dχα + · · ·) ∧ (dχα + · · ·)

−1

2

n−1∑
a=1

e~ea.~φ
√

2 ? dAa
(1) ∧ dAa

(1) (5)

where the ellipsis complete the “curvatures” of the χ’s [16]. The (n − 1)

dilatons ~φ = (φ1, ..., φn−1) are associated with the Cartan subalgebra of
Sp(2n− 2, R) and the 1

2
n(n− 1) axions χα are associated with the positive

roots of Sp(2n−2, R). The fields Aa
(1) are one-forms. The ~σα are the positive

roots of Sp(2n− 2, R); these can be written in terms of an orthonormalized
basis of (n− 1) vectors in Euclidean space (~ea.~eb = δab) ~ea (a = 1, · · · , n− 1)
as

~σα = {
√

2~ea,
1√
2
(~ea ± ~eb), a > b}. (6)
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The normalization is such that the long roots have squared length equal to
two. The notation ~σα.~φ means

~σα.~φ ≡
n−1∑
a=1

σa
αφa.

The simple roots are

√
2~e1 and

1√
2
(~ea+1 − ~ea), a = 1, ..., n− 2. (7)

The walls of the billiard are easily determined and the Cartan matrix is
found to be [10]




2 −1 0 0 · · · 0 0 0 0
−1 2 −1 0 · · · 0 0 0 0
0 −2 2 −1 · · · 0 0 0 0
0 0 −1 2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 2 −1 0 0
0 0 0 0 · · · −1 2 −1 0
0 0 0 0 · · · 0 −1 2 −2
0 0 0 0 · · · 0 0 −1 2




,

which is recognized to be the generalized Cartan matrix of the overextension
C∧∧

n . It is hyperbolic for n ≤ 4.

6 Models leading to D∧∧
n

For D∧∧
n , the Lagrangian (in D = n + 2 dimensions) is [16]

LD = R ? 1− ?dφ ∧ dφ− 1

2
ea
√

2φ ? dB ∧ dB (8)

where B is a 2-form and a2 = 8/n.
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The resulting Cartan matrix is given by [10]



2 −1 0 0 · · · 0 0 0 0
−1 2 0 −1 · · · 0 0 0 0
0 0 2 −1 · · · 0 0 0 0
0 0 −1 2 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 2 −1 0 0
0 0 0 0 · · · −1 2 −1 −1
0 0 0 0 · · · 0 −1 2 0
0 0 0 0 · · · 0 −1 0 2




It is indeed the generalized Cartan matrix of D∧∧
n = DEn+2 which is

known to be hyperbolic for n ≤ 8.
For n = 8, one gets the last hyperbolic algebra in this family, namely

DE10 ≡ D∧∧
8 , [3]. For n = 24, which is the case relevant to the bosonic

string, one gets D∧∧
24 .

7 Models associated with exceptional groups

7.1 G∧∧
2 [8]

The model is the Einstein-Maxwell system in D = 5 with an extra FFA
term:

L5 = R ? 1− 1

2
? F ∧ F +

1

3
√

3
F ∧ F ∧ A, F = dA. (9)

The Cartan matrix reads



2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −3 2




which is the generalized Cartan matrix of G∧∧
2 . This algebra is hyperbolic.

7.2 F∧∧
4 [10]

The model is a D = 6 dimensional theory containing the metric, a dilaton
(φ), an axion (χ), two one-forms (A±), a two-form (B) and a self-dual 3-form
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field strength (G) [16]. The Lagrangian is given by

L6 = R ? 1− ?dφ ∧ dφ− 1

2
e2φ ? dχ ∧ dχ− 1

2
e−2φ ? H ∧H (10)

−1

2
? G ∧G− 1

2
eφ ? F+ ∧ F+ − 1

2
e−φ ? F− ∧ F− (11)

− 1√
2
χH ∧G− 1

2
A+ ∧ F+ ∧H − 1

2
A+ ∧ F− ∧G. (12)

The field strengths are given in terms of potentials as:

F+ = dA+ +
1√
2
χdA− (13)

F− = dA− (14)

H = dB +
1

2
A− ∧ dA− (15)

G = dC − 1√
2

χH − 1

2
A+ ∧ dA−. (16)

The Cartan matrix of the dominant walls is given by [10]




2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −2 2 −1
0 0 0 0 −1 2




This is the generalized Cartan matrix of the overextension F∧∧
4 , which is

hyperbolic.

7.3 E∧∧
6 [10]

The E∧∧
6 -theory can be obtained as a D = 8 truncation of maximal super-

gravity in which the 3-form potential is retained. It includes the metric, a
dilaton and an axion,χ, together with the 3-form, C [16]. The 8-dimensional
Lagrangian reads

L8 = R ? 1− ?dφ∧ dφ− 1

2
e2
√

2φ ? dχ∧ dχ− 1

2
e−

√
2φ ? G∧G + χG∧G, (17)
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where G = dC.
The Cartan matrix is given by [10]




2 −1 0 0 0 0 0 0
−1 2 0 0 0 0 0 −1
0 0 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 −1 0 0 −1 0 0 2




It is the generalized Cartan matrix of the hyperbolic algebra E∧∧
6 .

7.4 E∧∧
7 [10]

This model is obtained as a consistent (albeit non supersymmetric) trun-
cation of D = 9 maximal supergravity to the theory whose bosonic sector
comprises the metric, a dilaton, a 1-form, A, and a 3-form potential C [16].
The Lagrangian reads

L9 = R ? 1− ?dφ ∧ dφ− 1

2
e

2
√

2√
7

φ
? dC ∧ dC (18)

−1

2
e
− 4

√
2√
7

φ
? dA ∧ dA− 1

2
dC ∧ dC ∧ A.

The Cartan matrix is [10]




2 −1 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0
0 0 0 −1 2 −1 0 0 −1
0 0 0 0 −1 2 −1 0 0
0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 0 2




It is the overextension E∧∧
7 , which is hyperbolic.
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7.5 E∧∧
8 [3]

This is the D = 11-dimensional supergravity whose bosonic sector is given
by

L11 = R ? 1− 1

2
? dC ∧ dC − 1

6
dC ∧ dC ∧ C (19)

C is a 3-form.
The Cartan matrix is




2 −1 0 0 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0 0 0
0 −1 2 −1 0 0 0 0 0 0
0 0 −1 2 −1 0 0 0 0 0
0 0 0 −1 2 −1 0 0 0 0
0 0 0 0 −1 2 −1 0 0 0
0 0 0 0 0 −1 2 −1 0 −1
0 0 0 0 0 0 −1 2 −1 0
0 0 0 0 0 0 0 −1 2 0
0 0 0 0 0 0 −1 0 0 2




As pointed out in [3] this is the Cartan matrix of the overextension E∧∧
8 ,

better known as E10. As shown in that paper, it is also the Cartan matrix
relevant to type IIA supergravity in ten dimensions (dimensional reduction)
as well as type IIB. The algebra is hyperbolic.

8 Twisted extensions

The previous models exhaust all overextensions G∧∧ of the finite-dimensional
simple Lie algebras G. Remarkably enough, twisted extensions also arise, in
the context of D = 4 pure supergravities [11]. We list here the findings of
[11]; N is the number of supersymmetries, A is the underlying Kac-Moody
algebra.

Kac-Moody algebras of pure D = 4 supergravities
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N A
N = 1 A∧∧

1

N = 2 A
(2)∧
2

N = 3 A
(2)∧
2

N = 4 C∧∧
2

N = 5 A
(2)∧
4

N = 6 F∧∧
4

N = 8 E∧∧
8

(20)

We see that the twisted version A
(2)∧
2 , with Cartan matrix




2 −4 0
−1 2 −1
0 −1 2


 (21)

appears for both N = 2 and N = 3, D = 4 pure supergravities, while A
(2)∧
4 ,




2 −2 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 0


 (22)

controls the asymptotic dynamics of N = 5, D = 4 pure supergravity. [A
(2)∧
2

is obtained by adding to the Dynkin diagram of the twisted affine algebra
A

(2)
2 (in Kac’s notations [12]) a root attached to the long root with a single

link; A
(2)∧
4 is obtained by attaching with a single link a root to the longest

root of the Dynkin diagram of the twisted affine algebra A
(2)
4 .]

9 Conclusion

One sees from the above list that all the overextensions of finite dimensional
simple Lie algebras appear. Some twisted extensions appear also. It would
be of interest to investigate whether Lagrangians can be constructed that
yield other twisted Lorentzian algebras, or whether all hyperbolic algebras
can be generated.
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