
Some practical uses of the Lie group SE(3) in
computers visualization

Jean D. Reuss
Association Euratom-C.E.A sur la Fusion.
CEA/DSM/DRFC, CEA-Cadarache,

F-13108, Saint-Paul-lez-Durance, France.
E-mail: reuss@drfc.cad.cea.fr

April, 30, 2002

Abstract

In the tremendous world of computer graphics, the evolution of scientific visual-
ization emphasizes the role of on-line simulation for which a fundamental tool is the
common concept of displacement in space. The Lie group theory supplies not only
an abstract framework for the displacements properties, but also a useful formalism.
Consequently, we review here the basic practical algorithms involved in perspective
drawing and in simulating the dynamics of rigid bodies systems.

1 About a didactic role of numerical algorithms

Graphical representation in an interactive simulation is a problem often encountered in
scientific work. Such on-line visualization is based essentially on a conceptual loop without
end, which is formed, in short, by three parts:
1) Feedback from the user, who generally handles (only) a mouse with two or three

buttons and a keyboard.
2) Calculus of the new state of the model which is supposed to evolve according to

some mathematical law, typically a differential system.
3) Drawing on the computer screen of some conventional items which can represent

the model seen by the designer. In fact, on this point, a large place is naturally devoted
to the old, but irreplaceable linear perspective of geometric shapes.
Nowadays this kind of visual applications is more or less completely realizable by using

numerous well-known softwares, which are called for example: Matlab, Scilab, Mathemat-
ica, OpenGL, Java3D, but they are many others. Each of these tools has its own practical
characteristics, more or less ’open’, for example, and its own deficiencies or strong advan-
tages.
A Lie group is a continuous group of transformation, which is also a differentiable

manifold. The space tangent at the identity element of a Lie group is called the Lie
algebra for that group. This algebra is a vector space of finite or infinite dimension,
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which has a bracket [1] which behaves as the ordinary cross product. The reader knows
that the previous sentences are far from being rigorous and mathematically complete.
Really the genuine Lie group theory is fairly abstract. However, they are at least two Lie
groups which are very close to the concrete experience of daily life, with its activities in our
prosaic Euclidean space with three dimensions. These are SO(3), the special Orthogonal
group (the group of rotations) and SE(3), the special Euclidean group (the group of rigid
body displacements). In other words, these two groups play, or can play, a natural role
in the algorithms of geometry and rigid body mechanics used in visualization.
Well, but why to choose employing effectively the (or a) formalism of the Lie group ?

Disregarding the pedantic ones, they are three reasons. We take advantage of a safe and
well elaborated frame to verify the correctness of several new numerical methods which
sometimes could appear fairly strange. We obtain efficient and coherent notations to act
on often slightly tedious formulas. The last reason is a didactic one. The progress of
rational mechanics has been intimately bound to the advancement of mathematics and
in the purpose of learning abstract notions, it is good to become accustomed with some
more concrete examples.
Today, a natural and often possible way to make concrete mathematical notions, con-

sists to write or read some numerical algorithms which would be, delivered to and used
by a computer graphics system.
Thus the reader is advised that the following part of this text is only a kind of crib sheet

which collects a series of hopefully useful and important mathematical relations, with a
certain attempt to unified notations, in the areas of geometric drawing and dynamics of
articulated rigid bodies systems.

2 Fundamentals of notations for the displacement group

In the ordinary Euclidean space E (3) , we consider two orthonormal frames of reference:
<1 , O1,

−→e1α and <2 , O2,
−→e2α (with α = 1, 2, 3 ). Moreover, at each of these frames

will be attached later one rigid body, which will be called C1 and C2.
The situation of <2 relatively to <1 is defined by Θ : a 3 × 3 matrix, and b; a 3 × 1

vector with:

Θαβ = −→e1α •−→e2β (1)

bα = −→e1α •
−−−→
O1O2 (2)

(i.e. the column vectors of the matrix Θ, which is characterized by 3 parameters, are
formed by the unitary vectors of <2 expressed in the frame of <1, (shortly said: measured
or counted in <1) and b is the coordinates of

−−−→
O1O2, counted in <1.

Note that indeed, Θ and b define both either a transformation with 6 parameters
or the change of coordinates as a result of a change of frame of reference.
With the Lie group formalism the preceding text become approximately:
Θ ∈ SO(3), consequently Θ−1 = ΘT with det(Θ) = +1 (however det(Θ) = −1 is

indeed useful as describing symmetric structures).
f , f1,2 , f2 ∈ SE(3), which can acting on RP 3 is written as a 4× 4 matrix:

f =

¯̄̄̄
Θ b
0 1

¯̄̄̄
(3)
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and we have:

f−1 =

¯̄̄̄
ΘT −ΘT · b
0 1

¯̄̄̄
(4)

The Lie algebra se(3) associated with SE(3) can be presented by referring to the
exponential mapping SE(3) −→ SE(3), which is defined by two vectors ∈ R3 : −→a
which is the vector of finite rotation, and

−→
c . We need first some additional notations.

The length of −→a is ϑ = k−→a k =
p
a21 + a22 + a23

Its unit colinear vector of −→a is −→u =
−→a
ϑ
, so k−→u k = 1 and −→a = −→u·ϑ

The skew-symmetry operator (”hat map”) acting on vectors such as −→a and −→u gives
3× 3 matrices which are written as b

a and
b
u with:

b
u =

¯̄̄̄
¯̄ 0 − u3 u2

u3 0 − u1
− u2 u1 0

¯̄̄̄
¯̄ ; and b

a =
b
u ·ϑ

The following obvious properties are sometimes useful:
b
u +

b
u
T
= 0 ;

b
a +

b
a
T
= 0 ;

b
a
3
= − ϑ2· b

a ;
b
u
3
= − b

u

A matrix product such as
b
a · b is corresponding to the cross product −→a ∧ −→b and

trace
³
b
a ·

b

b
´
= − 2 · −→a • −→b . Denoting the unity matrix by > , >3×3 = diag(1, 1, 1)

we have also:
u · uT = >+ b

u
2

(5)

With these notations the two fundamental relations between the log and exp operators
take the form:

f = exp

µ¯̄̄̄ b
u ·ϑ c
0 0

¯̄̄̄¶
=

¯̄̄̄
Θ b
0 1

¯̄̄̄
(6)

log (f) = log

µ¯̄̄̄
Θ b
0 1

¯̄̄̄¶
=

¯̄̄̄ b
u ·ϑ c
0 0

¯̄̄̄
(7)

with:

Θ = exp
³
b
u ·ϑ

´
= >+ sinϑ· bu +(1− cosϑ) · bu

2
(8)

b
u ·ϑ = log (Θ) =

ϑ

2 · sinϑ
¡
Θ−ΘT

¢
(9)

b =

µ
>+

(1− cosϑ)
ϑ

· bu +
µ
1− sinϑ

ϑ

¶
· bu

2
¶
· c (10)

c =

µ
>− ϑ

2
· bu +

µ
1−

ϑ · (1 + cosϑ)
2 · sinϑ

¶
· bu

2
¶
· b (11)

(The equation (8) is the well-knownRodrigues0 formula and we have also; trace (Θ) =1+

2 · cosϑ ).
We use now a kinematic viewpoint by considering that f is time-dependent; thus

f , f(t) and
•
f ≡ df

dt
is corresponding to a tangent vector.
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The angular velocity vector −→ω = −→u · ', and −→v the linear velocity vector (of <2
relatively to <1 ), with ' =

p
ω21 + ω22 + ω23;

−→u =
−→ω
'
; −→ω = −→u·' and

b
ω =

b
u ·' are

then introduced.
By counting the coordinates ω and v in <2, it becomes possible to represent the generic

element g of se (3) as a 4× 4 matrix in this (not unique) way:

g = f−1.
•

f =

¯̄̄̄ b
ω v
0 0

¯̄̄̄
=

¯̄̄̄ b
u ·' v
0 0

¯̄̄̄
=

¯̄̄̄
¯ ΘT ·

•
Θ ΘT ·

•
b

0 0

¯̄̄̄
¯ (12)

i.e. we have:

b
ω = ΘT ·

•
Θ (13)

v = ΘT ·
•
b≡ ΘT · db

dt
(14)

' =
•
ϑ ≡ dϑ

dt
(15)

3 Drawing

Pictures ultimately consist of points. In computers graphics the most important operation
is surely the transformation of the point of some abstract ”user world” to two or three
discrete coordinates which will be used by a graphic device built in hardware.
For reason of simplicity we restrict here our description to the very common situation

where the ”user world” is the ordinary space, the transformation is the linear perspective
and the graphic device is a screen with a limited number of (colored) pixels (typically
today: 1280 x 1024).
Naturally, in this case, numerous points are gathered in straight-line segments, trian-

gles, and even often more complicated structures, but, maybe, this fact is conceptually of
little importance.

3.1 Transformations in RP3

A point X in the ”user space” is then described by its homogeneous coordinate in the
corresponding orthonormal frame < as:

X =

¯̄̄̄
¯̄̄̄ xy
z
s

¯̄̄̄
¯̄̄̄

The equation s = 0 represent the plane at infinity and the user space can be considered
as being the projective space RP 3.
Several transformation operators T are introduced, which are written under the form

of 4× 4 matrices .
Given an ordered sequence of operators T1,T2,T3 · · · Tn the composition rule is:
X0 = T1 ·X1,X1 = T2 ·X2, · · · Xn−1 = Tn ·Xn =⇒ X0 = T1 · · · ·Tn ·Xn
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Figure 1: The architect’s perspective with the eye situated at the origin of <0

Note that this rule of ”right multiplication” can be expressed in an corresponding
recursive form.
Putting U = >4×4 = diag (1, 1, 1, 1)
For i = 1 to n do U = U · Ti; X0 = U ·Xi end loop.
These matrix-operators are classified in three different types:
1) Authentic element of SE (3); then T = f : i.e. SE(3)×RP 3 −→ RP 3, according

to the formulas (1) and (8).
2) Several geometric transformations out of SE (3) such as reflection ∈ O(3), shearing,

scaling, warping · · ·
3) A particular and efficient first transformation T1 is generally employed:
the frustum transformation . It operate the space clipping which is needed to eliminate

what is outside the truncated viewing pyramid.

3.2 The architect’s perspective

1) The point of view, or eye, is put at the origin O0 of <0 and in this frame the axis
is choose as being perpendicular to the perspective screen according to the perspective
terminology.
2) Some intermediate perspective coordinates PX, PY, PT in the plane of the

perspective screen are obtained according to the so called perspective division:

PX =
x

z
; PY =

y

z
; PT =

s

z
(16)

3) Afterwards a trivial similitude and a discretization are made to fit
PX and PY to the position of the corresponding pixel.
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3.3 The painter’s perspective

In the above formalism, despite the fact that the information ”on infinity”, given by s, is
perfectly available, it is neither elegantly nor effectively treated and used by the standard
architect’s perspective. One way to overcome this deficiency is to turn up oneself to the
painter’s perspective. Then the drawing in linear projection is obtained by appropriate
geometric constructions, which employ principally the elements at infinity (with s = 0 ),
in the plane of the screen.

4 Dynamics of the single rigid body

4.1 Spatial velocity and wrench

Later on the elements of se (3) will be called spatial velocities (or velocity twists), and

will be written as 6× 1 vectors, V =

¯̄̄̄
ω
v

¯̄̄̄
. The elements of the dual algebra se (3)B are

called torque-force wrenches and are written as a 6× 1 vectors, F =
¯̄̄̄
N
z

¯̄̄̄
.

Note that zT · V is a power.

4.2 Kinematics

Spatial velocities and wrenches, which are called ” torseurs ” in french have their own
specific well-known properties. With the use of the adjoint representation and of the
operators “Ad ” : SE(3)×se(3) −→ se(3) and “AdB ” : SE(3)×se(3)B −→ se(3)B,
the changes of coordinates of spatial velocities and wrenches is governed by the following
rules, (in which it can be noted that AdB ≡ AdT ):

V1 = Adf1,2 (V2) =

¯̄̄̄
ω1
v1

¯̄̄̄
=

¯̄̄̄
¯ Θ 0
b

b ·Θ Θ

¯̄̄̄
¯
¯̄̄̄
ω2
v2

¯̄̄̄
(17)

V2 = Adf−11,2 (V1) =

¯̄̄̄
ω2
v2

¯̄̄̄
=

¯̄̄̄
¯ ΘT 0

ΘT ·
b

b
T

ΘT

¯̄̄̄
¯
¯̄̄̄
ω1
v1

¯̄̄̄
(18)

F1 = AdB
f−11,2
(F2) =

¯̄̄̄
N1

F1

¯̄̄̄
=

¯̄̄̄
¯ Θ

b

b ·Θ
0 Θ

¯̄̄̄
¯
¯̄̄̄
N2

z2

¯̄̄̄
(19)

F2 = AdBf1,2 (F1) =

¯̄̄̄
N2

z2

¯̄̄̄
=

¯̄̄̄
¯ ΘT ΘT ·

b

b
T

0 ΘT

¯̄̄̄
¯
¯̄̄̄
N1

F1

¯̄̄̄
(20)

Moreover, the operator “ad ”: se(3) × se(3) −→ se(3), which corresponds to the
Lie bracket, and thus to the cross-product, is needed for the calculus of the accelerations.

We have, with V =

¯̄̄̄
ω
v

¯̄̄̄
∈ se(3),

≈
V=

¯̄̄̄
¯
≈
ω
≈
v

¯̄̄̄
¯ ∈ se(3), and F =

¯̄̄̄
N
z

¯̄̄̄
∈ se (3)B :

adV
³ ≈
V
´
=

¯̄̄̄
¯
b
ω 0
b
v

b
ω

¯̄̄̄
¯ ·
¯̄̄̄
¯
≈
ω
≈
v

¯̄̄̄
¯ (21)
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The dual operator of “ ad ” is “ adF ”: se(3)× se(3)B −→ se(3)B and is defined by:

adFV (F ) =

¯̄̄̄
¯ b
ω
T b

v
T

0
b
ω
T

¯̄̄̄
¯ ·
¯̄̄̄
N
z

¯̄̄̄
= −

¯̄̄̄
¯ b
ω

b
v

0
b
ω

¯̄̄̄
¯ ·
¯̄̄̄
N
z

¯̄̄̄
(22)

4.3 Inertial frame

In a gravitational field of intensity
−→̆
g , instead of considering that the absolute reference

frame<1 is a Galilean frame, it is suitable (by referring to General Relativity) and frequent
to define <1 as being in an uniform accelerated motion with the acceleration −−→̆g .

4.4 Inertia characteristics

For a rigid body, we need 10 parameters, the mass m, the position of the center of mass
G which is defined by the vector −→r =

−→
OG, and IG the inertia tensor about G, which is

represented by a 3×3 symmetric matrix. These parameters are gathered in a 6×6 matrix
J called the spatial inertia:

J =

¯̄̄̄
¯ IG −m· br

2
m· br

− m· br m · >

¯̄̄̄
¯ (23)

4.5 Newton Law for the rigid body

Considering that a (moving) rigid body C2 is attached to <2, the 6×1 vector F represents
the torque and the force at any origin O, counted in <2. Similarly, the spatial velocity V,
counted in <2, describes the motion of C2 relatively to the inertial frame <1 . Then the
Newton-Euler equation takes the form:

F = J ·
•
V − adFV (J · V ) (24)

5 The free, open and unbranched chain of bodies

This generic system is a key for the simulation of elaborated behaviors such as those of
biological beings or moderns mechanisms, despite the noticeable approximations involved
by the use of rational mechanics (cf. rigidity).
It consist of n + 1 rigid bodies labeled from 0 to n, whose inertia properties are

characterized by J0, J1, · · ·Jn. We define the two integers: .

σ = 6 + n and ξ = 6 + 6 · n (25)

The body label 0 (body C0 with frame <0 appended) is free relatively to an inertial
frame <−1 (therefore generalizing slightly [3] and [4] in which <−1 = <0). Its position,
according to formulas (1), (2), (3), is of course, defined by 6 parameters that we call the
six first configuration variables q−5, q−4, q−3, q−2, q−1, q0.
(For reason of coherence in notations, the body C0 often gets the range -5 to 0 for its

indices).
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Figure 2: A free and open chain of n+ 1 bodies

Each of the bodies label j = 1 · · ·n, is attached to the preceding link, by a mechanical
joint which has one degree of freedom, i.e. that is thus either a revolute or a prismatic
or (seldom) a twist joint. The state of each of these articulations is described by one
parameter θj and we define n additional configuration variables qj = θj, so q ∈ Rσ×1.
Moreover each of these articulation is equipped with a device, precisely an actuator or a
brake, which generates either a known torque or a known force, τ j, along its axis. (Here
τ j = τ j (q, w, t) , j = 1 · · ·n; denote known scalar functions. Moreover τ ∈ Rσ×1 and τ 0 ∈
R6×1 with τ 0 = 0).
For completeness, remarking again that each articulation is characterized by its type

(revolute or prismatic) and by a single axis (usually the Z-axis), only 3 · n additional
constitutive parameters are needed to describe the geometrical structure of the entire
chain.
(Generally the Denavit-Hartenberg or preferably the Khalil-Kleinfinger (denotedKK)

constant parameters are used).
In the continuation, we employ also n+ 1 constant matrices (with j or k = 1 · · ·n ):

Sj =

¯̄̄̄
¯̄̄̄
¯̄̄̄
0
0
1
0
0
0

¯̄̄̄
¯̄̄̄
¯̄̄̄ ;Sk =

¯̄̄̄
¯̄̄̄
¯̄̄̄
0
0
0
0
0
1

¯̄̄̄
¯̄̄̄
¯̄̄̄ ;S0 = >6×6 =

¯̄̄̄
¯̄̄̄
¯̄̄̄
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

¯̄̄̄
¯̄̄̄
¯̄̄̄ (26)

j corresponds to a revolute joint around the Z axis, and k to a prismatic one.
According to the power of exponential concept, we have also: fi,j , fj = KKi ·
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exp (Sj · qj) and let’s remind that f−1,0 , f0 is depending of q−5, q−4, q−3, q−2, q−1, q0.
In view of preparing the formulation of the motion equation, we define now the veloc-

ities w ∈ Rσ×1 precisely by:¯̄̄̄
¯̄̄̄
•
q−5
...
•
q0

¯̄̄̄
¯̄̄̄ = eP (q) ·

¯̄̄̄
¯̄̄ w−5...
w0

¯̄̄̄
¯̄̄ = eP (q) · ¯̄̄̄ ω0

v0

¯̄̄̄
; eP (q) ∈ R6×6 and

•
qj= wj =

•
θj

Thus the equation of motion will be not exactly the (matrix) Lagrange equation, but
a little more general equation, sometimes called the Boltzmann-Hamel form. Thus we put

also: P =

¯̄̄̄ eP 06×n
0n×6 >n×n

¯̄̄̄
∈ Rσ×σ.

The model is enriched by r (conditional) constraints like Ğ (q) = 0, Ğ ∈ Rr×1, so with
two successive time derivations we have:

Ψ (q) · w = 0; Ψ ∈ Rr×σ (27)

Ψ (q) · •w +
•
Ψ (q) · w = 0 (28)

These r constraints provoke reaction forces which appear in the equation of motion
as r Lagrange multipliers, λ ∈ Rr×1. Note that in typical problems implying support
and mechanical contacts, the λ must be explicitly known because they must follow the
Coulomb friction’s laws.
Finally, the equation of motion take the general compact form (which is a DAE=differential

algebraic equation):

•
q = P (q) · w (29)

D (q) · •w = τ +H (q, w, ğ) +ΨT · λ (30)

Ψ (q) · w = 0 (31)

with D(q) ∈ Rσ×σ; H (q, w, ğ) ∈ Rσ×1; Ψ =∈ Rr×σ.
D(q), sometimes called the mass matrix, is positive definite and symmetric, D = DT .
H (q, w, ğ) represents the Coriolis and gravitational effects and has the essential prop-

erty:
w = 0 and ğ = 0 =⇒ H (q, w, ğ) = 0.

By eliminating
•
w between (28) and (30) it is possible to isolate the r Lagrange (rather

Kuhn-Tucker) multipliers λ with the relation:¡
Ψ ·D−1 ·ΨT

¢
· λ = − Ψ ·D−1 · (τ +H)−

•
Ψ ·w (32)

For determining the coefficients of equation (30) the traditional and symbolic methods
lead to lengthy calculations.
Recent (1980 -2002) procedures [2],[3],[4], based on kinematics and on the Newton-

Euler equation (plus some clever considerations) allows us now to calculate numerically
these coefficients more efficiently, because they have recursive (i.e. in french, iterative)
forms.
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6 Methods and algorithms

In [3], S.R. Ploen , ”using techniques and notation from the theory of Lie group” develop
a formalism for the dynamics of multibody systems. With the help of [4], I review here
a part of his results, written for the case, (yet not tested by the author), of open and
unbranched chain where the body C0 is free relatively to <−1.
It may be pointed out that a symbol such as Vj describes the spatial velocity of the

body Cj, counted in <j.

6.1 The Newton-Euler couple of recursions

Resolve the backward dynamic problem (i.e. given q (t) calculate τ ).
1) Outward recursion for velocities and accelerations.

Given V0 =

¯̄̄̄
ω0
v0

¯̄̄̄
= S0 · w0;

•
V 0=

¯̄̄̄
¯
•
ω0
•
v0 −Θ−10 · ğ

¯̄̄̄
¯ ;

wj and
•
wj with j = 1 · · ·n.

For j = 1 to n do with i = j − 1

Vj = Adf−1i,j
(Vi) + Sj · wj (33)

γj = −adSj ·wj (Vj) (34)
•
V j = Adf−1i,j

³ •
V i

´
+ Sj·

•
wj +γj (35)

2) Inward recursion for wrenches.

Given Fn+1 =

¯̄̄̄
Nn+1

zn+1

¯̄̄̄
For j = n downto 0 do with k = j + 1

Fj = AdB
f−1j,k
(Fk) + Jj·

•
V j −adBVj (Jj · Vj) (36)

τ j = ST
j · Fj (37)

This allows to calculate numerically the coefficients of (30) in an elementary but
lengthy way. By putting

•
w= 0 and executing one couple of recursion, we obtain in

(30): τ j + Hj = 0 and consequently the σ values of H (q, w, ğ) . Similarly, with w = 0
and ğ = 0, (so H = 0), by executing n couples of recursion and putting successively
for j = 1 · · ·n : •

wj= 1 and
•
wi= 0 if i 6= j ; we obtain the σ· (σ + 1)Á2 elements of

D (q) .

6.2 Composite systems

Two adjacent and linked bodies Cj and Ck, with spatial inertia Jj and Jk, are equivalent
(in some sense) to a composite system of spatial inertia = = = (Jj,Jk); and the = are
determined the following inward recursion:
Given =n+1 = 0; δn+1 = 0; Bn+1 = Fn+1
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For j = n dowto 0 do with k = j + 1

=j = Jj +AdF
f−1j,k

Ã
>6×6 −

=k · Sk · ST
k

ST
k · =k · Sk

!
· =k ·Adf−1j,k

(38)

βj = − adFVj (Jj · Vj) (39)

Bj = AdF
f−1j,k

Ã
δk +

=k · Sk ·
¡
τk − ST

k · δk
¢

ST
k · =k · Sk

!
+ βj (40)

δj = =j · γj +Bj (41)

6.3 The articulated body inertia algorithm

Resolve the forward dynamic problem, but only in the not constrained case (r = 0; Ψ = 0) .

Given
•
V −1=

¯̄̄̄
03×1
−Θ−10 · ğ

¯̄̄̄
; (here

•
w0=

¯̄̄̄
¯
•
ω0
•
v0

¯̄̄̄
¯ )

For j = 0 to n do with i = j − 1
•
wj =

£
ST
j · =j · Sj

¤−1 · ³τ j − ST
j ·
³
=j ·Adf−1i,j

³ •
V i

´
+ δj

´´
(42)

•
V j = Adf−1i,j

³ •
V i

´
+ Sj·

•
wj +γj (43)

6.4 Calculus of the mass matrix and of its inverse

These calculations are necessary for the general problem with friction to make use of (32).
In the following, symbols without label characterize global matrices, which are all

constituted by (n+ 1) · (n+ 1) blocks of 6 × 6 matrices or 6 × 1 matrices (take care of
that (23) and (24) does not follow this convention) and which can thus receive an auxiliary
block-by-block labelling from 0 to n.
For example in (44) S0 ∈ R6×6; Sj ∈ R6×1with j = 1 · · ·n so S ∈ Rξ×σ.

S = diag(S0, S1, · · ·Sn) ∈ Rξ×σ (44)

J = diag(J0, J1, · · · Jn) ∈ Rξ×ξ (45)

= = diag(=0,=1, · · · =n) ∈ Rξ×ξ (46)

Γ =

¯̄̄̄
¯̄̄̄
¯̄̄̄
06×6 06×6 06×6 · · · 06×6
Adf−10,1 06×6 06×6 · · · 06×6
06×6 Adf−11,2 06×6 · · · 06×6
...

...
...

. . .
...

06×6 06×6 Adf−1n−1,n
· · · 06×6

¯̄̄̄
¯̄̄̄
¯̄̄̄ ∈ Rξ×ξ (47)

G =

¯̄̄̄
¯̄̄̄
¯̄̄̄
>6×6 06×6 06×6 · · · 06×6
Adf−10,1 >6×6 06×6 · · · 06×6
Adf−10,2 Adf−11,2 >6×6 · · · 06×6
...

...
...

. . .
...

Adf−10,n Adf−11,n Adf−1n−1,n
· · · >6×6

¯̄̄̄
¯̄̄̄
¯̄̄̄ ∈ Rξ×ξ (48)

50



We have :

G = [>ξ×ξ − Γ]−1 = >ξ×ξ +
nX

j=1

[Γ]j (49)

According to the expression of the kinetic energy, which is wT ·D · w, one obtains a
first form for the mass matrix:

D = ST ·GT · = ·G · S (50)

Three global matrices are now introduced:

Ω = ST · = · S ∈ Rσ×σ ¡⇒ Ω0 = =0 ∈ R6×6and Ωj ∈ R1×1
¢

(51)

Φ = Ω−1 · ST · = ∈ Rσ×ξ (⇒ Φ0 = >6×6) (52)

Π = ΓT · ΦT ∈ Rξ×σ (53)

A square factorization of the mass matrix is:

D =
¡
>σ×σ + ST ·GT ·Π

¢
· Ω ·

¡
>σ×σ + ST ·GT ·Π

¢T
(54)

Introducing again the two additional global matrices:

ℵ = (>ξ×ξ − S · Φ) · Γ ∈ Rξ×ξ (55)

Y =
£
>ξ×ξ − ℵT

¤−1
= >ξ×ξ +

nX
j=1

£
ℵT
¤j ∈ Rξ×ξ (56)

One have the relation:
J = =− ℵT · = · ℵ (57)

And one obtains a square factorization of the inverse of the mass matrix as:

D−1 =
¡
>σ×σ − ST · Y ·Π

¢T · Ω−1 · ¡>σ×σ − ST · Y ·Π
¢

(58)

The corresponding recursive algorithm, which contain the 6 × 6 or 6 × 1 blocks or
matrices, is:
Given =n+1 = 0; ℵTn+1,n = 0.
For j = n downto 0 do with k = j + 1 and i = j − 1

=j = Jj + ℵTk · =k · ℵk (59)

Ωj = ST
j · =j · Sj (60)

ΦT
j = =j · Sj · Ω−1j (61)

Πi,j = AdB
f−1i,j

¡
ΦT
j

¢
(62)

ℵTj,i = AdB
f−1i,j

¡
>6×6 − ΦT

j · ST
j

¢
(63)

Note that the labelled symbols Π−1,0 and ℵT−1,0 which appear formally for j = 0 are
not used.
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