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Abstract

The relevance of the BRST cohomology of the extended antifield
formalism is briefly discussed along with standard homological tools
needed for its computation.
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The lectures given at the school Q.F.T., Supersymmetry and Superstrings,
in Cǎlimǎneşti, Romania in April 1998 were intitled Classical and quantum
aspects of the Batalin-Vilkovisky formalism. They covered the following ma-
terial:

• Lesson 1: Algebraic structure of gauge symmetries

Finite dimensional toy model. Noether identities. Koszul-Tate resolu-
tion of on-shell functions. Gauge symmetries. Longitudinal differential.
BRST differential. Antibracket. Master equation. Homological pertur-
bation theory.

• Lesson 2: Locality in field theory

Jet-spaces. Local functionals and local functions. Euler-Lagrange
derivatives. Algebraic Poincaré lemma. Local antibracket. Master
equation and BRST differential.

• Lesson 3: Consistency conditions on anomalies. Non renormalization
theorems.

Non minimal sector. Gauge fixing. Generating functionals. Statement
of quantum action principles. Consistency conditions on anomalies.
Lie-Massey brackets. Higher order cohomological restrictions. Power
counting in the antifield formalism. Beta functions. First non renor-
malization theorem. Local version of Callan-Symanzik equation. Sec-
ond non renormalization theorem. Chern-Simons theory.

Useful review references connected to the material covered here are [1,
2, 3, 4, 5, 6, 7, 8, 9, 10]. Details on specific topics, reflecting the point of
view of the author, can be found in [11, 12, 13, 14, 15, 16, 17, 18] and in the
literature cited therein.

The purpose of this note is to discuss briefly the BRST cohomology of
the extended antifield formalism, to give some details on exact couples and
spectral sequences, and to apply these concepts in the problem at hand.
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1 Introduction

1.1 Classical theory

The Batalin-Vilkovisky formalism [19, 20] allows one to formulate the BRST
differential [21, 22, 23, 24] controling the gauge symmetries under renormal-
ization for generic gauge theories. The formalism can be extended so as to
include (non linear) global symmetries (see [12, 13] and references therein),
which is achieved by coupling the BRST cohomology classes in negative ghost
numbers with constant ghosts. A further extension including the BRST co-
homology classes in all the ghost numbers can be constructed [16]. Some
features of this extension are :

• it allows one to take into account in a systematic way all higher order
cohomological constraints due to the antibracket maps [14],

• it is the appropriate formalism to prove stability independently of power
counting restrictions, also called renormalizability in the modern sense
[25], in the case of generic gauge theories,

• an appropriate BRST differential can be constructed on the classical
and the quantum level, even in the case of anomalous theories [17].

Let us briefly summarize the results of [16] needed in the following. The
extended formalism is obtained by first computing a basis for the local BRST
cohomology classes. This basis contains as a subset those classes that can be
obtained from the solution S of the master equation by differentiation of S
with respect to so-called essential coupling constants. The additional classes
completing the basis are then coupled with the help of new independent
coupling constants. This action can then be extended by terms of higher
orders in the new couplings in such a way that, if we denote by ξA all the
couplings corresponding to the independent BRST cohomology classes, the
corresponding action S satisfies the extended master equation

1

2
(S, S) + ∆cS = 0. (1.1)

The BRST differential associated to the solution of the extended master
equation is

s̄ = (S, ·) + ∆L
c , (1.2)
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where ∆c = ∂R·
∂ξA fA, while ∆L

c = (−)AfA ∂L

∂ξA , with fA depending (at least

quadratically) on the couplings ξ alone. Both antiderivations satisfy (∆c)
2 =

0 = (∆L
c )2. Since there is no dependence on the fields and the antifields,

∆L
c (A,B) = (∆L

c A,B)+(−)A+1(A, ∆L
c B), with the appropriate version hold-

ing for the right derivation ∆c. The local BRST cohomology classes contain
the generators of all the generalized non trivial symmetries of the theory in
negative ghost number, the generalized observables in ghost number zero,
and the anomalies (and anomalies for anomalies) in positive ghost number.
This is the reason why the extended master equation encodes the invariance
of the original action under all the non trivial gauge and glocal symmetries,
their commutator algebra as well as the antibracket algebra of all the local
BRST cohomology classes.

The cohomology of s̄ in the space F of ξ dependent local functionals in
the fields, the antifields and their derivatives is isomorphic to the cohomology
of

s∆c = [∆c, ·] (1.3)

in the space G of graded right derivations λ = ∂R·
∂ξA λA, with λA a function of

ξ alone, [·, ·] being the graded commutator for graded right derivations,

H(s̄, F ) ' H(s∆c , G). (1.4)

If µ is a s∆c cocycle, the corresponding s̄ cocycle is given by µS = ∂RS
∂ξB µB.

1.2 Quantum theory

In the standard version of the BRST-Zinn-Justin-Batalin-Vilkovisky set-up,
there are two main issues to be considered: stability and anomalies.

The problem of stability is the question if to every local BRST cohomol-
ogy class in ghost number 0, there corresponds an independent coupling of
the action. The extended formalism solves this problem trivially by con-
struction, since all cohomology classes have been coupled with independent
couplings. The non trivial part of the formalism is the proof of the existence
of the extended master equation and the associated differential, which allows
to control the symmetries after the extension. Of course, it will be often
convenient in practice not to couple all the local BRST cohomology classes
but only a subset needed to guarantee that the theory is stable.
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In the standard set-up, the question of anomalies is mostly reduced to
the question of the local BRST cohomology in ghost number 1 and to a
discussion of the coefficients of these cohomology classes. In the presence
of anomalies, there is no differential on the quantum level associated to the
anomalously broken Zinn-Justin equation for the effective action. In the
extended formalism however, because all the local BRST cohomology classes
in positive ghost numbers have been coupled to the solution of the master
equation, such a differential exists [16]. Indeed, the quantum action principle
[26, 27, 28] applied to (1.1) gives

1

2
(Γ, Γ) + ∆cΓ = h̄A ◦ Γ, (1.5)

where Γ is the renormalized generating functional for 1PI vertices associated
to the solution S of the extended master equation and the local functional
A is an element of F in ghost number 1. Using the result (1.4) on the
cohomology of s̄, one can show [16, 17] that, through the addition of local
counterterms, (1.5) can be written as

1

2
(Γ∞, Γ∞) + ∆∞Γ∞ = 0, (1.6)

where Γ∞ is associated to the action S∞ = S − Σk=1h̄
kΣk containing local

finite BRST breaking counterterms Σk and ∆∞ = ∆c + h̄∆1 + h̄2∆2 + . . .
satisfies (∆∞)2 = 0. The associated quantum BRST differential is

sq = (Γ∞, ·) + (∆∞)L. (1.7)

In the limit h̄ going to zero, we recover both the classical extended master
equation (1.1) and the classical differential s̄.

In the extended antifield formalism, the anomalous Zinn-Justin equation
can thus be written as a functional differential equation for the renormalized
effective action. The derivations ∆1, ∆2, . . . are guaranteed to exist due to
the quantum action principles. They satisfy a priori cohomological restric-
tions due to the fact that the differential ∆∞ is a formal deformation with
deformation parameter h̄ of the differential ∆c.

For instance, the derivation ∆1 is a cocycle of s∆c in ghost number 1,
because [∆c, ∆1] = 0. This cocyle can be assumed to be non trivial, because
otherwise, ∆1 could have been absorbed by the counterterm Σ1. Hence, non
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trivial anomalies, which correspond in this formalism to non trivial deforma-
tions of ∆c, are controled by H1(s∆c , G).

In the standard way, once care has been taken of the trivial anomalies
through the counterterms Σk, the remaining infinite and finite counterterms
are required to belong to H0(s̄, F ) ' H0(s∆c , G) in order to preserve (1.6)
to that order.

It is thus of interest to compute the cohomology of s∆c .

2 BRST cohomology in the extended anti-

field formalism

Let λ = ∂R·
∂ξA λA be a right derivation. We assume that the λA are formal

power series in ξA. In the following, we provide this space with an obvious
filtration. It will however not have finite length, and for particular theories,
better filtrations have to be found in order to do a complete computation.
Since the techniques will be similar, it is nevertheless useful to show how
they work on this example.

2.1 Grading and filtration on the space of right deriva-
tions

Let Nξ = ∂R

∂ξA ξA be the operator counting the number of ξ’s. A general right
derivation admits the following decomposition according to the eigenvalues
of Nξ: λ = λ−1 + λ0 + λ1 + . . ., where [λp, Nξ] = pλp. Hence, G is a graded
space, G = ⊕p=−1G

p. (It is actually a bigraded space, the other grading, for
which s∆c is homogeneous of degree 1 being the ghost number.)

The graded right commutator satisfies [[λm, µn], Nξ] = (m + n)[λm, µn].
The decomposition of ∆c starts at eigenvalue 1: ∆c = ∆c1 + ∆c2 + . . . ; the
corresponding decomposition of s∆c being s∆c = [∆c1, ·] + [∆c1, ·] = . . . ≡
s1 + s2 + . . .. It follows that the cocycle condition s∆cλ = 0 decomposes as

s1λ−1 = 0,
s1λ0 + s2λ−1 = 0,

s1λ1 + s2λ0 + s3λ−1 = 0,
..., (2.1)
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while the coboundary condition λ = s∆cµ decomposes as

λ−1 = 0,
λ0 = s1µ−1,

λ1 = s1µ0 + s2µ−1,
λ2 = s1µ1 + s2µ0 + s3µ−1,

..., (2.2)

In order to construct the spectral sequence associated to this problem, we
follow [29].

Consider the spaces Kp of derivations having Nξ degree greater than p,
i.e., λ ∈ Kp if λ = λp + λp+1 + . . .. The space of all right derivations is
G = K−1, Kp+1 ⊂ Kp and s∆cKp ⊂ Kp. The sequence of spaces Kp is a
decreasing filtration of G, with Kp/Kp+1 ' Gp.

We have the short exact sequence1:

0 −→ ⊕p=−1Kp+1
i−→ ⊕p=−1Kp

j−→ ⊕p=−1Kp/Kp+1 −→ 0, (2.3)

where ⊕p=−1Kp/Kp+1 ' ⊕p=−1G
p. The following diagram is exact at each

corner:

H(s∆c ,⊕p=−1Kp+1)
i0−→ H(s∆c ,⊕p=−1Kp)

k0 ↖ ↙ j0

E0,

(2.4)

where E0 = ⊕p=−1Kp/Kp+1 ' ⊕p=−1G
p. In this diagram, H(s∆c , Kp) is

defined by the cocycle condition s∆c(λp+λp+1+. . .) = 0, and the coboundary
condition λp+λp+1+. . . = s∆c(µp+µp+1+.... The maps i0 and j0 are induced
by i and j, i0[λp+1 +λp+2 + . . .] = [λp+1 +λp+2 + . . .] and j0[λp +λp+1 + . . .] =
[j(λp + λp+1 + . . .)] = [λp]. They are well defined, because i0 maps cocycles
to cocycles and coboundaries to coboundaries, while j(s∆c(µp + µp+1 . . .)) ∈
Kp+1. The map k0 is defined by k0[λp] = [s∆cλp]. It does not depend on the
choice of representative for [λp] ∈ Kp/Kp+1, because [s∆c(λp+1 + . . .)] = 0 ∈
H(s∆c , Kp+1).

Let us check explicitly that this diagram is exact:

1A diagram is said to be exact if the image of a map is equal to the kernel of the next
map.
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• ker j0 is given by elements [λp + λp+1 + ...] ∈ H(s∆c , Kp) such that
s∆c(λp+λp+1+ ...) = 0 and λp = 0. This is the same than i0H(s,Kp+1),
which is given by [λp+1 + λp+2 + . . .], with s∆c(λp+1 + λp+2 + ...) = 0,
the equivalence relation being the equivalence relation in H(s,Kp) by
definition of i0.

• ker k0 is given by elements [λp] such that [s∆cλp] = 0 ∈ H(s∆c , Kp+1),
i.e. such that s∆cλp = s∆c(µp+1 + µp+2 + ....). By the identifica-
tion λp+1 = −µp+1, λp+2 = −µp+2, . . ., this is indeed the same than
j0H(s∆c , Kp) given by [λp] with s∆c(λp + λp+1 + . . .) = 0.

• ker i0 is given by elements [λp+1+λp+2+ ...] such that s∆c(λp+1+λp+2+
...) = 0 and λp+1 +λp+2 + ... = s∆c(µp +µp+1 + ...), while k0[µp] is given
by [λp+1 + λp+2 + ...] of the form [s∆cµp] so that λp+1 + λp+2 + ... =
s∆cµp + s∆c(µp+1 + . . .), which is indeed the same.

2.2 Exact couples and associated spectral sequence

To every exact couple (A0, B0), i.e., exact diagram of the form

A0
i0−→ A0

k0 ↖ ↙ j0

B0,

(2.5)

one can associated a derived exact couple

A1
i1−→ A1

k1 ↖ ↙ j1

B1.

(2.6)

In this diagram, the spaces and maps are defined as follows: A1 = i0A0;
B1 = H(d0, B0), where d0 = j0 ◦ k0 ( d2

0 = 0 because k0 ◦ j0 = 0); for
a1 = i0a0, i1a1 = i1(i0a0) = i20a0; j1a1 = [j0a0] (this map is well defined: j0a0

is a cocycle, because k0 ◦ j0 = 0, furthermore the map does not depend on
the representative choosen for a0, because if i0a0 = 0, a0 = k0b0 for some b0

and j1a1 = [j0 ◦ k0b0] = 0); k1[b0] = k0b0 (k0b0 = i0a0 for some b0 because
d0b0 = j0(k0b0) = 0 implies k0b0 = i0a0, furthermore k0d0c0 = 0 because
k0 ◦ j0 = 0).

Let us also check explicitly exactness of this diagram:
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• ker j1 is given by elements a1 = i0a0 such that [j0a0] = 0, i.e., j0a0 =
j0k0b0 and then a0− k0b0 = i0c0, implying that a1 = i20c0. i1A1 is given
by elements a1 = i1c1 = i20c0. It follows that ker j1 ⊂ i1A1, while the
inverse inclusion follows from j0 ◦ i0 = 0.

• ker k1 is given by elements [b0] such that k0b0 = i0a0 = 0, i.e., such
that b0 = j0c0, for some c0, while im j1 is given by elements [b0] such
that [b0] = [j0e0], i.e b0 = j0(e0 + k0f0). It follows that ker k1 = im j1.

• ker i1 is given by elements a1 = i0a0 such that i0(i0a0) = 0, i.e., i0a0 =
k0b0 (which implies in particular d0b0 = 0). im k1 is given by elements
a1 = i0a0 = k0b0 for some b0 with d0b0 = 0, so both spaces are indeed
the same.

Clearly, this construction can be iterated by taking as the starting exact
couple the derived couple. We thus get a sequence of exact couples

Ar
ir−→ Ar

kr ↖ ↙ jr

Br.

(2.7)

and the associate spectral sequence (Br, dr), for r = 0, 1, . . ., i.e., spaces Br

and differentials dr satisfying Br+1 = H(dr, Br).

2.3 Spectral sequence associated to the BRST coho-
mology of the extended antifield formalism

Let us now apply the general theory to the case of the exact couple (2.4) and
give explicitly the differentials dr and the spaces Br (called Er) in this case
for r = 0, 1, 2, 3.

We have E0 = ⊕p=−1Kp/Kp+1 ' ⊕p=−1G
p. The differential d0 is de-

fined by d0[λp]0 = j0[s∆cλp], where [s∆cλp] ∈ H(s∆c , Kp+1). It follows that
d0[λp]0 = [s1λp]. This means that Ep

1 is defined by elements [[λp]0]1 with the
cocycle condition

s1λp = 0 (2.8)

and the coboundary condition

λp = s1µp−1. (2.9)
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Because s1 = ∂R

∂ξA fA
BCξBξC , and s2

1 = 0 implies that the fA
BC are the structure

constants of a graded Lie algebra, this group is just a graded version of
standard Lie algebra (Chevalley-Eilenberg) cohomology with representation
space the adjoint representation.

Take now [[λp]0]1 ∈ Ep
1 . The differential d1[[λp]0]1 = j1k1[[λp]0]1 =

j1k0[λp]0 = j1[s∆cλp] = [j0i
−1
0 [s∆cλp]]1. This means that [s∆cλp] has to

be considered as an element of H(s∆c , Kp+2) so that d1[[λp]0]1 = [[s2λp]0]1.
Hence Ep

2 is defined by elements [[[λp]0]1]2 with the cocyle condition

s2λp + s1λp+1 = 0, (2.10)

s1λp = 0, (2.11)

and the coboundary condition

λp = s2µp−2 + s1µp−1, (2.12)

0 = s1µp−2. (2.13)

We thus find that Ep
2 = Hp(s2, H(s1)).

The differential d2 in Ep
2 is defined by d2[[[λp]0]1]2 = j2k2[[[λp]0]1]2 =

j2k1[[λp]0]1 = j2k0[λp]0 = [j1i
−1
1 k0[λp]0]2 = [[j0i

−1
0 i−1

1 k0[λp]0]1]2. In order to
make sure that k0[λp]0 belongs to i1i0H(s∆c , Kp+1) we use λp + λp+1 as a
representative for [λp]0. It follows that d2[[[λp]0]1]2 = [[[s3λp + s2λp+1]0]1]2.
The cocycle condition for an element [[[[λp]0]1]2]3 ∈ Ep

3 is then given by

s3λp + s2λp+1 = s2µp+1 + s1µp+2, (2.14)

s2λp + s1λp+1 = 0, (2.15)

s1λp = 0, (2.16)

with s1µp+2 = 0. The redefinition λp+1 → λp+1 − µp+1 and λp+2 = −µp+2,
then gives as cocycle condition

s3λp + s2λp+1 + s1λp+2 = 0, (2.17)

s2λp + s1λp+1 = 0, (2.18)

s1λp = 0. (2.19)

The coboundary condition is [[[λp]0]1]2 = d3[[[µp−3+µp−2]0]1]2, where s1µp−3 =
0, s2µp−3 + s2µp−2 = 0, hence [[λp]0]1 = [[s3µp−3 + s2µp−2]0]1 + d2[[σp−2]0]1,
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with s1σp−2 = 0 which gives

λp = s3µp−3 + s2µp−2 + s2σp−2 + s1ρp−1, (2.20)

0 = s2µp−3 + s1µp−2, (2.21)

0 = s1µp−3, 0 = s1σp−2. (2.22)

The redefinition µp−2 → µp−2+σp−2 and ρp−1 = µp−1, then gives the cobound-
ary condition

λp = s3µp−3 + s2µp−2 + s1µp−1, (2.23)

0 = s2µp−3 + s1µp−2, (2.24)

0 = s1µp−3. (2.25)

This construction can be continued in the same way for higher r’s.
The original problem was the computation of H(s∆c , G) = H(s∆c , K−1).

From exactness of the couples (2.7), it follows that

H(s∆c , K−1) ' j0E
−1
0 ⊕ ker j0

' ker k0(⊂ E−1
0 )⊕ i0H(s∆c , K0)

' ker k0(⊂ E−1
0 )⊕ ker k1(⊂ E0

1)⊕ i1i0H(s∆c , K1) (2.26)
... (2.27)

' ⊕R
r=0ker kr(⊂ Er−1

r )⊕ iR . . . i0H(s∆c , KR). (2.28)

Furthermore, E0 ' E1 ⊕ F0 ⊕ d0F0 and E−1
0 ' E−1

1 ⊕ F−1
0 . F0 does not

belong to ker k0 because d0F0 6= 0. Thus ker k0(⊂ E−1
0 )) ' ker k1(⊂ E−1

1 ).
Similarily, E1 ' E2⊕F1⊕d1F1 and (d1F1)

−1 = (d1F1)
0 = 0. Again, d1[F1]1 6=

0 implies that F1 does not belong to ker k1. This means that ker k1(⊂ E−1
1 ) '

ker k2(⊂ E−1
2 ) and ker k1(⊂ E0

1) ' ker k2(⊂ E0
2). Going on in the same way,

we conclude that ker kr(⊂ Er−1
r )) ' ker kR(⊂ Er−1

R )). We thus get

H(s∆c , K−1) ' ⊕R
r=0ker kR(⊂ Er−1

R )⊕ iR . . . i0H(s∆c , KR). (2.29)

This construction is most useful if it would stop at some point. Indeed,
suppose that KR = 0. Because kR[. . . [λp]0 . . .]R belongs to iR . . . i0H(s∆c , Kp+R+1) =
0, it follows that

H(s∆c , K−1) ' ⊕R−1
r=0 Er−1

R . (2.30)

102



Acknowledgments

The author wants to thank the F.N.R.S. (Belgium) for travel support, the
organizers of the school, Radu Constantinescu and Florea Uliu of the Physics
Department, University of Craiova and Mihail Sandu from the Economic
High School, Calimanesti, for the opportunity to lecture. He also thanks
the official sponsors of the school, among them the director and staff of the
Economic High School, Calimanesti, for the warm welcome in Romania. He
acknowlegdes useful discussions with F. Brandt on the material presented in
this note. This work has been partly supported by the “Actions de Recherche
Concertées” of the “Direction de la Recherche Scientifique - Communauté
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