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Abstract

The one-dimensional motion of N particles in the �eld of many incoherent waves
is revisited with nonperturbative techniques of stochastic di¤erential equations.
When the wave�eld has a single wavenumber � and white noise time dependence, it
is represented as (q=m)dE(�; t) = �[cos(��) dW 0

t + sin(��) dW
00
t ]. For each particle

the velocity is shown to be a Wiener process with the quasilinear di¤usion coe¢ -
cient � �2. The joint N velocity processes de�ne a martingale, the components
of which are conjectured to become independent in the strong noise limit � ! 1,
ensuring propagation of chaos in this system. The connection with the concept of
resonance box is discussed. Full nonlinear dynamics results are compared with the
linearization around particle ballistic motions. The key quantity in the analysis is
the relative velocity between two particles.

1 Introduction

The motion of particles in a stochastic force �eld is a fundamental problem in statis-
tical dynamics, investigated already from many viewpoints [2]. In a �rst, elementary
idealization one may describe the force �eld by a random �eld, so that the appropriate
mathematical setting is the theory of stochastic di¤erential equations. The aim of the
present work is to establish that in an appropriate scaling limit the motions of N particles
in the same �eld approach N independent brownian motions in velocity space, though
the force acting on them is spatially correlated.
The physical context for this model is the quasilinear theory for weak turbulence in

plasma physics [6, 20]. From a more general perspective, this work also relates to the issue
of �propagation of chaos� in statistical physics [12, 13]: how does chaotic dynamics en-
able a system, in which initial data are genuinely random but the evolution may generate
correlations, to behave as if the evolution regenerated randomness or destroyed corre-
lations? Here, how do two Wiener processes, fully describing a prescribed �turbulent�
environment, generate N independent brownian motions for particles?
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The author bene�ted from Radu Balescu�s deep insights on many topics, where theo-
retical physics, mathematics and philosophical issues sometimes meet. Radu�s reactions to
this work could have been illuminating too, in continuation of earlier discussions. Fruitful
comments from D. Escande are gratefully acknowledged. This work would not have been
completed without the guidance of E. Pardoux, to whom the author is most indebted.
Our model is introduced in section 2. In section 3 we discuss its quasilinear treatment

and show that the resulting N -particle problem has a brownian limit. In section 4 we
conjecture the brownian limit for an auxiliary problem with one degree of freedom ; this
is the di¢ cult part (a �lemma�) in our analysis. We formulate an approximation scheme
hinting to the conjecture. The conjecture is shown in section 5 to imply the brownian
limit for the full nonlinear N -particle system in the wave�eld.

2 The force �eld

Denote by (W 0
t ;W

00
t ) the standardWiener process on R2. Recall thatW 0

0 = 0, E(dW 0
t) = 0,

E(dW 0
tdW

00
s ) = 0 and E(dW 0

tdW
0
s) = �(t� s)dsdt formally.

We consider the motion of particles in one dimension on the microscopic scale with
position �� and velocity �� as functions of time � in a wave �eld which is the superposition
of a wide spectrum of time harmonics with a single wavenumber �. The equations of
motion read formally

d�t = �tdt (2.1)

d�t = �
1X

m=�1
cm cos(�� �m~!t� �m) dt (2.2)

where ~! is the relative detuning of harmonics (and ~!=� is the relative phase velocity) in
the spectrum. The randomness of the wave �eld is characterized by the distribution of
cm and �m. For independent gaussian distributions1 for (cm cos�m; cm sin�m) the formal
equation (2.2) is interpreted in terms of Wiener processes as representing a �temporally
white noisy wave�

d�t = � cos(��) dW 0
t + � sin(��) dW 00

t (2.3)

where we denote by � the strength of the noise. For the system (2.1)-(2.3) Itô and
Stratonovich stochastic integrals are equivalent.
One expects that in the limit �!1 the chaotic motion which the force �eld imposes

to the particle will destroy correlations in the particle motion, in spite of the strong spatial
correlation associated with the single wavenumber �. To show this we turn to macroscopic
variables (X;V ) = (��; ��1�), so that the position may be considered on the 2�-periodic
circle T = R=(2�Z) and the equations of motion read

dXt = AVt dt (2.4)

dVt = cosXt dW
0
t + sinXt dW

00
t (2.5)

1Phases being uniformly distributed on the circle and intensities c2m being exponentially distributed
with Ec2m = ~!=�.

110



with parameter A = �� scaling now the evolution for X but not directly for V . Solving
this stochastic nonlinear dynamics for (Xt; Vt) for a single particle is elementary thanks
to the identity cos2 x+ sin2 x = 1 : the velocity Vt is a standard Wiener process.
However the dynamics of several particles in the same wave �eld is nontrivial, as we

discuss below. Indeed, the single wavenumber is expected to generate correlations in the
particle motions. Yet, in the limit � !1, there is good evidence that such correlations
disappear [3, 4, 9, 10, 11]. A prominent example of single wavenumber dynamics is the
standard map (with all cm = c, �m = 0), the dynamics of which is being compared to
random dynamics (with cm = c and uniform distribution of �m) in [5].
A physicist�s usual approach to such dynamics focuses on propagators, i.e. funda-

mental solutions to the associated di¤usion problem [2]. The issue is then to start from
the �Liouville�equation

@tf + Av@xf + ( _W
0
t cosx+

_W 00
t sin x)@vf = 0 (2.6)

where _Wt � dWt=dt formally denotes a white noise. If the latter were a smooth func-
tion, the weak solution to (2.6) for initial data N�1PN

n=1 �(x � xn0 )�(v � vn0 ) would
follow the evolution of N particles released in the wave�eld. In the propagator ap-
proach, one obtains a formal representation for the evolution of the reduced distribution
�f(:) = (2�)�1

R
f(x; :)dx as a power series in the free evolution operator (v@x)�1 and

interaction operator ( _W 0
t cosx + _W 00

t sin x)@v. Ordering terms as A ! 1 indicates that
the limit yields a di¤usion equation

@t �f =
1

2
@vD@v �f (2.7)

where D = 1 is the quasilinear di¤usion coe¢ cient. The role of the limit A ! 1 is
to ensure a strong microscopic chaos in each particle evolution, additional assumptions
ensure the gaussian law of the wave�eld [1, 19].
We focus here on individual processes to keep track of their whole time evolution �so

that we obtain more information than the mere conditional distributions f(x; v; tjx0; v0; t0).
This appears as a minor issue for the noisy force in (2.5), which de�nes a Markov process
(�t; �t), but it is central in the case where the wave �eld also exhibit time correlations.

3 First correction to ballistic motion

We consider N particles released simultaneously in the force �eld. In quasilinear theory,
one approximate the position of a particle in the force term (2.5) by a ballistic motion, to
get rid of the nonlinear feedback from Xt into this term. Calculations below show that
the analysis is straightforward.
Let N 2 N0, A 2 R+, y0 = (yn0 ) 2 TN and u0 = (un0 ) 2 RN . We consider the velocity

process UA
t in RN solution of the stochastic di¤erential equation

UA;n
0 = un0 (3.1)

dUA;n
t = cos(yn0 + Aun0 t) dW

0
t + sin(y

n
0 + Aun0 t) dW

00
t : (3.2)

This simpli�cation to the system (2.4)-(2.5) is drastic. Itô integrals reduce to Wiener
integrals, and the model is scalar for U instead of being two-dimensional, so that it can
be integrated directly.
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Then UA
t is a di¤usion process, with in�nitesimal generatorX

n;r

DA
nr

2
@un@ur (3.3)

where the di¤usion matrix DA = (DA
nr) has elements

DA
nr = cos(y

n
0 � yr0 + A(un0 � ur0)t) : (3.4)

This implies that, for any 1 � n � N , the component UA;n
t � un0 is a standard Wiener

process. Moreover, UA
t is gaussian but its components are not independent for s; t � 0 as

E(UA;n
t � un0 )(U

A;r
s � ur0) =

(
sin(yn0�yr0+A(un0�ur0)min(s;t))�sin(yn0�yr0)

A(un0�ur0)
if un0 6= ur0 ;

cos(yn0 � yr0)min(s; t) if un0 = ur0 :
(3.5)

Components with large relative velocity (jun0 � ur0j � 1=A) are thus weakly correlated, a
result reminiscent of locality in velocity for wave-particle interaction [3, 4].

Proposition 3.1 Assume either (i) that all components of u0 are di¤erent, or (ii) that y0
is random with uniform distribution on TN and u0 is arbitrary in RN . For any T > 0 and
N > 0, the velocity process UA

t � u0 converges in law for A ! 1 to the N-dimensional
standard Wiener process for 0 � t � T .

Proof : UA
t � u0 is a gaussian process, and each of its components is a standard

Wiener process. It su¢ ces then to �nd its covariance.
(i) If all components of u0 are di¤erent, the covariance of UA

t for n 6= r converges to
zero by (3.5).
(ii) If the initial position y0 is random, uniformly distributed on TN , then the covari-

ance (3.5) vanishes for n 6= r.
For n = r, (3.5) reduces to

E(UA;n
t � un0 )(U

A;n
s � un0 ) = min(s; t) (3.6)

for any A > 0.
Remark 1 : the proof still holds if u0 depends on A, provided that limA!1Ajun0 �

ur0j =1 for all n 6= r.
Remark 2 : the proof still holds for N 0 = 2N particles if, given the initial data

(y0; u0) 2 TN � RN , we consider initial data (y00
n; u00

n) = (yn0 ; u
n
0 ) and (y

0
0
n+N ; u00

n+N) =
(yn0 � �=2; un0 ) for 1 � n � N . In particular, the data (y10; u

1
0) = (0; 0) and (y20; u

2
0) =

(�=2; 0) generate U1 = W 0 and U2 = W 00 respectively : the limit process for N particles is
found independent from these two speci�c processes (which fully describe the force �eld
in space-time (x; t)).
Remark 3 : The ballistic approximation in (3.2) for (2.4)-(2.5) is valid for short

times. It breaks down when A
R t
0
(t � s) dVs becomes of order unity, i.e. when the

nonlinear aspects of the dynamics show up : the timescale for this is �NL = A�2=3. On
the other hand, particles are more or less decorrelated when A(Ut � u0) becomes of the
order unity : the timescale for this is �Ucorr = A�2. As A!1 the velocity decorrelation
occurs faster than the nonlinearity gets into play, which supports the predictions of the
quasilinear approximation while the ballistic approximation breaks down. For long times,
the independence of the successive increments to W 0 and W 00 ensures the validity of the
approximation too, while the velocity returns to earlier values.
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4 An auxiliary nonlinear dynamics

Given (x0; v0) 2 T � R and A > 0, consider the solution (RA
t ; S

A
t ) to the stochastic

di¤erential system

RA
0 = x0 (4.1)

SA0 = v0 (4.2)

dRA
t = ASAt dt (4.3)

dSAt = 2(sin
RA
t

2
) dWt : (4.4)

where Wt is a standard Wiener process. We denote by RA
t the lift on R of RA

t , so that
RA
t is continuous and RA

t �RA
t � 0mod(2�) with RA

0 = RA
0 .

For any A > 0, this equation has a unique strong solution. For initial data (x0; v0) =
(0; 0), the solution is readily found to be (RA

t ; S
A
t ) = (0; 0) for all t : the origin is a trap

2

[18]. From here to the end of the section, let (x0; v0) 6= (0; 0) on T� R.

Conjecture 4.1 For A ! 1, if (x0; v0) 6= (0; 0) on T � R, the process (SAt � v0)=
p
2

approaches a standard Wiener process, and for any 0 < t1 < : : : < t� the law of the
sequence (RA

tn)1�n�� approaches a uniform distribution on T� independent of SA: .

Remark : The process (Rt; St) is an inhomogeneous di¤usion, but St alone is not a
di¤usion. This is why the limit A ! 1 is interesting, as it de�nes an �autonomous�
di¤usion.
As a �rst step towards proving this claim, we prove

Proposition 4.2 For any A, the process SAt is a square-integrable continuous martingale
adapted to the same �ltration as Wt. Its quadratic variation is

hSA � v0it = 2t� 2CA(t) (4.5)

where CA(t) =
R t
0
cosRA

s ds.

Proof : The martingale property follows from the independence of dWt with respect
to the process RA

s for s 2 [0; t]. It is continuous and square-integrable since the coe¢ cient
2(sin

RAt
2
) is bounded. The quadratic variation is estimated usingZ t

0

4 sin2
RA
s

2
ds = 2t� 2

Z t

0

cosRA
s ds :

To investigate the limit A ! 1, we note that the unique solution of the system for
�nite A depends on A, and that the limit A ! 1 is singular for equation (4.3). The
properties of this solution will be considered in a forthcoming paper. Here we introduce
the iteration scheme

RA;m
t = x0 + Av0t+ A

Z t

0

(t� s) dSA;ms (4.6)

SA;m+1t = v0 +

Z t

0

2(sin
RA;m
t

2
) dWt : (4.7)

2It is not an attracting point but may be compared to a stagnation point - like a center or a saddle
for area-preserving hamiltonian dynamics.
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with a �seed�SA;0t . For �nite A the process (RA
t ; S

A
t ) is the �xed point of this iteration

scheme. One easily proves the following

Proposition 4.3 If the seed is a continuous martingale, the process SA;mt is a square-
integrable continuous martingale for each m > 0, and hSA;m � v0it = 2t� 2CA;m(t) with
CA;m(t) =

R t
0
cosRA;m�1

s ds.

To show that SAt converges for A ! 1 to a brownian motion, we try to show that
CA(t) vanishes in the limit. Here are some results in this direction.

Proposition 4.4 If SA;0t = v0+
p
2W �

t where W
�
t is a standard Wiener process indepen-

dent of Wt, the process (S
A;1
t ;Wt) converges for A!1 to a brownian motion originating

from (v0; 0) with di¤usion matrix
� 2 0
0 1

�
. Moreover, for any 0 < t1 < : : : < t� the

law of the sequence (RA;1
tn )1�n�� approaches the uniform distribution on T� independent

of SA;1: .

Remark : This shows that the brownian motion in R2 is a kind of probabilistic �xed
point for the process map ((SA;m: � v0)=

p
2;W:) 7! ((SA;m+1: � v0)=

p
2;W:). However,

the S process is not invariant under the map �only the distributions are invariant. One
should not expect convergence of processes in probability but only their convergence in
law.
Proof : For any A, SA;mt is a martingale adapted to the same �ltration as (Wt;W

�
t ).

By Lévy�s theorem [14, 18], this process is a brownian motion with di¤usion coe¢ cient 2
i¤ CA;m vanishes.
To estimate CA;1, note that the lift RA;0

t is a gaussian process like SA;0t , with

ERA;0
t = x0 + Av0t ; (4.8)

ERA;0
s RA;0

t � (x0 + Av0s)(x0 + Av0t) = (4.9)

= A2
Z s

0

Z t

0

(s� s0)(t� t0)2�(s0 � t0) ds0dt0 =
2A2

3
min(s3; t3)

Therefore

E cosRA;0
t = E<eiR

A;0
t = <ei(x0+Av0t)�A2t3=3 = cos(x0 + Av0t)e

�A2t3=3

so that

ECA;1(t) =

Z t

0

cos(x0 + Av0s)e
�A2s3=3 ds (4.10)

and limA!1 ECA;1(t) = 0 for any t.
Moreover,

ECA;1(t)2 =

Z t

0

Z t

0

E cosRA;0
s cosRA;0

s0 ds
0ds =

1

2
(aA;1+ (t) + aA;1� (t))

where

aA;1� (t) =

Z t

0

Z t

0

E cos(RA;0
s �RA;0

s0 )ds
0ds : (4.11)
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Now, for 0 � s0 � s, the gaussian law of RA;0
t yields

E cos(RA;0
s �RA;0

s0 ) = cos(Av0(s� s0))e�A
2(s�s0)2(s+2s0)=3 (4.12)

E cos(RA;0
s +RA;0

s0 ) = cos(2x0 + Av0(s+ s0))e�A
2s(s+3s02)=3 (4.13)

so that limA!1 a
A;1
� (t) = 0 for any t > 0. Therefore limA!1C

A;1(t) = 0 for any t > 0
with probability 1.
As to the joint process (SA;1t ;Wt), it is a martingale too thanks to the independence

of increments dWt. The quadratic variation of Wt is t, and one need only prove that the
cross-variation

hSA;1;W it = 2
Z t

0

sin
RA;0
s

2
ds (4.14)

vanishes in the limit A ! 1. This is again a straightforward calculation thanks to the
gaussian law of RA;0

s .
Finally, given (k1; : : : ; k�) 2 Z� , 0 < t1 < : : : < t� , and ';  2 L2(R), we shall prove

that
a = Eei

P
n knR

A;1
tn

+i
R1
0 '(t) dSA;1t +i

R1
0  (t) dWt (4.15)

vanishes if at least one kn is nonzero. As zero entries in (k1; : : : ; k�) do not contribute to
the exponent at all, we need only prove that a vanishes for any � > 0 and (k1; : : : ; k�) 2 Z�0,
and we estimate

a = ei
P
n kn(x0+Av0tn)Eei

R1
0 ('(t)+A

P
n kn(tn�t)+) dS

A;1
t +i

R1
0  (t) dWt

= ei
P
n kn(x0+Av0tn)Ee�(1=2)

R1
0

�
('(t)+A

P
n kn(tn�t)+)2 sin(R

A;0
t =2)+ (t)

�2
dt

where we denote by f+ the positive part of the function f . The �rst equality follows
from (4.6). The second equality follows from the gaussian law of the brownian motion Wt

which is independent of SA;0: and from (4.7). Then,

jaj = Ee�
A2

2

R1
0

�
 (t)=A+('(t)=A+

P
n kn(tn�t)+)2 sin(R

A;0
t =2)

�2
dt (4.16)

where almost surely the integrand in the exponent is strictly positive. Letting � =
[t��1; t� ] we truncate the integral and expand the exponential, so that

jaj �
1X
P=0

(�A2)P
P !2P

Z
�P
E

PY
p=1

� (t0p)
A

+ (
'(t0p)

A
+ k�(t� � t0p))2 sin(

RA;0
t0p

2
)
�2
dt0p (4.17)

and in expanding the square in the product we note that the expectation of terms linear
in the sine yields a vanishing contribution in the limit A ! 1 after integration, for the
same reasons as for aA;1� above. Moreover, the quadratic term yields

4 sin2(
RA;0
t0p

2
) = 2� 2 cosRA;0

t0p
(4.18)

which will also contribute only via the constant 2. This yields the estimate

jaj �
1X
P=0

(�A2)P
P !2P

Z
�P
E

PY
p=1

( 2(t0p)=A
2 + 2('(t0p)=A+ k�(t� � t0p))

2) dt0p

= e
�A2

2

R t�
t��1

( 2(t)=A2+2('(t)=A+k�(t��t))2) dt
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which tends to 0 as A ! 1 for k� 6= 0. Note that if k� = 0, we let � = [0;1[ and are
left with the usual expectation for the brownian motion in the plane for (SA;1: ;W:).
The drawback with this proposition is that it involves expectations with respect to an

auxiliary process W �
t . Though the solution to (4.1)-(4.2)-(4.3)-(4.4) is unique, we must

show how the sequence of processes de�ned from our stochastic seed SA;0t converges to our
process, which is independent of W �

t �or show that the limit A ! 1 is legitimate here
though the iteration (4.6)-(4.7) with respect to m is performed for A < 1. Comparing
(4.9) with its analogue3 for the next process shows that the presence of the auxiliary
brownian motion makes a di¤erence in the laws of our processes for �nite A.

Proposition 4.5 If SA;0t = v0 6= 0, the process SA;1t converges for A!1 to a brownian
motion originating from v0 with di¤usion coe¢ cient 2. This process is independent of W:.
Any sequence (RA;1

t1 ; : : : ; R
A;1
t� ) converges to a random sequence with uniform distribution

on T� independent of (SA;1: ;W:).

Proof : Here RA;0
t = x0 + Av0t. Then, CA;1(t) = t cosx0 if v0 = 0, and

CA;1(t) =
sin(x0 + Av0t)� sin x0

Av0
(4.19)

if v0 6= 0. The latter expression vanishes for A!1, proving the �rst claim.
For the second claim, we compute the cross-variation hSA;1: ;W:it = 2

R t
0
sin x0+Av0t

2
dt

which vanishes for A!1 unless v0 = 0. For v0 = 0, one �nds hSA;1: ;W:it = 2t sin(x0=2).
For the third claim, we compute the characteristic function for any (k1; : : : ; k�) 2 Z�0

and ';  2 L2(R),

a = Eei
P
n knR

A;1
tn

+i
R1
0 '(t)dSA;1t +i

R1
0  (t) dWt

= ei
P
n kn(x0+Av0tn)EeiA

R1
0

�
 (t)+('(t)=A+

P
n kn(tn�t)+)2 sin

x0+Av0t
2

�
dWt

= ei
P
n kn(x0+Av0tn)e�

A2

2

R1
0

�
 (t)=A+('(t)=A+

P
n kn(tn�t)+)2 sin((x0+Av0t)=2)

�2
dt :

In the last exponential, we restrict the integral to [t��1; t� ] and expand the square, so that

jaj � e�
A2

2

R t�
t��1

�
('(t)=A+k�(t��s))2 sin((x0+Av0(t��s))=2)+ (t)=A

�2
ds � e�A2g(t��1;t�)=2

where

g(t��1; t�) =

Z t�

t��1

�
(A�1'(t) + k�(t� � s))2 sin

x0 + Av0(t� � s)

2
+ A�1 (t)

�2
ds

�
Z t�

t��1

k2�(t� � t)22(1� cos(x0 + Av0t)) dt+

+
2

A

Z t�

t��1

k�(t� � s)
�
'(t)2 sin

x0 + Av0(t� � s)

2
+  (t)

�
ds :

3The latter reads explicitly A2
Rmin(s;t)
0

2(s� s0)(t� s0)(1� cos(x0 +Av0s0)) ds0.
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In the last expression, the second integral is bounded by the Schwarz inequality. In the
�rst integral (which can be computed explicitly) the trigonometric part tends to zero by
the Riemann-Lebesgue lemma, so that

lim
A!1

g(t��1; t�) =

Z t�

t��1

k2�(t� � t)2 2 dt = 2k2�(t� � t��1)
3=3 (4.20)

and limA!1jaj = 0. Therefore, (RA;1
t1 ; : : : ; R

A;1
t� ) converges to a random sequence with

uniform distribution on T� independent of (SA;1: ;W:).

Proposition 4.6 If SA;0t = v0 6= 0, the process SA;2t converges for A!1 to a brownian
motion originating from v0 with di¤usion coe¢ cient 2.

Proof : By proposition 4.5 we have for s; t > 0, with s 6= t,

lim
A!1

E cosRA;1
t = lim

A!1
E cosRA;1

s cosRA;1
t = 0 (4.21)

so that limA!1 ECA;2(t) = 0 and limA!1 ECA;2(t)2 = 0. Hence CA;2(t) ! 0 with
probability 1.
To iterate the scheme, we see that as long as the law of any pair (RA;m

t1 ; RA;m
t2 ) with

t2 > t1 > 0 is uniform on T2 and independent of (SA;m: ;W:) as A ! 1 we also have
limA!1C

A;m+1(t) = 0 with probability 1. The harder part is to prove that a ! 0 for
(k1; : : : ; k�) 2 Z�0 and  ; ' 2 L2(R), where

a = Eei
P
n knR

A;m+1
tn

+i
R1
0 '(t) dSA;m+1t +i

R1
0  (t) dWt =

= ei
P
n kn(x0+Av0tn)EeiA

R1
0 ( (t)=A+('(t)=A+

P
n kn(tn�t)+)2 sin

R
A;m
t
2

)dWt

so that

jaj = jEeiA
R1
0 ( (t)=A+('(t)=A+

P
n kn(tn�t)+)2 sin

R
A;m
t
2

)dWtj :
Assuming the limit A ! 1 commutes with the stochastic integral with respect to Wt,
the (asymptotic) independence of RA;m

t simpli�es this estimate to

jaj = Ee�A2

2

R1
0 ( (t)=A+('(t)=A+

P
n kn(tn�t)+)2 sin

R
A;m
t
2

)2 dt

=
1X
P=0

(�A2)P
P !2P

Z 1

0

E
PY
p=1

� (t0p)
A

+ (
'(t0p)

A
+
X
n

kn(tn � t0p)
+)2 sin(

RA;m
t0p

2
)
�2
dt0p :

For each �nite P , the expectation would leave only the contribution 1/2 from each square
sine,

jaj =
1X
P=0

(�A2)P
P !2P

Z 1

0

PY
p=1

� 2(t0p)
A2

+ 2(
'(t0p)

A
+
X
n

kn(tn � t0p)
+)2
�2
dt0p

= e�
A2

2

R1
0

�
 2(t0p)
A2

+2(
'(t)
A
+
P
n kn(tn�t)+)2

�2
dt :

Again, if k� 6= 0, restricting the integral to [t��1; t� ] yields a vanishing estimate ; and if
all kn vanish, one recovers the characteristic functional for the brownian motion (S:;W:).
This argument is heuristic but does not prove the conjecture, because of its nonrigorous
exchange of limits.
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5 Nonlinear dynamics of N particles

Given (x0; v0) 2 TN �RN (with all components (xn0 ; vn0 ) distinct in T�R), consider now
the solution (XA

t ; V
A
t ) to the stochastic di¤erential system

XA;n
0 = xn0 (5.1)

V A;n
0 = vn0 (5.2)

dXA;n
t = AV A;n

t dt (5.3)

dV A;n
t = (cosXA;n

t ) dW 0
t + (sinX

A;n
t ) dW 00

t : (5.4)

We denote by XA
t the continuous lift of X

A
t on RN with XA

0 = XA
0 .

Proposition 5.1 The process (XA
t ; V

A
t ) is a di¤usion, with in�nitesimal generatorX

n

Avn@xn +
X
n;r

Dnr

2
@vn@vr (5.5)

where the elements of the di¤usion matrix D = (Dnr) are

Dnr = cos(x
n � xr) : (5.6)

Moreover, V A
t is a continuous, square-integrable martingale, adapted to the same �ltration

as (W 0
t ;W

00
t ).

Proof : The di¤usion property follows immediately from the coe¢ cients in the dif-
ferential equation. The martingale property too.

Proposition 5.2 For any 1 � n � N , the single component V A;n
t � vn0 is a standard

Wiener process, and (XA;n
t ; V A;n

t ) is gaussian with

EXA;n
t = xn0 + Avn0 t (5.7)

EV A;n
t = vn0 (5.8)

E(XA;n
t � xn0 � Avn0 t)(XA;n

s � xn0 � Avn0 s) =
A2

6
min(s2; t2)(s+ t+ 2js� tj)

E(XA;n
t � xn0 � Avn0 t)(V

A;n
s � vn0 ) =

A

2
(t2 � (t� s)21s�t)

E(V A;n
t � vn0 )(V

A;n
s � vn0 ) = min(s; t)

for 0 � s <1, 0 � t <1.

Proof : For A > 0 and any n, the process (XA;n
t ; V A;n

t ) is a di¤usion on R2N with
generator Avn@xn + 1

2
@2vn, which proves the claim.

Remark : This implies that E cos k(XA;n
t � xn0 � Avn0 t) = e

�k2A2t3=6 for any k 2 R,
t > 0.

Proposition 5.3 For any N > 0, the velocity process V A
t � v0 converges for A ! 1 to

the N-dimensional standard Wiener process for 0 � t <1 if conjecture 4.1 holds.
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Proof : We use Lévy�s characterization of the brownian motion [14]. By the above
propositions, V A

t �v0 is a continuous, square-integrable martingale, and each of its compo-
nents is a standard Wiener process on R. This property carries over in the limit A!1.
Thus it su¢ ces to show that the cross-variation process hV A;1; V A;2it vanishes in the

limit A ! 1, i.e. that in this limit V A;1
t V A;2

t is also a martingale. Denoting by Fs the
�ltration adapted to (W 0

s;W
00
s ) we now show that

E(V A;1
t V A;2

t � V A;1
s V A;2

s jFs) = E(V A;1
t V A;2

t jFs)� V A;1
s V A;2

s (5.9)

vanishes in the limit A!1. First,

E(V A;1
t V A;2

t � V A;1
s V A;2

s jFs) =

=

Z t

s

Z t

s

E(cosXA;1
� cosXA;2

� 0 jFs) dW 0
�dW

0
� 0 +

Z t

s

Z t

s

E(sinXA;1
� sinXA;2

� 0 jFs) dW 00
� dW

00
� 0 =

=

Z t

s

E(cos(XA;2
� �XA;1

� )jFs) d� =
Z t

s

E(cosRA
� jFs) d�

where the �rst equality uses the independence between W 0 and W 00. Moreover, the incre-
ments of (W 0

t ;W
00
t ) at time t are independent from the paths XA;n

s for 0 � s � t. Last,
we introduced the process RA

t = XA;2
t �XA;1

t , with initial data x0 = x20 � x10.
Given the process V A;1

t we de�ne the process WA
t by W

A
0 = 0 and

dWA
t = � sin(X

A;1
t ) dW 0

t + cos(X
A;1
t ) dW 00

t (5.10)

so that (V A;1
t � v10;W

A
t ) is a two-dimensional standard Wiener process. It follows that

dW 0
t = cosX

A;1
t dV A;1

t � sinXA;1
t dWA

t (5.11)

dW 00
t = sinX

A;1
t dV A;1

t + cosXA;1
t dWA

t : (5.12)

Then for SAt = V A;2
t � V A;1

t :

dRA
t = ASAt dt (5.13)

dSAt = (cosR
A
t � 1) dV

A;1
t + sinRA

t dW
A
t : (5.14)

Clearly (RA
t ; S

A
t ) is a di¤usion process, such that EdSAt = 0 and

EdSAt dSAs = 2(1� E cosRA
t )�(s� t) dsdt (5.15)

so that (4.4) can be replaced with

dSAt =
q
2(1� cosRA

t ) d ~Wt = 2 sin
RA
t

2
d ~W 0

t (5.16)

where ~Wt and ~W 0
t are standard Wiener processes.

Recall that (0; 0) in T�R is a trap [18] for this process (RA
t ; S

A
t ) : physically speaking,

two particles released at the same point (x20 = x10) with the same velocity (v
2
0 = v10) follow

almost surely the same trajectory under the force �eld. Reversibility of the system (5.13)-
(5.14) suggests however that almost surely a trajectory starting away from (0; 0) never
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visits this point ; however, the subtleties of time reversal for Itô integrals call for a separate
proof in a forthcoming paper.
Thus we restrict the discussion to the open set � = T � R n f(0; 0)g and invoke the

results of the previous section. All cross-variations hV A;r; V A;nit are shown in the same
way to vanish for r 6= n as A!1.
There is no need to prove threefold or higher independence between processes V A;n

t

as A ! 1 because the convergence of the cross-variation matrix to t times the identity
ensures the brownian limit of V A

t .
Remark : there is a coupling between V A;1

t and UA;1
t . Let d �W 0

t+id �W
00
t = e

i(y10+Au
1
0t�X

A;1
t )

(dW 0
t + idW

00
t ). This rotation of the two-dimensional brownian motion in the plane

(W 0
t ;W

00
t ) is well de�ned because X

A;1
t depends only on the history of (W 0

t ;W
00
t ) and on

initial data (x10; v
1
0), (y

1
0; u

1
0). Then ( �W

0
t ;
�W 00
t ) is also a two-dimensional brownian motion

in the plane.

6 Perspectives

Early works on quasilinear transport focused on di¤usion-type equations for distribution
functions and the generation of correlations, dubbed �clumps� [7, 15, 16, 17]. Here we
use the language of stochastic processes to describe full particle trajectories and take
advantage of A!1 to obtain the brownian limit, and we hope to produce the proof of
the conjecture in the near future [8]. One may expect that this extension will enable a
more complete discussion of the self-consistent �eld-particle dynamics too and a deeper
understanding of transport in turbulent many-body systems.
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