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Abstract

The study of plasma and conductive �uid motions in presence of electro-magnetic
�elds is based on the magnetohydrodynamic balance equations. Depending on sev-
eral parameters such as the kinetic and magnetic Reynolds numbers, as well as
the magnetic Prandtl number, a very wide class of phenomena can be described by
these equations. For instance, almost the same formalism may be used to investigate
fairly di¤erent systems such as astrophysical media, planetary cores, fusion plasmas
and liquid metal �ows. This has motivated the development of a uni�ed numerical
tool capable of describing these phenomena, at least in the limit of the available
computational power. We brie�y describe the strategy adopted in developing this
code as well as various examples in which it has been exploited.

1 Introduction

The career of Radu Balescu has been mostly devoted to the theoretical investigation of
various phenomena in plasma physics. Nevertheless, even if he sometimes regarded the
output of numerical simulations with some suspicion, he often showed a real interests
in the development of numerical tools. When works on the numerical investigation of
hydrodynamic turbulence have been initiated in his group in the early nineties, Radu
Balescu regularly insisted on the importance of MHD phenomena in fusion plasmas and
suggested to extend the numerical analysis to magnetohydrodynamics (MHD). His advices
have been both helpful and supportive. Today, the study of MHD has been signi�cantly
developed in our research unit and numerical simulation is now one of our major research
tools.
This paper describes one of the tools that have been developed in our group to simu-

late plasmas or �uids when they can be treated as continuous media. The turbo code
is designed to solve numerically the equations for an incompressible �uid in a three di-
mensional geometry with periodic boundary conditions in the three directions. In that
respect, this code is limited to the investigation of rather academic problems. Neverthe-
less, it has proved to be a valuable tool to explore various MHD phenomena. The paper
is organized as follows. The turbo code is brie�y described in Section 2. Applications
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to MHD turbulence are discussed in Section 3. Extension of the code to investigate MHD
e¤ects in liquid metal �ows are presented in Section 4. The code has also been used to
analyze charge particle trajectories in turbulent electromagnetic �elds (Section 5). Future
possible extensions of the code are brie�y discussed in the last Section.

2 The turbo code

The MHD equations that can be solved using the turbo code are the following balance
equations for the velocity �eld ui, the magnetic �eld bi and a set of passive scalars c�:

@tui = �@j(uiuj)� @ip+ �r2ui + fi + f
Lorentz
i (1)

@tbi = �@j(biuj � uibj) + �r2bi (2)

@tc� = �@j(c�uj) + ��r2c� + ��(fc�g) (3)

where � is the kinematic viscosity and � is the magnetic di¤usivity. Each passive scalar
is characterized by a di¤usion coe¢ cient ��. Summation is assumed over repeated Latin
style indices, but not over Greek style indices which correspond to passive scalar species.
There is the possibility to include source or sink terms or even chemistry terms in the
scalar equations through the quantities ��(fc�g). The Lorentz force ~fLorentz = ~j � ~b
(where ~j is the current density) will take di¤erent expressions depending on the range of
parameters. It is also possible to add other forcing terms through fi such as a random
stirring force with a prescribed spectrum as well as a deterministic force that can depend
on both space and time. The velocity �eld is assumed to be divergence free (@iui = 0;
incompressible �ow), so that no state equation is needed for the pressure p. The role
of the pressure is simply to ensure that the velocity �eld remains divergence free, which
implies the following Poisson equation:

r2p = �@i@j(uiuj) + @ifi + @ifLorentzi (4)

The magnetic �eld is, of course, also divergence free, @ibi = 0, but this does not imply
any additional constraint in the code because turbo is a pseudo-spectral code based
on a Fourier expansion for all the variables. In such a formalism imposing @ibi = 0 is
very easy and amounts to project each Fourier mode ~bi(~k) in the plane perpendicular
to the wave vector ~k. The code is referred to as �pseudo-spectral�because the Fourier
modes are advanced in time but the non linear terms are computed in real space using
Fast Fourier Transform algorithms [1]. As a consequence, periodic boundary conditions
are hard-coded in turbo. The geometry is always a tri-dimensional rectangular box for
which the length Lx, Ly and Lz are not necessarily the same and can be prescribed by the
user. The solutions of the balance equations are then entirely determined by the initial
conditions. Nevertheless, a fairly large variety of problems can be treated depending on
these initial conditions, on the forcing terms, on the presence of passive scalars, on the
source terms �� and on the values of the transport coe¢ cients �, � and ��.
The time stepping is base on a third order Runge-Kutta methods. Two di¤erent

implementations can be used depending on the strategy adopted (truncation or phase
shift) for removing aliasing errors generated when nonlinear terms have to be computed
with a �nite number of Fourier modes [2]. Finally, we mention that turbo has been fully
parallelized to take advantage of current large super-computers.
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3 Simulation of MHD turbulence

Depending on the relative importance of nonlinear convective (@j(ujui)) and linear viscous
(�r2ui) terms, the �uid can be either in the laminar or in the turbulent regime. The ratio
between these two terms is characterized by the kinematic Reynolds number:

Re =
U L

�
(5)

where U and L are respectively the characteristic velocity and the characteristic length
scale of the �ow. High Reynolds number �ows are expected to be turbulent. It is well
known that the computational resources required to investigate a turbulent system in-
crease rapidly with the Reynolds number. The magnetic Reynolds number, characteriz-
ing the ratio between nonlinear @j(biuj � uibj) and linear �r2bi terms in the induction
equation, may also strongly a¤ect the behavior of the system:

Rm =
U L

�
(6)

At moderate or large magnetic Reynolds numbers, the Lorentz force is expressed by

fLorentzi = @j(bjbi) (7)

and the pressure actually contains both the hydrodynamic and the magnetic pressure
contributions but remains solution of the same equation (4).
The turbo code has been used for simulating a number of moderate kinetic and

magnetic Reynolds number �ows. First, homogeneous and isotropic (both decaying and
forced) turbulence has been computed for fairly large resolutions (up to 5123 grid points).
These numerical experiments have been used to investigate the energy cascade in MHD
turbulence. The study of the nonlinear interactions in Navier-Stokes turbulence has long
been an active subject of research [3, 4, 5, 6]. The motivation for such studies is to improve
the understanding of the physics of turbulence and, more speci�cally, of the mechanism(s)
of energy transfer from the large, geometry dependent, structures to the small scales
where dissipation into heat is observed. For MHD systems, we have found that, like in
Navier-Stokes turbulence, the kinetic and magnetic energy cascades are essentially forward
and local, although a non-local (in Fourier space) transfer of energy between the forced
velocity scales and the small scale magnetic �eld has been observed [7]. This non-local
transfer seems to be independent of the forcing mechanism since it has also been observed
in previous studies [8] where di¤erent mechanical forces were used. No such non-local
energy transfer is however observed in the decaying turbulence simulation [9].
The turbo code has also been used to explore inhomogeneous turbulent MHD sys-

tems. Two examples are brie�y discussed here. The �rst one is usually referred to as
the Kolmogorov �ow and is obtained by using an inhomogeneous unidirectional force
fi = A sin(ky)�i1. The properties of turbulence when considering more and more elon-
gated computational boxes have been explored. It has been shown that, for the minimal
computational cubic domain, the velocity statistics exhibits symmetries that are directly
imposed by the forcing properties. However, for larger domains, the translational in-
variance in the streamwise direction appears to be broken and the turbulence statistics
depends on the computational box aspect ratio (see Figure 1).
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Figure 1: Turbulence intensities in the Kolmogorov �ow. The largest size of the box cor-
responds to the x (streamwise) direction. This �gure clearly shows that the translational
invariance in the streamwise direction is broken.

Inhomogeneity can also be produced through the initial conditions. For instance,
the evolution of a turbulent inhomogeneous system consisting of interacting layers with
di¤erent turbulent intensities has been numerically computed. The simulation used
512� 1024� 512 grid points (see Figure 2). This so-called shearless mixing layer compu-
tation allows the detailed investigation of the e¤ect of inhomogeneities on the turbulence
properties. In particular, the relation between the �ux of energy and the gradient of the
average turbulent intensity has been explored [10].

4 Simulation of liquid metal �ows

The study of liquid metal �ows in presence of intense external magnetic �eld is relevant
for several problems faces in the tokamak blanket design. Liquid metals are usually char-
acterized by a fairly high magnetic di¤usivity or, equivalently, by a very low magnetic
Prandtl number (Pm = �=�). Typically, the Prandtl number can be as low as 10�6. As a
consequence, the magnetic Reynolds number can also be very small, leading to the inter-
esting limit Rm ! 0 in which the induction e¤ects on the �ow can be computed exactly.
Indeed, keeping only the dominant terms in the equation for the magnetic �uctuations
yields:

bextj @jui + ��bi � 0 : (8)

where the �ow is assumed to be submitted to an externally imposed constant magnetic
�eld bextj . This results in a closed expression for the Lorentz force which, assuming that
bextj is constant, can be written as follows:

fLorentzi = �Nr�2@2kui; (9)

where N is the interaction parameter proportional to jbextj2 while @k represents the spatial
derivative in the direction of the externally imposed magnetic �eld. The expression (9)
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Figure 2: Numerical simulation of two interacting layers with di¤erent turbulent intensi-
ties. We only show the initial �eld. Dark regions correspond to low turbulence intensities.

Figure 3: The left �gure represents energy density contours for an initial isotropic turbu-
lent velocity �eld in a conducting �uid. The right �gure represents the same quantity for
the anisotropic state predicted by the QSA. The magnetic �eld is directed in the vertical
direction.
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is usually referred to as the quasi-static approximation (QSA). Hence, the only e¤ect of
the external magnetic �eld appears through a linear term similar to the viscous term.
However, this e¤ect is not a simple additional dissipation process. Indeed, it only a¤ects
�ows with a spatial dependence along the external magnetic �eld. Secondly, the presence
of the r�2 operator makes this term to a¤ect the large scales as well as the small scales.
The most striking e¤ects of the external magnetic �eld is then to damp turbulence through
Joule dissipation and to collapse the structures of the �ow into a quasi two dimensional
state [11, 12].
This last property is illustrated in Figure (3) for a simulation using turbo for decaying

homogeneous MHD turbulence in the limit of the QSA. The anisotropic velocity �elds
produced in presence of an external magnetic �eld are also studied in details to improve
our understanding of the physical phenomena responsible for the energy transfer between
di¤erent scales as well as between velocity modes with di¤erent angles with respect to
bextj .

5 Simulation of particle trajectories

The velocity and magnetic �elds produced by turbo have also been used to investigate
the dynamics of charged test particles submitted to realistic turbulent electromagnetic
�elds. Indeed, despite the fact that the MHD equations solved by turbo do not explicitly
contain the electric �eld ~e, the induction equation must be compatible with Faraday�s law:
@t~b = �r� ~e. Hence, the electric �eld can be reconstructed and is given by:

~e = �~u�~b+ �r�~b (10)

It is thus possible to derive from turbo both the electric and the magnetic �elds and
to follow the motion of a set of charged particles submitted to the corresponding Lorentz
force. The advantage of this approach is that the turbulent structures in the electro-
magnetic �elds are generated self-consistently using the MHD equations. An alternative
approach, that has been often used in the past, consists in assuming a given spectrum
for both ~e and ~b and in generating synthetic �elds with random phases. This procedure
however produces fairly di¤erent �elds as shown in Figure (4).
By randomizing the Fourier phases of a pseudospectral simulation of isotropic MHD

turbulence at Re � 300 and tracing collisionless test particles in both the exact-MHD
and phase-randomized �elds, it has been found that the phase correlations enhance the
acceleration e¢ ciency during the �rst stage of the acceleration process [13]. A comparison
of trajectories is shown in Figure (5). The helical motion of the test particle around the
local magnetic �eld is not easily observed when the total trajectories are presented, but
can be seen when they are considered with closer look.

6 Future developments

A number of extensions to the turbo code are presently under investigation. For instance,
it would be fairly simple to include the e¤ect of a global rotation ~
 on the �ow by
introducing the Coriolis force (�2 ~
 � ~u) in the right hand side of the Navier-Stokes
equation. Such an extension could be interesting when considering problems related to
geo-dynamo generation and astrophysical objects.
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Figure 4: Magnetic (top) and electric (bottom) energy densities of the �elds produced
directly by turbo (left) and �elds produced by using the same spectra and random
phases (right). Blue and red regions indicate, respectively, low and high values of these
quantities.

Figure 5: Real-space orbits in �elds produced by turbo (left) and �elds with the same
spectra but random phases (middle). Closer look at a test particle trajectory (right).
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A much more ambitious project consists in extending the code to compressible �uids.
Indeed, in that case, additional equation for the temperature and the density have to be
included. Moreover, the pressure cannot be derived form the Poisson equation (4) and
must be linked to the density and the temperature through a state equation. However,
if fusion plasmas are considered, the ideal gas state equation can be used. Finally, we
also mention the possibility to include radiation e¤ect into the code. Again additional
equation for the radiation energy and the momentum �ux have to be solved (RMHD,
Radiation Magnetohydrodynamics). Works in that direction are in progress.
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