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Abstract

A skin size (k? . !pe=c) plasma mode characterized by a dispersion relation
! ' ck?kk=kDe (kDe the electron Debye wavenumber), adiabatic ions, and ! �
kkvTe, in a uniform plasma is destabilized in the tokamak geometry by a modest
electron temperature gradient �e and ballooning parameter �e: When unstable, a
large electron thermal di¤usivity emerges because of the cross-�led wavelength much
longer than that of the conventional electron temperature gradient (ETG) mode.

1 Introduction

The role played by turbulence having cross-�eld wavelength of the order of the electron
skin depth c=!pe in anomalous transport has long been speculated in the past. For exam-
ple, for tokamaks, Ohkawa [1] proposed the following electron thermal di¤usivity,

�e =
vTe
qR

�
c

!pe

�2
; (1)

where vTe=qR is the electron transit frequency with vTe the electron thermal velocity and
qR the connection length of the helical magnetic structure. In the formula, the skin depth
plays the role of decorrelation length in the radial direction and the transit frequency
plays the role of decorrelation rate. It is noted that the derivation of the di¤usivity was
heuristic, the presence of skin size instability was assumed but the origin of the turbulence
(instability) was left unidenti�ed. An attractive feature of the thermal di¤usivity is that
it gives a somewhat natural explanation for the empirical Alcator type scaling law for the
energy con�nement time [2],

�E _ n; (2)

where n is the plasma density.
From the point of view of plasma wave theory, the Ohkawa di¤usivity is strange

because it is usually thought that the skin depth is pertinent only if the parallel phase
velocity !=kk is larger than the electron thermal velocity in which case plasma instabilities
become predominantly electrostatic. In this case, the electron skin depth appears only as
a small electromagnetic correction and should not play important roles. To circumvent
this problem, it has been suggested [3] that the nonlinear Doppler shift k � vE due to the
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E �B drift vE may exceed the electron transit frequency in strong turbulence, and skin
size electromagnetic turbulence may exist nonlinearly.
In this paper, we wish to report on a linearly unstable electromagnetic mode charac-

terized by adiabatic ions (k?�i)
2 � 1 (�i the ion Larmor radius) and adiabatic electrons

with a phase velocity parallel to the magnetic �eld smaller than the electron thermal
speed ! < kkvTe. As will be shown, in these limits, a simple electromagnetic ballooning
mode emerges which is symbolically described by the following dispersion relation,

(! � !�e) (! � !De) + �e!�e!De �
(! � !�e)2

1 + �
=
c2kkk

2
?kk

k2De
; (3)

where the notations are standard, namely, !�e(!De) is the electron diamagnetic (magnetic)
drift frequency, �e is the electron temperature gradient parameter, � = Te=Ti, kDe =
!pe=vTe is the electron Debye wavenumber, and k?(kk) is the wavenumber perpendicular
(parallel) to the ambient magnetic �eld. The mode is destabilized by a modest electron
temperature gradient �e and electron ballooning parameter de�ned by

�e = q
2 R

Ln
(1 + �e) �e: (4)

Here, q is the safety factor, �e is the electron beta factor, R=Ln = 1="n is the density
gradient aspect ratio, and �e = d lnTe=d lnn0 is the electron temperature gradient. The
mode is intrinsically electromagnetic (because it is a ballooning mode, although there
is no resemblance to the ideal MHD ballooning mode), and is not a result of correction
to electrostatic modes such as the familiar electron temperature gradient (ETG) mode.
(Such a case has been analyzed by Kim and Horton [4].) The right hand side of Eq. (3)
may be approximated by

c2kkk
2
?kk

k2De
'
�
ck�
!pe

�2
v2Tek

2
k; (5)

which indicates the electron transit mode and skin depth are intimately related. It is
noted that the Debye screening factor (k?=kDe)

2 � 1 manifests itself in the dispersion
relation even though charge neutrality holds.

2 Local analysis

We start with the electron drift kinetic equation under the assumption that the electron
Larmor radius is ignorable (k?�e)2 � 1;

fe =
e�

Te
fMe �

! � !̂�e (v2)
! � !̂De (v)� kkvk

�
��

vk
c
Ak

� e
Te
fMe; (6)

where � is the scalar potential, Ak is the vector potential, fMe (v
2) is Maxwellian distri-

bution, and energy dependent electron diamagnetic drift frequency !̂�e (v2) and velocity
dependent electron magnetic drift frequency !̂De (v) are de�ned by

!̂�e
�
v2
�
= !�e

�
1 + �e

�
v2

v2Te
� 3
2

��
; !�e =

cTe
eB2

(r lnn0 �B) � k; (7)
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and

!̂De (v) =
mc

eB3

�
1

2
v2? + v

2
k

�
(rB �B) � k; (8)

respectively. In the limit of adiabatic electrons ! < kkvTe; the electron density perturba-
tion can be readily found to be

ne =

�
�� ! � !�e

ckk
Ak

�
e

Te
n0: (9)

In the same limit, the electron parallel current perturbation can be calculated from

Jke =
n0e

2

Te

Z
vk

! � !̂�e (v2)
! � !̂De (v)� kkvk

�
��

vk
c
Ak

�
fMed

3v

' n0e
2

kkTe

�
(!�e � !)�+

(! � !�e) (! � !De) + �e!�e!De
ckk

Ak

�
: (10)

Ions are assumed to be adiabatic as well in light of short wavelength nature (k?�i)2 � 1;

ni = �
e�

Ti
n0:

Then charge neutrality ne = ni and Ampere�s law

k2?Ak =
4�

c
Jke;

yield the following dispersion relation,

(! � !�e) (! � !De) + �e!�e!De �
(! � !�e)2

1 + �
=
c2kkk

2
?kk

k2De
: (11)

It is noted that the Debye screening factor (k?=kDe)
2 appears even though charge neutral-

ity is assumed. In the RHS of Eq. (11), the small factor (k?=kDe)
2 � 1 is multiplied by

the square of a large frequency ckk (electromagnetic transit frequency) and balances the
LHS which essentially describes the electromagnetic electron temperature gradient mode
in the adiabatic limit.
In a uniform plasma !�e = !De = 0; the dispersion relation reduces to the known form

[5],

!2 =
1 + �

�

�
ckkk?
kDe

�2
=

�
ck?
!pe

�2
k2k
Te + Ti
me

: (12)

The conditions of adiabatic ions (k?�i)
2 � 1 and adiabatic electrons ! < kkvTe impose

the range in the cross �eld wavenumber k? such that

1

�i
< k? <

!pe
c
; (13)

where c=!pe is the collisionless electron skin depth. This is possible if the plasma � factor
exceeds the electron/ion mass ratio, � � me=mi ' 3 � 10�4; which is well satis�ed in
tokamaks. However, the dispersion relation in Eq. (11) pertinent to tokamaks is not
subject to ck? < !pe:
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Equation (11) should not be confused with the dispersion relation of the ETG mode
derived by Kim and Horton [4] in the opposite, nonadiabatic limit ! > kkvTe;

� +
!�e
!
+
�
(k?�e)

2 � !De
!

��
1� !�ep

!

�
=

�
kkvTe

�2
!2

�
1� !�ep

!

� k2?
k2? + (!pe=c)

2 ; (14)

which is subject to ! � !De: Here, !�ep = (1 + �e)!�e: In this limit, electromagnetic
e¤ects appear as the inverse skin depth !pe=c in the right hand side, which is small because
of the assumption ! > kkvTe: In contrast, the mode being discussed here is intrinsically
electromagnetic and can be ballooning unstable in tokamaks.
Eq. (2) is the special case of the kinetic ballooning mode studied earlier [6],

(! � !�e) (! � !De) + �e!�e!De �
(! � !�e)2

1 + � (1� Ii)
=
c2kkk

2
?kk

k2De
; (15)

where

Ii =

Z
! + !̂�i (v

2)

! + !̂Di (v)
J20

�
k?v?
!ci

�
fMid

3v; (16)

is the ion integral pertinent to the nonadiabatic part of the ion density perturbation,

ni = �
e�

Ti
(1� Ii)n0: (17)

Here J0 (x) is the Bessel function, fMi is the unperturbed ion distribution assumed to be
Maxwellian, and

!̂�i
�
v2
�
= !�i

�
1 + �i

�
v2

v2Ti
� 3
2

��
; (18)

!̂Di (v) =
cmi

eB3

�
1

2
v2? + v

2
k

�
(rB �B) � k: (19)

In the short wavelength limit (k?�i)2 � 1; Ii vanishes, and we obtain the dispersion
relation for the electron ballooning mode with adiabatic ions. The instability of interest
here is of hydrodynamic nature (ballooning nature) even though both ions and electrons
are adiabatic. The growth rate is large and, consequently, large electron thermal transport
should emerge. (The instability does not contribute to particle transport because of
adiabatic ions.)
The quadratic dispersion relation in Eq. (11) may be solved if the norm of the parallel

gradient kk is speci�ed. As a rough estimate, we assume kk ' 1=(2qR). Then the root is
given by

!

!�e
= 1� 1 + �

2�
(1� 2"n) + i



!�e
; (20)

where =!�e is the normalized growth rate



!�e
=
1 + �

2�

s
4�

1 + �

�
2"n�e �

"n (1 + �e)

2�e

�
� (1� 2"n)2: (21)

The condition for instability is given

�e

�
8"n

��e
1 + �

� (1� 2"n)2
�
> 2"n

�

1 + �
(1 + �e) : (22)
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For typical tokamak discharge parameters, the instability criterion reduces to �e & 0:3:
The source of instability is in the interchange term (1 + �e)!�e!De due to the combination
of unfavorable magnetic curvature and electron pressure gradient. The mode described
by Eq. (11) may be called an electron ballooning mode. When compared with the ideal
MHD ballooning mode symbolically described by

! (! + !�i) (k?�i)
2 = (k?�i)

2 �kkVA�2 � (1 + �e)!De!�i � (1 + �i)!Di!�i; (23)

where VA is the Alfven speed, the role of stabilizing Alfven frequency kkVA in MHD
ballooning mode is played by the modi�ed electron transit frequency (ck?=!pe) kkvTe: As is
well known, the growth rate of the ideal MHD ballooning mode is essentially independent
of the ion �nite Larmor radius parameter k?�i since !De!�i _ k2?; while the growth rate
of the electron ballooning mode sensitively depends on k?:
The condition for the instability given in Eq. (22) is for hydrodynamic ballooning

mode and may be relaxed if kinetic e¤ects (electron resonance) are considered. As will be
shown in the section to follow, fully kinetic analysis will reveal that the instability persists
even in electrostatic limit (although the growth rate is small).
In the mode described by Eq. (12) for a uniform plasma, energy equipartition holds

between the magnetic energy and thermal potential energy. They are out of phase and
the sum of the two energy forms is constant, consistent with the general constraint on
energy relationship in plasma waves [7]. The magnetic energy density associated with the
wave is

Um =
1

8�
k2?A

2
k =

1

8�

(1 + �)2 c2k2kk
2
?

!2
�2

=
1

8�
� (1 + �) k2De�

2 =
1

8�
(1 + �) k2Di�

2; (24)

while the potential energy density is

Up =
1

2
n0Ti

�
ni
n0

�2
+
1

2
n0Te

�
ne
n0

�2
=
1

8�
k2Di�

2 +
1

2

n0e
2

Te

�
�� !

ckk
Ak

�2
=
1

8�
(1 + �) k2Di�

2; (25)

in agreement with the magnetic energy density. Here the charge neutrality relationship
(1 + �) ckk� = !Ak has been substituted. It is noted that the dispersion relation is
independent of electron and ion masses and thus no kinetic energy is involved in the
wave.

3 Nonlocal analysis

In order to con�rm destabilization of the mode by the ballooning e¤ect in a more rigorous
manner, a fully kinetic, electromagnetic integral equation code [8] has been employed to
�nd the mode frequency and growth rate. We consider a high temperature, low � toka-
mak discharge with eccentric circular magnetic surfaces. Trapped electrons are ignored
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for simplicity. Also, the magnetosonic perturbation (A?) is ignored in light of the low �
assumption and we employ the two-potential (� and Ak) approximation to describe elec-
tromagnetic modes. As in the preceding section, the basic �eld equations are the charge
neutrality condition (subject to k2 � k2De)

ni(�;Ak) = ne(�; Ak); (26)

and the parallel Ampere�s law,

r2
?Ak = �

4�

c
Jk(�; Ak); (27)

where the density perturbations are given in terms of the perturbed velocity distribution
functions fi and fe by

ni =

Z
fidv; ne =

Z
fedv; (28)

and the parallel current by

Jk = e

Z
vk(fi � fe)dv: (29)

The perturbed distribution functions fi and fe can be found from the gyro-kinetic equation
in the form

fi = �
e�

Ti
fMi + gi(v; �)J0(�i); (30)

fe =
e�

Te
fMe + ge(v; �)J0(�e); (31)

where gi;e are the nonadiabatic parts that satisfy�
i
vk(�)

qR

@

@�
+ ! + b!Di� gi = (! + b!�i)J0(�i)��� vk

c
Ak

� e
Ti
fMi; (32)

�
i
vk(�)

qR

@

@�
+ ! � b!De� ge = �(! � b!�e)J0(�e)��� vk

c
Ak

� e
Te
fMe: (33)

Here, � is the extended poloidal angle in the ballooning space, J0 is the Bessel function
with argument �i;e = k?v?=!ci;e;

k2? = k
2
�

�
1 + (s� � � sin �)2

�
;

b!Dj = 2"n!�j [cos � + (s� � � sin �) sin �]�1
2
v̂2? + v̂

2
k

�
;

and qR is the connection length. For circulating particles, gj (j = i; e) can be integrated
as

vk > 0; g+j = �i
ejfMj

Tj

Z �

�1
d�0
qR��vk��ei�j(! � b!�j)J0(�0j)

 
�(�0)�

��vk��
c
Ak(�

0)

!
; (34)

vk < 0; g�j = �i
ejfMj

Tj

Z 1

�

d�0
qR��vk��e�i�j(! � b!�j)J0(�0j)

 
�(�0) +

��vk��
c
Ak(�

0)

!
; (35)
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Figure 1: The normalized mode frequency !r=!�e and growth rate =!�e as functions of
the electron beta �e when ck�=!pe = 0:3; Ln=R = 0:2; �e = 2; q = 2; s = 1:

where

�j(�; �
0) =

Z �

�0

qR��vk�� [! � b!Dj(�00)]d�00:
Substitution of perturbed distribution functions into charge neutrality and parallel Am-
pere�s law yields

r2� = �4�
X
j=i;e

ej

�
� ej
Tj
�+

Z �
g+j (�) + g

�
j (�)

�
J0(�j)dv

�
; (36)

r2
?Ak(�) = �

4�

c

X
j=i;e

ej

Z
vk
�
g+j (�)� g�j (�)

�
J0(�j)dv; (37)

where
R
dv = 2�

R1
0
v?dv?

R1
0
dvk: This system of inhomogeneous integral equations can

be solved by employing the method of Fredholm in which the integral equations are viewed
as a system of linear algebraic equations [9]. In the numerical code, the velocity space
integration is executed using Gauss-Hermite approximation.
Figure 1 shows the �e dependence of the normalized eigenvalue !=!�e (frequency

!r=!�e and growth rate =!�e) when ck�=!pe = 0:3; Te = Ti; Ln=R = 0:3; �e = 2;
�e = 0:5%; s = 1; q = 2; mi=me = 1836 (hydrogen). The growth rate increases rapidly
with the electron pressure (�e) indicating that the instability is indeed driven by the bal-
looning e¤ect. The growth rate found in the numerical analysis qualitatively agrees with
the analytic expression presented in Eq. (21).
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Figure 2: �e=�Ohkawa vs. k2 = (ck�=!pe)2 when Ln=R = 0:2; �e = 2; s = 1; q = 2; and
�e = 0:004:

The mixing length electron thermal di¤usivity �e = =k2? normalized by the Ohkawa
di¤usivity

�Ohkawa =
vTe
qR

�
c

!pe

�2
; (38)

is shown in Figure 2 as a function of k2 = (ck�=!pe)
2 and for the case �e = 0:4%. The

di¤usivity increases with k2 and attains a value which is a large fraction of the Ohkawa
di¤usivity. The maximum di¤usivity occurs at ck?=!pe ' 0:3: This is demonstrated in
Figure 3 in which the di¤usivity is plotted as a function of �e: The di¤usivity in Figure 3
is normalized by the electron gyro-Bohm di¤usivity given by

�egB =
vTe
Ln
�2e:

It is clearly seen that the di¤usivity far exceeds the electron gyro-Bohm di¤usivity which
pertains to the ETG mode.
In light of the analytic dispersion relation found in this study, it may be concluded

that a tokamak discharge can be strongly unstable in the wavelength regime k? ' !pe=c
which is the lower end of unstable k? spectrum. The growth rate is of the order of
 ' p

�e!�e!De. Therefore, for the electron thermal di¤usivity, the following estimate
emerges,

�e '
p
�e!�e!De

k2?
=

qvTep
RLT

�
c

!pe

�2p
�e;
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Figure 3: �e=�egB (�egB = vTe�2e=Ln the electron gyro Bohm di¤usivity) as a function of
the electron � factor. Ln=R = 0:3; �e = 2; q = 2; s = 1:

where LT is the temperature gradient scale length. The proportionality of the di¤usivity
to the safety factor, �e _ q; stems from the condition of most active thermal transport,
 ' kkvTe; which yields k? _ 1=q [10].

4 Discussions and conclusions

The local dispersion relation

(! � !�e) (! � !De) + �e!�e!De �
(! � !�e)2

1 + �
=
c2kkk

2
?kk

k2De
;

derived in this study describes the short wavelength electron ballooning mode subject
to the adiabatic electron response ! < kkvTe. The mode is intrinsically electromagnetic
while the conventional ETG mode is subject to ! > kkvTe for which electromagnetic
e¤ects appear only as a small correction. Because of the long wavelength nature of the
instability (c=!pe � �e), large electron thermal transport emerges even in simple mixing
length estimate. The following formula for the electron thermal di¤usivity has been found,

�e =
qvTep
RLT

�
c

!pe

�2p
�e:

In the previous investigations [Horton], it was proposed skin size plasma turbulence
may exist if the nonlinear Doppler shift k �vE�B (vE�B being the E�B drift) exceeds the
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electron transit frequency k �vE�B > kkvTe: The main �nding in the present investigation
is that the skin depth manifests itself even in the adiabatic limit and governs the lower
end of the k spectrum of the ETG mode. It is noted that in the limit of large ballooning
parameter �e; the dispersion relation reduces to

(! � !�e) (! � !De) + �e!�e!De �
(! � !�e)2

1 + �
= 0;

which resembles that of the ETG mode in the limit ! > kkvTe;

� � !�e � !De
! � !De

+
�e!�e!De
(! � !De)2

= 0:

In summary, a novel electromagnetic ballooning instability having cross-�eld wave-
lengths of the order of electron skin depth has been identi�ed analytically and con�rmed
with a rigorous integral equation code which is fully kinetic and electromagnetic. In
tokamaks, the mode is destabilized by a modest electron ballooning parameter �e: A
large electron thermal di¤usivity emerges because of the long wavelength nature of the
instability.
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