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Abstract

Heat �uxes on divertor plates of tokamaks show typical structures being related
to the topology of large connection lengths of magnetic �eld lines. The selection
of those areas of large connection lengths which ultimately determine the heat �ux
pattern is due to the unstable and stable manifolds of the hyperbolic �xed points of
the last intact island chain. The manifolds attract co- (with respect to the magnetic
�eld direction) and counter-moving particles, respectively. Analyzing the footprints
of the manifolds, one can predict areas of large heat depositions in agreement with
experiments.

1 Introduction

The interpretation of observed particle and heat transport phenomena is a central problem
in many branches of physics. Very often the transport is anomalous [1], i.e. it does not
agree with results from linear response theory [2]. As is well-known from dynamics of
nonlinear systems, characteristic patterns may be formed [3]-[4]. Spatial, temporal, or
spatio-temporal structures can occur. Several selection rules and normal forms for pattern
formation have been formulated in di¤erent disciplines, e.g. optics, plasmas, �uids, soft
matter, and so on. They establish the �rst step from a purely descriptive to a predictive
nonlinear transport theory.
Nonlinear signatures of particle and heat transport are almost generic in plasma and

astrophysics. Transport anomalies reach from Bohm-like di¤usion in gas discharges up to
low-energy cosmic ray penetration into the heliosphere [5]-[6]. Because of the available
advanced diagnostic techniques, especially in existing tokamaks, a lot of experimental ma-
terial on nonlinear transport is available from laboratory plasma science; see e.g. Ref. [7]
and references therein. For magnetic fusion, heat �ux investigations are important since
the wall load should be within a tolerable regime. The use of edge stochastization may
be a possible solution to the plasma-wall-interaction control [8]. By stochastization of the
plasma edge the heat and particle �ows to the wall are fundamentally changed [9], [1],
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[10]. Still many problems are open, and therefore the basic physical principles of transport
in open chaotic systems need further consideration.
Magnetic �eld lines represent a 1 + 1

2
-degrees�of�freedom Hamiltonian system [3].

This fact is important for the description of �eld lines by �ux�preserving mappings which
are computationally e¢ cient and powerful tools to study �eld lines in the presence of non�
axisymmetric magnetic perturbations. Several mapping models of �eld lines in a toroidal
system have been proposed to study the destruction of nested magnetic surfaces and the
formation of stochastic magnetic �eld lines (see Refs. [11]-[18] and references therein).
A discrete iterative map runs much faster then the small-step numerical integration [13],
[16], [19], [20]. Mappings should be symplectic (or �ux-preserving). They should have the
same periodic points as the Poincaré map of the original system, and they should show
the same regular and chaotic regions as the continuous magnetic �eld line evaluation. For
global maps, a magnetic axis should be mapped to itself, and the magnetic �ux should
be always positive [11].
An important aspect of transport is the dynamics of particles in a stochastic magnetic

�eld. It is known that in inhomogeneous magnetic �elds particle orbits deviate from the
magnetic �eld lines [21]. An interesting question is how this can a¤ect the transport of
particles in a stochastic magnetic �eld. The enhanced transport of heat and particles
due to destroyed nested magnetic surfaces has been analyzed in the past in a number of
publications (see Refs. [22]-[29]). In a weakly collisional plasma, charged particles gyrate
around the magnetic �eld lines. Since the gyro-radius scales with the magnetic �eld
strength, for magnetic �elds of the order of tesla the gyro-radii (especially for electrons)
are very small compared to the dimensions of the system. Because of the curvature and
gradients of the magnetic �eld, the particles are drifting away from the magnetic surfaces.
In the gyro-center approximation, one neglects �nite gyro-radius e¤ects. For integrable
situations, the deviations of the drift surfaces from the magnetic KAM surfaces increase
with the particle energy. The kinetic energy of the particles is therefore, in addition to the
perturbation current for the stochastic magnetic �eld generation, an important parameter
for the break-up of drift surfaces. In a fusion plasma of typically kT = 10 � 20 keV
temperature, most of the particles move with the thermal velocity. According to recent
studies of particle drift e¤ects [30]-[31] only particles with kinetic energies much larger
than the thermal one show relevant drift e¤ects. Thus, thermal particles follow very well
the �eld line dynamics.
Characteristic spatial heat �ux patterns have been observed in bounded stochastic

plasmas [32]-[33]. They show a characteristic number of stripes on the target plates when
plotted in the ('; �)-plane, where ' is the toroidal angle and � is the poloidal angle of the
torus. In addition, when varying the edge safety factor qa, and projecting on the (qa; �)-
plane, generic structures appear. In order to analyze and classify the spatial structures of
heat �ux patterns [33], we will use the concept of magnetic footprints [34], [35] together
with an analysis of the stable and unstable manifolds of hyperbolic periodic points [36]-[39]
of magnetic resonances present in the stochastic plasma edge region.
The paper is organized as follows. We shortly describe the phenomenology of heat �ux

patterns at the divertor plates of TEXTOR-DED and the magnetic �eld con�guration
in Sec. 2. In Sec. 3 we outline the mapping technique and the numerical methods for
calculating stable and unstable manifolds. The relation of large connection lengthes to
the measured heat �ux patterns and the selection criterion provided by the stable and
unstable manifolds is discussed in Sec. 4. The structures of the pattern are analyzed by
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the stable and unstable manifolds of the resonances in the ergodic chaotic edge region.
Especially the manifolds of the last island chain in the ergodic zone, being located at
the transition to the laminar zone, are important. The paper is concluded by a short
summary.

2 Magnetic �eld lines and heat �ux patterns

It is known that a divergence�free magnetic �eld is equivalent to a Hamiltonian system
with 1+1/2 degrees of freedom (see, e.g., [40], [41], [42]). Particularly, the magnetic �eld
B has can be presented in the Clebsch form B = B0R

2
0 (r �r#+r'�r pol), where

 and  pol are the normalized to B0R20 toroidal and poloidal �uxes, respectively, # is the
poloidal (intrinsic) angle angle �, and ' is the toroidal angle. Here B0 is the strength of
the toroidal magnetic �eld at the center of torus R0. In this coordinate system the �eld
line equations have the Hamiltonian form

d 

d'
= �@H

@#

d#

d'
=
@H

@ 
; (1)

where the poloidal �ux H �  pol plays the role of an Hamiltonian function, # and  
are canonically conjugated coordinate and momentum, respectively, and ' is a time-like
independent variable.
In the presence non-axisymmetric magnetic perturbations the poloidal �ux H =

H( ; #; ') can be presented as sum

H = H0( ) +H1( ; #; '); (2)

where the unperturbed �ux  (0)pol( ) depends only on the equilibrium magnetic con�gura-
tion of the plasma. It is determined by the safety factor q( ):

H0( ) =

Z
d 

q( )
: (3)

The perturbation �ux  (1)pol( ; #; ') can be expanded into a Fourier series in # and ':

H1( ; #; ') = �
X
m;n

Hmn( ) cos(m#� n'+ �mn): (4)

The Fourier coe¢ cients Hmn( ) correspond to the poloidal mode number m and the
toroidal mode number n.

2.1 The equilibrium plasma con�guration and magnetic pertur-
bations

We model the plasma with nested, circular magnetic surfaces with the outward (Shafra-
nov) shift of magnetic surfaces due to e¤ects of the plasma pressure and electric current.
Let a and R0(a) be the plasma minor radius and the major radius of the center of the
last magnetic surface, respectively. Then, the shift �(�) of the major radius of the center
of the magnetic surface of radius � form R0(a) is given by [43]

�(�) =
�
R20(a) + (� + 1)

�
a2 � �2

��1=2 �R0(a); (5)
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where � = �pol + li=2 � 1, �pol = 8�hpi=hB�i2 is the ratio of the plasma pressure hpi
to the magnetic pressure hB�i2=8� of the poloidal �eld B�, li is the internal inductance.
Furthermore, we consider only the low�� and large aspect-ratio tokamak plasma.
In the cylindrical coordinate system (R;'; Z) the magnetic �eld of the equilibrium

plasma can be presented by the vector potential,

A = (0; A'(r; �); Az(r; �)) ;

A'(r; �) =
B0R

2
0

R

Z
d 

q (�( ))
;

Az(r; �) = �B0R0 ln(R=R0): (6)

where r; � are toroidal coordinates related to (R;Z): R = R0+r cos �; Z = r sin �, Az(r; �)
corresponds to the toroidal �eld B' = B0R0=R, and A'(r�) corresponds to the poloidal
�eld,

B�(r; �) =
B0
qR

d 

d�

1

1 + �0(�) cos ��
; (7)

where �� = sin�1(r sin �=�). One should note that the Hamiltonian function of �eld lines is
expressed through the toroidal component of the vector potential via H = �RA'=B0R20.
The safety factor q(�) is a function of the radius � of a magnetic surface which is

related to the normalized toroidal magnetic �ux  :

 =
R0(�)

R0(a)

"
1�

�
1� �2

R20(�)

�1=2#
� �2

2R20(a)
: (8)

The relation between � and the toroidal coordinates (r; �) is

� =
q
(r cos � ��(�))2 + r2 sin2 �.

In a cylindrical plasma one can use the following model for the safety factor (see [21])

qcyl(�) = qa
�2

a2

�
1�

�
1� �2

a2

����1
; for � � a ;

qcyl(�) = qa
�2

a2
; for � > a :

qa =
2�B0R0a

2

�0Ip
; (9)

where qa is the safety factor at the plasma edge a, Ip is the total plasma current, and the
exponent is � = qa=q0.
The safety factor given by Eq. (9) is valid only for the cylindrical plasma column.

For large aspect�ratios R=r � 1 the safety factor due to toroidicity can be presented as
a series of powers of the inverse aspect ratio " = �=Rp(�) (see Ref. [44]) :

q(�) = qcyl(�)
R20
R2p(�)

�
1 +

a2
2
"2 +

3a4
8
"4 +O("8)

�
; (10)

where qcyl(�) is described by (9) and the coe¢ cients am are given by

am = (�1)m
mX
k=0

(m� k + 1)�k: (11)
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According to Refs. [44], [17], the static perturbation magnetic �eld created by the
external TEXTOR-DED coils without the plasma response is mainly determined by its
toroidal component of the vector potential A(pert)' (r; �; '). The normalized to B0R20=R
vector potential, i.e. f (1)' = B0R

2
0A

(pert)
' =R, is approximated as

f (1)' (r; �; ') = "
X
m

fm(r; �) cos(m� � n'+ �mn) (12)

with the Fourier modes

fm(r; �) = �
rc
mR0

gm

r
1 +

rc cos �

R0

�
r

rc

�m
; (13)

gm = (�1)m
sin [(m� nm0=4)�c]

(m� nm0=4)�
: (14)

Here " = Bc=B0 stands for the perturbation parameter, Bc = �0Idm0=(�rc) is the char-
acteristic value of the DED magnetic �eld perturbation, rc is the minor radius of the
DED-coils, �c � �=5 is the half angle area of the coils, m0 � 20, Id is the DED current.
The Fourier coe¢ cients Hmn( ) of the perturbation Hamiltonian (4) are related to

the coe¢ cients fm(r; �) through the Fourier integrals

Hmn( ) =
1

2�

X
m0

Z 2�

0

fm0(r; �)ei(m
0�(#)�m#d#: (15)

where the geometrical toroidal angle �(#) is a function of the intrinsic poloidal angle #
which depends on the equilibrium plasma.
The properties of the mode transformation of the spectra of perturbations fm0(r; �) in

the geometrical space to the Hmn( ) in intrinsic coordinates have been studied in Refs.
[44], [17], [45].

2.2 Heat �ux patterns

There are three operational regimes of the TEXTOR-DED which are called 12/4, 6/2,
and 3/1 modes corresponding to the regimes with the dominant toroidal mode numbers
n = 4; n = 2; n = 1, respectively (see Refs. [46], [47], [17]). Below we will mainly consider
the 12/4 mode of the DED for the dominant toroidal mode number n = 4. In this regime
four heat �ux stripes are observed at the divertor plates [48]. Concentrating on one of
these stripes, the development of the heat �ux at a �xed toroidal position with changing
plasma current has been measured [49]. The pattern is taken at a �xed toroidal position
over the small poloidal angle area covered by one heat �ux stripe. The edge safety factor
qa is inversely proportional to the plasma current (see Eq. (9)), which is varied during
the measurements. All other parameters are kept constant at typical values: toroidal
magnetic �eld B0 = 1:93 T, minor radius of plasma a = 0:437 m, major radius of plasma
Ra = 1:7 m and � = 0:05. The divertor plates (in the following also called wall) are
located at a minor radius of rw = 0:477 m.
In typical measurements [49] we see that at certain values of qa new strike zones appear,

while the former strike zones tend outwards (compared to the center of the pattern), get
smaller, and �nally vanish. The strike zones are overlapping, which means that the next
strike zone appears, while the last one has not yet vanished. These structures of the heat
�ux pattern can be explained by the theory of the stable and unstable manifolds.
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3 Stable and unstable manifolds

In this section we study the stochasticity of �eld lines created by the external magnetic
perturbations at the plasma edge. This will be done by plotting Poincaré sections of
magnetic �eld lines and their stable and unstable manifolds. For this purpose we shall
employ the computationally e¢ cient mapping method described in Refs. [50], [51], [45].
The mapping is constructed in a symplectic (or �ux-preserving) form and it is much faster
than the other conventional small-step integration schemes, like Runge-Kutta. Below, we
shall shortly outline the mapping method. We will use it for �nding periodic �xed points
and their stable and unstable manifolds.

3.1 Discrete mapping

Let (#k;  k) be values of the poloidal angle # and the toroidal �ux  at the poloidal
section ' = 'k = k(2�=N), where k = 0;�1;�2; : : : , and N � 1. The relation

(#k�1;  k�1) = T̂ (�)(#k;  k); (16)

de�nes the mapping of the �eld line coordinates at the section 'k to the ones at the
section 'k�1. The sign (+) corresponds to the mapping along the positive direction of
the toroidal angle ', and it is called as a forward map. Similarly, the sign(�) corresponds
a backward map which describes �eld line dynamics along the negative direction of the
toroidal angle.
The mapping (16) is implemented by the successive canonical transformations em-

ploying the time-dependent perturbation theory. For the Hamiltonian system (2)-(4) the
mapping, in the �rst order of the perturbation parameter �, has the following form

	k =  k � �
@S(k)

@#k
;�k = #k + �

@S(k)

@	k
; ��k = �k +

'k�1 � 'k
q(	k)

;

 k�1 = 	k + �
@S(k�1)

@#k+1
; #k�1 = ��k � �

@S(k�1)

@	k�1
; (17)

where S(k) � S(#k;	k) is the value of the generating function S(#;	; '; '0) taken at
sections ' = 'k, i.e. S(#k;	k) = S(#k;	k; 'k; '0),

S(#;	; '; '0) = �('� '0)
X
m;n

Hmn(	)�
�
a(xmn) sin (m#� n'+ �mn)

+b(xmn) cos (m#� n'+ �mn)

�
; (18)

de�ned in the �nite interval 'k+1 < ' < 'k. Here

a(x) =
1� cosx

x
; b(x) =

sin x

x
;

xmn =

�
m

q(	)
� n

�
('� '0):

The free parameter '0 lies in the interval 'k � '0 � 'k+1.
The Poincaré section corresponding to the pre-selected poloidal section 'P is obtained

by applying the map (16) N times, when �eld lines return the poloidal section 'P .

49



3.2 Fixed Points and their stable and unstable manifolds

A periodic �xed point with period n is de�ned through

 =Mn
 ( ; #) ; # =Mn

# ( ; #) mod 2� ; (19)

with Mn
 and Mn

# being the n-times iterations of the map with respect to  and #,
respectively. There are two di¤erent kinds of �xed points. The elliptic ones, which are
at the centers of the islands, are stable. A �eld line very close to the elliptic point will
iterate on an elliptic orbit around that �xed point and will always stay close to it. At the
moment, elliptic �xed points are of no further interest to us. The hyperbolic ones, i.e. the
intersection points of the unperturbed separatrix, are located between the islands. They
are unstable. A �eld line close to the hyperbolic point will follow a hyperbolic orbit away
from the �xed point. These points and their unstable manifolds are the source of chaos
and anomalous transport [37].
Finding the hyperbolic points is extremely di¢ cult due to their unstable character.

But they can be determined numerically using a minimization method [52], [53]. The
problem is similar to solving a system of N nonlinear equations (N = 2 here)

Fi(~x) = Fi(x1; x2; : : : ; xN) = 0 1 � i � N : (20)

We have to minimize

f(~x) =
NX
i=1

(Fi(~x))
2 : (21)

Therefore we consider the function

g(t) = f(~a+ t � ~d) ; (22)

where ~a = (a1; : : : ; aN) is a chosen starting point and ~d = (d1; : : : ; dN) is a chosen direc-
tional vector. Now we have to �nd the minimum tmin of g(t). The next starting point is
then given by ~a1 = ~a + tmin � ~d, and we have to choose a new direction ~d1 in which the
one-dimensional minimization is then performed. To ensure the convergence, the proper
choice of the direction is important. The native choice for the direction would be the
gradient

~d = �rf(~a) ; (23)

but the conjugated direction method [52], which is outlined in the following, is more
e¤ective.
For one N -dimensional minimization step, we use N sub-steps

� Sub-step 0:

For the starting point ~x0, we choose the direction

~d0 = �rf(~x0):

By minimizing the function
g0(t) = f(~x0 + t � ~d0)

with respect to t, we get the new starting point

~x1 = ~x0 + tmin � ~d0:
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� Sub-step k + 1 (k < N � 1):
Using the directional vector

~dk+1 = �rf(~xk+1) + �k ~dk

with

�k =
jjrf(~xk+1)jj2
jjrf(~xk)jj2

we minimize gk+1(t) = f(~xk+1 + t � ~dk+1) with respect to t and calculate ~xk+2 =
~xk+1 + tmin � ~dk+1.

These steps are performed up to N � 1, then the procedure starts again at sub-step 0
with ~x0 = ~xN .
The one-dimensional minimization is performed in each sub-step using Newton�s method

to �nd the vanishing of the �rst derivative g0(t). Normally the second derivative g00(t) is
needed for Newton�s method. With ~y = ~x+ t � ~d we obtain

g0(t) = rf(~y) � ~d = 2
NX

i;j=1

@Fj
@xi

(~y)Fj(~y)di (24)

and

g00(t) = 2
NX

i;j;l=1

@2Fj
@xi@xl

(~y)Fj(~y)didl + 2
NX

i;j;l=1

@Fj
@xi

@Fj
@xl

(~y)didl : (25)

One can neglect the �rst term on the right-hand-side of the second derivative, so that the
second derivative can be approximated by products of the �rst derivatives. Note that all
values are those of the actual sub-step.
Using this simpli�cation we can approximate tmin by

tmin = �
g0(0)

~g00(0)
; (26)

with

~g00(t) = 2

NX
i;j;l=1

@Fj
@xi

@Fj
@xl

(~y)didl : (27)

This procedure converges very fast and will lead to both types of �xed points up to the
desired accuracy. The �xed point being found depends on the choice of the �rst starting
point. The best way to �nd �xed points in a certain area is to use a grid of starting
points.
Figure 1 shows a typical Poincaré plot for the magnetic �eld lines of the stochastic

plasma edge in TEXTOR. Three main resonances can be observed: the 10/4 island chain,
which is the last resonance in front of the wall, already in the laminar zone, the 9/4 island
chain at the transition to the laminar zone, and the 8/4 resonance close to the last closed
�ux surface. The elliptic and hyperbolic points of the period 9 island chain are marked.
The hyperbolic points are the source of chaos. Around them the chaos appears. Due

to the slightest perturbation, the separatrix splits into the stable and unstable manifolds.
The unstable manifold of a hyperbolic periodic �xed point is de�ned as the set of points
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Figure 1: Poincaré section of the TEXTOR-DED magnetic �eld at qa = 3:03. The period
9 elliptic points (circles) and hyperbolic points (crosses) are marked.

which converge under the map towards the �xed point for n! �1. The stable manifold
is the unstable manifold of the inverse map.
The manifolds show an oscillatory behavior close to a hyperbolic point [37]. The oscil-

lations of the stable and unstable manifold intersect in�nite times, while the area enclosed
by the intersection is preserved. Field lines within such enclosed areas are iterating from
one area to another [38]. Because the areas are getting very long and extremely thin, close
to the �xed point (note the increasing amplitude of the oscillations and the area preserving
property) two neighboring �eld lines are located in di¤erent areas and therefore iterate in
completely di¤erent ways.
Examples of a stable and an unstable manifold can be see in Fig. 2. The manifolds

oscillate around the period 9 islands, pass the last island chain with large loops and hit
the wall of the tokamak which is located at the top of the �gure.
To calculate the unstable manifold of a hyperbolic �xed point with period n, we choose

a starting-point ~x very close to the hyperbolic �xed point and calculate the 2n-th iterate
~y of ~x. Therefore we must know the position of the hyperbolic point precisely. The
line-element between ~x and ~y then approximates the unstable manifold very well, and by
iterating the line-element we get the unstable manifold [36], [37].

4 Manifold-wall-interaction

According to [37], the stable and unstable manifolds have in�nite connection lengthes,
and �eld lines close by have very large ones too. Strike points of the stable and unstable
manifolds with the wall should lie in the areas of large connection lengths. Further, the
�eld lines are following the unstable manifolds to the wall [37]. Since the manifolds deeply
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Figure 2: Same Poincaré section as Fig. 1, now with a stable (dashed line) and an unstable
manifold (solid line) of the period 9 island chain.

penetrate into the plasma, a large amount of heat deposition will be at the strike points of
the manifolds. But not only the unstable manifolds are important. The plasma particles
are either co-passing or counter-passing [30], [31], which means that they are either moving
in the direction of the �eld lines (following the unstable manifold), or against (following
the stable manifold). Note that the stable manifold is the unstable one for the reverse
direction [37]. So, we conclude that large connection lengthes are necessary for signi�cant
heat loads in order to have an e¢ cient transport from the (inner) hot plasma to the
(outer) cold boundary. But large connection lengths are not su¢ cient as we will see when
discussing the inner branches
For the interpretation the following observation is of great interest. In the Poincaré

section of Fig. 2 we showed (besides some �eld line intersections) continuous manifolds,
however only up to the �rst wall contact. A speci�c magnetic �eld line escaping from the
plasma will pierce the plane at discrete points close to the unstable manifold of a hyper-
bolic �xed point of the last resonant island chain. When continuing, e.g. the unstable
manifold, beyond the �rst wall contact, an additional part of the manifold appears which
turns around in a loop and re-enters the system (until it leaves the system again). An
additional intersection of the manifold with the wall occurs. This is shown in Fig. 3 for
an unstable manifold of the 4/2 resonance in the 6/2 base mode operation of the DED
(The �gure is used as a sketch for the similar situation in the 12/4 mode).
In Fig. 3 the unstable manifold crosses the wall �rst at about � = 3:62 turns around

and reenters the system at about � = 3:57 (see also Fig. 4). This repeats at � = 3 and
� = 2:82, respectively, until the manifold leaves the system totally at about � = 2:52. Note
that the manifold is not a projection of a �eld line into the Poincaré section. The unstable
manifold describes the unstable direction of the intersection points of �eld lines in the
Poincaré section. So, not all �eld lines which follow the unstable manifold have to leave
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Figure 3: Poincaré section of the DED in 6/2 base mode operation with an unstable
manifold (black line) of the 4/2 resonance at $q_a=3.16$. The manifold is continued
beyond the �rst wall contact. The wall is drawn at $r=0.477$ m. The iteration of two
di¤erent �eld lines is shown as dots and crosses, respectively.

Figure 4: Magni�cation of the boxed area of Fig.3.
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the system at the �rst wall contact of the manifold. Most do, but some skip the �rst loop
and leave the system at the next outgoing wall intersection. This is also shown in Fig. 3
for three di¤erent �eld lines. One �eld line (the intersections are marked by dots) moves
towards the wall and intersects the Poincaré section on the unstable manifold beyond the
�rst external loop of the manifold. Note that the �eld line has not crossed the wall in
between. The next intersection is already beyond the plotted area outside of the system.
This �eld line has skipped the �rst external loop of the manifold. Another shown �eld line
(the intersections are marked by crosses) intersects with the Poincaré section on the �rst
outgoing part of the unstable manifold very close to the wall and the next time outside
the system also already beyond the plotted area. This �eld line has left the system at the
�rst wall contact of the manifold (at a slightly increased toroidal angle). The third shown
�eld line (marked by squares) intersects the Poincaré section on the up going loop for the
last time inside the system. The next intersection is already on the second external loop
of the manifold. This �eld line has left the system either at the �rst or at the second
outgoing wall contact of the manifold. All the discussed �eld lines have large connection
lengthes. The important fact is that all particles following the �eld lines, strike the wall
at the outgoing parts of the manifold.
According to these results, we can identify the inner and outer branches of the strike

zones by the incoming and outgoing parts of the manifolds, respectively. The outer
branches correspond to the experimentally observed areas of large heat �uxes. The inner
branches, on the contrary, do not belong to an e¢ cient particle transport from hot, inner
areas towards the wall. Thus, it is understandable that they are not observed in the
experiments, although the connection lengths are large. The topologies of the last intact
island chains vary with qa. Therefore, also the strike zones change with qa, in accordance
with experimental observations [49].

5 Summary

Summarizing, we have analyzed the development of typical heat �ow patterns which ap-
pear due to ergodization of a plasma edge. For this purpose we concentrated on the
TEXTOR-DED fusion experiment in Jülich. The magnetic �eld structure and the map-
ping technique was outlined, combined with the method to calculate stable and unstable
manifolds. Measured heat �ow patterns are related to large connection lengthes. But the
stable and unstable manifolds of the hyperbolic points of the last intact island chain rule
the characteristic heat deposition patterns. When connecting all relevant strike points
of the stable and unstable manifolds, respectively, one exactly gets the heat �ux pattern
observed in the measurement.
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