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Abstract

An idea that the late Prof. Radu Balescu often pondered during his long and
distinguished scienti�c career was the possibility of constructing simple stochastic or
probabilistic models able to capture the basic features of the complex dynamics of
turbulent transport in magnetically con�ned plasmas. In particular, the application
of the continuous-time random walk (CTRW) concept to this task was one of his
favorites. In the last few years prior to his death, we also became interested in
applying (variations of the standard) CTRW to these problems. In our case, it was
the natural way to move beyond the simple paradigms based on sandpile constructs
that we had been previously studying. This common interest fueled an intense
electronic correspondence between Prof. Balescu and us that started in 2004 and
was only interrupted by his unexpected death in June 2006. In this paper, we pay
tribute to his memory by reviewing some of these exciting concepts that interested
him so much and by sketching the problems and ideas that we discussed so frequently
during these two years. Regretfully, he will no longer be here to help us solve them.

1 Introduction

Professor Emeritus Radu Balescu unexpectedly passed away on June 1, 2006 during a
trip to Romania at the age of 73 years. He hardly needs any introduction. Born in
Romania, he spent most of his scienti�c life in Belgium, at the Free University in Brussels.
Prof. Balescu was known world-wide thanks to his many remarkable contributions to the
�elds of statistical mechanics and plasma physics, some of which bear his name like the
famous Lenard-Balescu collision operator [1]. In recognition to his long scienti�c career,
he became the �rst recipient of the Hannes Alfvèn Prize awarded by the Plasma Physics
Division of the European Physical Society in 2000.
At the moment of his untimely death he was actively pursuing several ideas that had

interested him for many years. One of them, which is specially close to us as well, was
an old favorite of his: "the possibility of a model of anomalous transport problems in a
turbulent plasma by means of a purely stochastic process" [2]. The simplest example of the
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application of an stochastic model to bypass the complexity of the microscopic reality is
the use of a Langevin equation to describe the motion of a single Brownian particle [3]. In
this case, the complex background dynamics are substituted by an "e¤ective" stochastic
force with prescribed statistical properties. An alternative to prescribing an stochastic
force is to prescribe instead the motion of the particle in a probabilistic fashion. This is
the idea behind the continuous-time random walk (CTRW) concept, introduced by
Elliott W. Montroll in the 60s [4]. In 1995, Prof. Balescu was one of the �rst plasma
physicists to propose a construct based on the CTRW idea as a model for the sub-di¤usive
transport of guiding centers in regions with stochastic magnetic �elds [2]. His views on
this approach are described at length in the last book he published in 2005 [5]. It is an
extremely clear piece of work that deserves a very careful reading and that beautifully
illustrates his exploration of CTRWs as a possible alternative to more standard transport
frameworks.
During the last decade, we also had explored similar alternative avenues in an attempt

to understand and capture the essential dynamics of turbulent transport in plasmas. This
work, which we did along the years together with many other collaborators, successively
explored the use of cellular automata [6, 7, 8], fractional di¤erential equations [9, 10, 11]
and, of course, CTRWs [12, 13]. As a result of this con�uence of interests, it was only
natural that Prof. Balescu and us initiated an intense electronic correspondence in 2004
regarding the theory of inhomogeneous/nonlinear CTRWs and its application to problems
relevant to magnetically con�ned plasmas. He was even kind enough to devote the last
chapter of his new book to discuss some of our research on the topic [5]. As a result
of his interactions with us, he became convinced of the intimate relationship that exists
between CTRWs and fractional di¤erential equations (FDE), since the latter provide
the natural �uid limit of most CTRWs [14, 15, 16]. From that moment on, he became
extremely interested in �nding out if these FDE models could be endowed with some
physical basis by formally connecting them to (some simpli�ed form of) the microscopic
dynamics. Specially, for the case in which the CTRW/FDE models exhibit superdi¤usive
behavior which, in his own words, ".. remains a challenging open conundrum." [5]. As a
result, he started to investigate enthusiastically this connection.
To attack this di¢ cult problem, both him and us agreed to start from a simpli�ed

approach. In his own words again: "A tractable starting point is provided by a "semi-
dynamical approach", based on a V -Langevin equation: an equation of motion of New-
tonian (or Hamiltonian) type for a tracer particle moving in presence of a random po-
tential." [17]. That is, the starting point was to be the continuity equation for tracers
advected by an incompressible turbulent �ow with prescribed statistical properties:

@n

@t
+V � rn = 0: (1)

Traditionally, a quasi-linear renormalization procedure is used to derive the standard dif-
fusive equation, with e¤ective di¤usivity D � V 2

c �D (Vc is the characteristic �uctuating
velocity and �D the velocity decorrelation time), from Eq. 1 [18]. The basic assumptions
made in the process are the locality and the lack of memory of the �ow. Since FDEs are
precisely designed to keep both non-local and memory e¤ects, both him and us started to
try, in parallel but pursuing di¤erent approaches, di¤erent strategies that attempted to
avoid making these assumptions. In this way, we expected that FDEs could be derived as
well. In our case, we completed successfully the generalization by applying functional in-
tegration techniques to the �uctuating particle trajectories (assumed self-similar). Under
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appropriate assumptions, this path allowed us to connect Eq. 1 to the FDE models [19].
Prof. Balescu, on the other hand, followed his own approach. He explored the possibility
of introducing a non-local extension of an approximation similar to the Corrsin factoriza-
tion assumption of standard turbulent theory [17]. In his last communication with us, he
told us that he had �nally succeeded in connecting Eq. 1 with the FDE models in this
manner. He was going to present his new �ndings in a workshop on anomalous transport,
in which some of us would also participate, to be held in Bad Honnef, Germany, in July
2006. Regretfully, his unexpected death impeded it and we will probably never know now
what his solution to this problem was.
In this paper, we pay tribute to his memory by reviewing the exciting world of CTRWs

and FDEs. These models have found application in numerous problems beyond the mag-
netic plasma con�nement situations that Prof. Balescu was interested in, including many
problems in the earth and physical sciences [15, 16]. We will start by reviewing the fun-
damentals of CTRWs in Sec. 2, using as an illustration the beautiful application that
Prof. Balescu proposed to the problem of subdi¤usion in stochastic magnetic �elds [2].
Then, in Sec. 3, we will discuss the basic ingredient needed to construct CTRW models:
Lévy distributions. In Sec. 4, we will brie�y introduce fractional di¤erential operators
and show that CTRWs are connected to evolution equations that contain fractional dif-
ferencial operators in the limit of long distances and times (the so-called "�uid limit").
Finally, in Sec. 5, we will discuss the fundamental aspects of the renormalization problem
that connects Eq. 1 to FDEs and give some hints about how it can be solved. For further
study in any of these topics, we enthusiastically recommend the readers to explore Prof.
Balescu�s last book [5], the bibliography given at the end of this paper and all references
within them.

2 Continuous-time random walks

The CTRW is a generalization of the standard random walk [4]. In its simplest (separable)
form, it describes the motion of an arbitrary number of particles (or walkers), each of
which waits at its current position r0 for a lapse of time �t (a waiting-time) before
taking a step of size �r (a step-size) and moving to r = r0 +�r. After arriving at the
updated location, a new waiting-time is chosen and the process is repeated over and over.
Assuming that the system is invariant under time and space translations, �t and �r are
drawn by each walker from two prescribed probability density functions (pdf), p(�r) and
 (�t) which contain all the dynamical information of the system.
Therefore, to apply the CTRW construct to any problem, we simply need to choose

these two pdfs in a manner that captures the fundamental microscopic physics of the
problem. That, of course, is the di¢ cult part. We will discuss at length in Sec. 3 which
pdf choices, among the in�nite number available, appear to make the most physical sense.
But for the time being, it is su¢ cient to realize that, once the pdfs are known, the time
evolution of the density of walkers n(r; t)can be described by the following generalized
master equation (GME):

@n(r; t)

@t
=

Z t

0

dt0�(t� t0)

�Z
dr0p(r� r0)n(r0; t0)� n(r; t0)

�
; (2)

that simply states that the total number of particles is conserved [20]. Indeed, the �rst
(positive) term within brackets counts how many walkers move from r0 to r by performing
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a jump of appropriate length. The second (negative) term in brackets, counts how many
walkers leave the position r. Their sum gives the local rate of change in the number of
walkers (or more precisely, their density). Two additional facts must be kept in mind
regarding the GME:

1. The function � is usually called the memory function. Its Laplace transform is
related to the waiting-time pdf through the relationship: �(s) = s (s)=(1�  (s)).
Note that, were the triggerings of successive jumps uncorrelated (i.e., if there is no
memory in the process), the generation of the waiting-times must then be a Poisson
process, which requires that  (�t) = ��1o exp(��t=�0), being �0 the mean waiting
time. Then, use of the previous relation shows that �(t) = ��10 �(t). The GME
reduces then to a more standard Markovian master equation:

@n(r; t)

@t
=
1

�o

�Z
dr0p(r� r0)n(r0; t0)� n(r; t)

�
: (3)

Clearly, the past history of the system no longer plays any role once the time integral
has disappeared.

2. The second choice to make refers to the pdf of step-sizes, p. The most usual choice, in
the absence of motion bias, is theGaussian law: p(�r) = (2��)�n=2 exp(�j�rj2=2�2).
This choice, together with the exponential waiting-time pdf, allows to connect the
CTRW with a very familiar equation: the classical di¤usive equation. Indeed,
it is only needed to rewrite Eq. 3 as:

@n(r; t)

@t
=
1

�0

�Z
d�r0p(�r)n(r��r; t0)� n(r; t)

�
; (4)

carry out a simple Taylor expansion in around r, use the form of p(�r) and keep
only the lowest order to obtain:

@n(r; t)

@t
= Dr2n(r; t); D = �2=�0: (5)

The di¤usivity, as expected, is then obtained as the quotient between the aver-
age squared displacement, �2, and the average waiting-time, �0. � gives then the
magnitude of the mean step-size.

The power of the CTRW formalism lies in the fact that p(�r) and  (�t) need not be
respectively Gaussian and exponential, becoming thus suitable to model systems beyond
those with local, memory-less dynamics. Other pdfs can be chosen, which extends the
range of applicability of CTRW models to include non-local and non-Markovian situa-
tions. These situations often occur in practice and reveal themselves, for instance, when
measuring characteristic transport exponents of passive quantities or tracers by some �ow.
A well known fact about the classical di¤usive equation is that it implies the following
scaling for the mean tracer square displacement:


j�rj2
�
� Dt: (6)

In many practical cases, it is however found to scale as t2H , with H 6= 1=2 [15, 16]. When
H < 1=2 one typically speaks of subdi¤usion. When 1=2 < H < 1, of superdi¤usion.
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One example can be found in Prof. Balescu�s own work: the motion of guiding centers in
the presence of magnetic �eld �uctuations and of collisional di¤usion in the parallel (to
the average magnetic �eld) direction. The perpendicular (to the average magnetic �eld)
mean squared displacement is found to scale, for the simple model he examined, as [2]:


j�rj2
�
' 4 (�B)2�k �1=2k t1=2; t >> 1; (7)

where (�B) measures the relative amplitude of the magnetic �uctuations, �k is the par-
allel correlation length of the magnetic �uctuations and �k is parallel collisional di¤usion
coe¢ cient. Note that the transport exponent obtained from Eq. 7 is H = 1=4, which is
clearly subdi¤usive.
Prof. Balescu showed that the CTRW approach can provide an stochastic model

for this problem. Indeed, it is su¢ cient to realize that any CTRW constructed with a
Gaussian step-size pdf and a long-tailed waiting-time pdf that decays as (more details
about the meaning of this distribution are given in the next section):

 (�t) =
���0

�(1 + �)
(�t)�(1+�) + � � � ; � 2 (0; 1); �t!1 (8)

exhibits a squared mean displacement scaling given by:

j�rj2

�
� �(1 + �)

�
�2

��0

�
t�; (9)

where �(x) is Euler�s Gamma function. Clearly, comparing this expression with Eq. 7,
we can easily construct a one-dimensional CTRW model for the magnetic subdi¤usion of
guiding centers by choosing:

� = 1=2; �0 = �2k=2�k; �2 =
p
2��2�2k: (10)

These choices may seem rather arbitrary, but they can be justi�ed heuristically by physical
arguments [2, 5]. Note also that the choice for the characteristic perpendicular jump
length � gives dependencies on both the magnetic �uctuation amplitude and the parallel
correlation length which are consistent with the famous Rechester-Rosenbluth formula
for this process [21]. Use of these parameters in Eq. 2 provide us with a working CTRW
model to study the magnetic subdi¤usion of guiding centers.
The simple example just described illustrates on of the ways in which CTRW models

can be used to retain �physical memory e¤ects, in any description of transport (we will
also discuss a di¤erent possibility later). The choice of the non-exponential waiting-
time pdf yields a non-trivial memory function in Eq. 2. In addition, non-local (spatial)
e¤ects can also be retained by choosing a non-Gaussian step-size pdf. This versatility of
CTRWs was precisely what got us interested in them at the end of 2003. At the time,
we were exploring di¤erent possibilities of going beyond the simple sandpile models that
had been proposed in the mid-90s as the simplest paradigm of turbulent transport within
a tokamak plasma [6, 7]. These sandpile models were very simple: they consisted of a
chain of individual cells that were driven by intermittently adding sand grains from above.
When the sand slope between any two successive cells overcame a prescribed threshold
value (i.e., a critical sand slope), some amount of sand was removed from the unstable
cell and transported to its next neighbor down the slope. From a plasma perspective, the
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chain of cells of the sandpile can be seen as a proxy for the tokamak radial direction, with
each cell being say, a turbulent eddy attached to a di¤erent rational surface [23, 24]. The
sandpile critical slope plays the role of the local threshold for instability that, if overcome,
will drive a local turbulent �ux (i.e., the amount of sand transported between successive
cells) in order to bring the plasma pro�les back to subcritical values.
The sandpile was, in spite of its sketchy character, extremely useful to identify some

elements that should also play a role in plasma dynamics. In particular, it helped to make
clear that transport can exhibit both non-local and memory e¤ects when the system pro-
�les are kept very close to its local threshold for instability via external forcing [22, 23].
Indeed, this situation makes possible that a chain of successive relaxations could take
place, usually known as avalanches, whose maximum size is only limited by the number
of cells in the system. Their existence implies that, if we are interested in character-
izing transport only over time scales which are much longer than the time required for
avalanches to traverse the system, transport through the system would behave essentially
non-locally. On the other hand, information about the triggering of previous avalanches
is stored in the system through the continuous carving of the pro�les carried out by them,
which a¤ects the triggering of future avalanches and provides the system its "memory".
The relevance of this type of dynamics in the case of magnetically con�ned plasmas was

soon con�rmed by actual plasma turbulence simulations in which the system pro�les were
forced to evolve in the neighbourhood of their local instability thresholds [24, 25, 26, 27].
Some experimental evidence also was reported suggesting that this might be the dominant
situation in some relevant tokamak regimes [28, 29, 30, 31, 32]. But the main lesson
learned from these studies was that it might be necessary to go beyond descriptions of
transport based on the classical di¤usive equation and embrace instead models capable of
including both non-locality and memory e¤ects. That was our initial drive to investigate
both CTRWs and FDEs.
As a proof of principle, and very much in the spirit of Prof. Balescu�s previous work,

we showed that a (nonlinear) CTRW can be constructed that captures much of the spirit
of the sandpile and that exhibits phenomenology qualitatively similar to what is typically
observed in tokamak experiments [12, 5]. The key is to construct a Markovian CTRW
with an exponential waiting-time pdf but with a one-dimensional inhomogeneous step-size
pdf like,

p(�x;x0; t) = �(x0; t) p1(�x) + (1� �(x0; t)) p2(�x); (11)

where �(x0; t)) is a suitable projector that contains the critical threshold condition (say, a
critical gradient) and that allows to switch locally from a sub-critical to a super-critical
transport channel. It may seem puzzling at �rst to note that we chose a Markovian
CTRW in spite of the fact that the sandpile that it tries to model has a "memory"
which is stored in its pro�les. But memory e¤ects are still captured within this CTRW
through the threshold condition which is contained within the projector �(x; t). This
alternative scheme is thus quite di¤erent to that used in Prof. Balescu�s CTRW, but
closer to the physics of the system. It is another illustration of the breadth of possibilities
that the CTRW framework o¤ers. Finally, one must choose p1 and p2, the step-size pdfs
respectively associated to sub-critical and super-critical transport, so that they capture
the basic features of the microscopic physics of each channel. Since we expect that the
system behaves normally when no instability is excited, we chose a Gaussian pdf for the
sub-critical channel, so that subcritical transport is di¤usive. But, to capture the non-
local features characteristic of the sandpile avalanches, we made a di¤erent choice for p2:
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a symmetric Lévy pdf.

3 Lévy distributions

When implementing a CTRW model, one always has to make two choices: a waiting-
time pdf and a step-size pdf. Since these choices must somehow re�ect the cumulative
e¤ect of many microscopic processes (such as, for instance, molecular collisions), it seems
physically well justi�ed to use pdf forms that satisfy the central limit theorem. That
is, limit distributions that are strictly stable with respect to the sum of N independent
and identically distributed (i.i.d.) random variables [33]. These pdfs are known as the
Lévy (or Lévy-Gnedenko) family of pdfs. They contain as a special case the Gaussian
distribution, which becomes the only stable distribution if each of the random variables
is also required to have a �nite variance [33].
The Lévy family is de�ned in terms of three parameters. Its members are denoted

by L�;�;�(y). They can be de�ned in closed form in terms of their Fourier transform or
characteristic function as (0 < � � 2, j�j � 1) [34]:

L�;�;�(k) = exp
h
���jkj�

�
1� i� sgn(k) tan

���
2

��i
: (12)

The three labels [�; �; �] de�ne the properties of each distribution.

� First, � measures the asymmetry of the distribution. This comes from the fact
that:

L�;�;�(y) = L�;��;�(�y): (13)

It can vary within �1 � � � 1 except when � = 1; 2, for which only � = 0 is
possible.

� Secondly, � gives the asymptotic behavior of the distribution at large y. All Lévy
distributions exhibit heavy tails if 0 < � < 2 . In fact, for � 6= 1, it holds that:

L�;�;�(y) �
(
C�
�
1��
2

�
�� jyj�(1+�) ; y ! �1

C�
�
1+�
2

�
�� jyj�(1+�) ; y ! +1

(14)

where the constant is given by:

C� =
(�� 1)�

�(2� �)cos(��=2)
; (15)

In the special case � = 1, the PDF decays as L1;0;�(y) � (�=�)jyj�2. And when � = 2,
one recovers the standard Gaussian distribution.

� Finally � is called a scale parameter because:

L�;�;�(ay) = P�; sgn(a)�;jaj�(y) (16)
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Extremal Lévy distributions

Waiting-time distributions must satisfy an additional constraint: they must be de�ned
only for positive waiting-times! Luckily, this kind of distribution also exists within the
Lévy family. They are a subset of the extremal Lévy distributions, which are those with
maximum skewness value: � = �1 for � 6= 1; 2. In this case, according to the previous
equations, the power-law decay is only observed in one tail, the other decaying instead
exponentially. In the case of 1 < � < 2, � = +1 implies that the exponential tail exists
for y ! �1, while � = �1 has a right exponential tail for y ! 1. For 0 < � < 1 the
extremal distributions are one-sided [35]: they are de�ned only for y > 0 if � = 1 and for
y < 0 if � = �1. In that case, the exponential tail is found in the limit y ! 0+ for � = 1,
and for y ! 0� for � = �1.
An important property is that their Laplace transform is given by:

L�;1;�(s) = exp

�
� ��

cos(��=2)
s�
�
: (17)

As an illustration, note that the waiting-time pdf choice used by Prof. Balescu�s
to construct his CTRW model for stochastic magnetic subdi¤usion that we discussed
previously would be the extremal Lévy distribution  (�t) = L1=2;1;�0(�t).

Moments of Lévy distributions

The reason why Lévy distributions with � < 2 are appropriate choices for step-size
pdfs if we are interested in constructing a CTRWmodel with non-local features is because
of the following property: all moments higher than � are in�nite. That is, the momenta
of L�;�;�(y) verify:

< jxjp >=
�
1; p � �
[c�;�(p)]

p�p; p < �
(18)

where the coe¢ cient is not relevant for our discussion (it can be found in Ref. [34]).
Thus, only the Gaussian distribution (� = 2) has a �nite variance. As a result, the
characteristic transport length provided by � in the case of a Gaussian ceases to exist for
� < 2. Transport is, in this sense, non-local and scale-free.

Explicit expressions of Lévy distributions

There are only three Lévy distributions for which an analytical expression exists [34].
The Cauchy distribution. Its real space representation is:

L1;0;�(y) =
�

�(y2 + �2)
; (19)

the Gauss distribution,

L2;0;�(y) =
1

2�
p
�
e�y

2=4�2 ; (20)

(note that the relation of � with the usual width w of the Gaussian is thus 2�2 = w2) and
the Lévy distribution,

L1=2;1;�(y) =
� �
2�

�1=2 1

y3=2
e��=2y: (21)

To conclude, we will give some hints on how to use the Lévy pdfs to choose the pdfs
to construct a CTRW model with certain desired transport properties. As we mentioned
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before � and illustrated with Prof. Balescu�s example�, CTRWs are useful to model
transport in systems where subdi¤usion or superdi¤usion occurs [15, 16]. The way to do
it is to remember that, if we choose the symmetric Lévy pdf L�;0;�(�x) as step-size pdf,
and the extremal Lévy pdf L�;1;� (�t) as waiting-time pdf, the mean particle displacement
follows the scaling:

hj�xj�i / �(1 + �)

�
��

��0

�
t�; t >> 1: (22)

Note that this relation implies that the transport exponent is H = �=�. Thus, subdi¤u-
sion ensues whenever �=� < 1=2 and superdi¤usion when �=� > 1=2. The correct ratio
between exponents is thus set by the observed transport exponent H. Next, appropriate
considerations about locality and Markovianity can be used to determine their precise
values. For instance, in Prof. Balescu�s example about subdi¤usion of guiding-centers in
magnetic turbulence, �=� = 1=4. He includes memory e¤ects but there is no non-locality
in the model. Thus, the correct choices are � = 2 and � = 1=2. The scale factors are
then chosen to match the observed pre-factor of the mean displacement scaling [2].

4 Fluid limit of CTRWs: fractional di¤erential equa-
tions

To conclude our review of the fundamentals of CTRWs we will prove in what follows that
their "�uid limit" is rewritten in terms of fractional di¤erential operators [14]. But before
doing that, we will brie�y introduce what these operators are.

4.1 Crash course on fractional di¤erential operators

The Riemann-Liouville fractional derivative operators can be de�ned explicitly by means
of the integral operators [36]:

D�
a x f(x) �

1

�(p� �)

dp

dxp

�Z x

a

f(x0)dx0

(x� x0)��p+1

�
;

D�b
x f(x) �

�1
�(p� �)

dp

d(�x)p

�Z b

x

f(x0)dx0

(x0 � x)��p+1

�
: (23)

In this expressions, �(x) is the usual Euler Gamma function, and p represents one plus
the integer part of �. a [or b] is called the start [end] point of the operator. In the cases
in which the start point a or the end point b extend all the way to in�nity, we will use
the notation:

d�f

dx�
� D�

�1 x f(x)
d�f

d(�x)� � D�+1
x f(x) (24)

These operators have very interesting properties. For integer � they reduce to the
standard derivatives. Like them, they are linear. But it is not true that the fractional
derivative of a constant is zero. Also, they must be combined appropriately with integer
and non-integer derivatives and they do not satisfy the simple chain rule [36]. Their non-
local character comes from the fact that, to compute the value of the fractional derivative
of some quantity at a given point, one has to integrate that quantity over the whole
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domain! So why bother with them at all if they are so complicated? The reason is that,
under Fourier transformations, they satisfy that:

F

�
d�f

dx�

�
= (�ik)�f(k); F

�
d�f

d(�x)�

�
= (ik)�f(k): (25)

This property is the key to their prominence in CTRW theory, as we will show shortly.
Another useful fractional operator is the so-called Riesz fractional derivative opera-

tor [36], which de�ned as the symmetrization:

d�

djxj� � �
1

2cos (��=2)

�
d�

dx�
+

d�

d(�x)�

�
: (26)

Its usefulness comes from the fact that the Riesz operator veri�es, under Fourier transform,
that:

F

�
d�f

djxj�

�
= �jkj�f(k): (27)

The last fractional operator we will introduce is the Caputo fractional derivative op-
erator, which is de�ned as [36]:

d�c f

dct�
(x) � 1

�(� � p)

Z t

0

dpf

dtp
(�)

d�

(t� �)�+1�p
; (28)

where p is one plus the integer part of �. The Caputo fractional derivative is usually
associated to derivatives in time. Its non-Markovian character is also clear: to calculate
the Caputo time derivative of any quantity, one has to integrate that quantity over all
its past history! Its importance comes from the fact that the Laplace transform of the
Caputo derivative veri�es [36]:

L

�
d�c f

dct�
(t)

�
= s�f(s)�

p�1X
k=0

s��k�1 � d
kf

dtk
(0); (29)

which depends only on the initial values of f(t) and its integer derivatives.

4.2 Finding the �uid limit of CTRWs

We are now in good shape to calculate the "�uid limit" of any CTRW [14]. But for
simplicity, we will restrict the calculation to the case in which we choose the symmetric
Lévy pdf L�;0;�(�x) as step-size pdf, and the extremal Lévy pdf L�;1;� (�t) as waiting-time
pdf. The calculation is very simple. By "�uid limit" one should understand an equation
that captures the characteristic features of the CTRW transport in the limit of very long
distances and very long times. Formally, we do this calculation in the limit of an in�nite
system. Then, the limit of long distances is equivalent to making k ! 0 in Fourier space.
Similarly, the limit of long times can be carried out in Laplace space by making s ! 0.
Thus, we take the Fourier-Laplace transform of the GME (Eq. 3):

sn(k; s)� n(k; 0) = �(s)(p(k)� 1)n(k; s); (30)
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where we have applied the convolution theorem and the de�nition of the Laplace transform
of a derivative. This equation can in fact be solved to give the Fourier-Laplace transform
of the density of walkers:

n(k; s) =
n(k; 0)

s� �(s)(p(k)� 1) =
n0(k)(1�  (s))

s(1�  (s)p(k))
; (31)

where we have rewritten the memory function in terms of the Laplace transform of the
waiting-time pdf. n0(k) is the prescribed (Fourier transform of the) initial density of
walkers. Eq. 31 is known as the Montroll-Weiss equation [4].
We can now take the �uid limit by taking k ! 0 and s ! 0 in either the Montroll-

Weiss equation or in Eq. 30. To do it, we simply assume that both p and  are chosen
from within the Lévy family, as the central limit theorem advices. Then, it is trivial to
realize using the properties we discussed before that for small k:

p(k) = L�;0;�(k) ' 1� ��jkj�: (32)

Similarly, the Laplace transform of positive extremal Lévy pdfs, given by Eq. 17, behaves
at small s as:

 (s) = L�;1;�0 ' 1� A�1� ��0 s
�: (33)

where we have also included the exponential law if � = 1 and de�ned the constant:

A� =

�
cos
�
��
2

�
; � < 1

1; � = 1
(34)

Inserting now Eqs. 33 and 32 in Eq. 30, the �uid limit of the Montroll-Weiss equation
becomes:

n(s; k) ' n0(k)
�
s+D[�;�]s

1��jkj�
��1

: (35)

where the coe¢ cient D[�;�] = A��
�=�� has been de�ned. Eq. 35 can be rewritten as:

sn(s; k)� n0(k) = �D[�;�]s
1��jkj�n(s; k): (36)

We can now use the properties of the fractional operators with respect to the Fourier
or Laplace transforms. For instance, using Eq. 27 we can Fourier-invert Eq. 36. The
result is thus an FDE in space:

sn(s; x)� n0(x) = D[�;�]s
1�� @

�n

@jxj� : (37)

Analogously, we carry out the Laplace inversion of Eq. 37 next. We do it by multiplying
�rst both sides by s��1 and then using the properties of the Caputo fractional di¤erential
operator (Eq. 28) with respect to the Laplace transform (Eq. 29) to write the following
FDE in space and time:

@�c n

@t�c
= D[�;�]

@�n

@jxj� : (38)

Of course, if � = 2 and � = 1, one recovers the standard di¤usive equation.
One thing must be made clear at this point. Using a FDE equation like Eq. 38

with exponents � and � and appropriate e¤ective fractional di¤usivity D[�;�] is almost
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equivalent (at least if we only care about long distances and times) to using a CTRW with
p = L�;0;�(�x) and  = L�;1;�0(�t). Then, what are the advantages of FDEs? Mainly,
that many properties of FDEs are known analytically. For instance, their propagators [15].
From a numerical point of view, both CTRW and FDEs can be implemented numerically
quite easily [36]. Each has certain advantages and disadvantages. Probably, CTRWs are
easier to implement when one needs to use absorbing boundary conditions. On the other
hand, FDEs are probably easier when we want to apply Neumann or Dirichlet boundary
conditions [37], but one has to regularize �rst the fractional operators close to the limits
of the integrals to avoid divergences [38].

5 Towards a "fractional" renormalization

We hope that the attentive reader will be already convinced of the usefulness of CTRWs
and FDEs to model transport in systems with dynamics that exhibit non-local and/or
memory e¤ects. But what is the physical basis of these models? Can they be derived
from some reasonable form of the microscopic dynamics? This was probably the problem
that excited Prof. Balescu�s interest the most during the last two years of his life. How
can one construct a formal procedure to derive equations like Eq. 38 from a simpli�ed
form of the microscopic dynamics of the particles being transported? As the quest for
answers to these questions advanced, we exchanged numerous e-mails with him in which
we discussed our respective (slow) progress. We will use this last section to explain the
initial point of our investigations and sketch the two possible solutions: Prof. Balescu�s
and ours. But we will not discuss them in detail (that will require a pretty long article in
itself), pointing instead the interested reader instead to some references that contain our
own solution to it.
The idea is to deal with particles which are advected by a background turbulent �ow

and to assume that the �ow characteristics are not a¤ected by the tracer motion. That
is, the particles behave like tracers. The equation of motion of each tracer is then given
by:

dr

dt
= V(r; t); (39)

where V(r; t) is the incompressible nD-dimensional turbulent �ow with some prescribed
statistical properties. The associated �kinetic�equation is the continuity equation for the
the density of tracers [5],

@n

@t
+V � rn = 0: (40)

What we look for now is any transformation procedure that converts Eq. 40 into a
linear transport equation of the class de�ned by Eq. 38. This procedure will be referred
to as a renormalization. In the case in which the �nal result is the classical di¤usion
equation, the simplest (and oldest) renormalization known is that based on quasi-linear
theory (QLT) [18]. It starts by separating the ensemble-averaged h i and the �uctuating
(~) parts of Eq. 40 (note that we use the notation hAi � A0 all throughout this section),

@n0
@t

+V0 � rn0 = �
D
~V � r~n

E @~n
@t
+V0 � r~n+ ~V � r~n = �~V � rn0 +

D
~V � r~n

E
(41)

where the ensemble is carried out over multiple realizations of the �ow V(r; t).
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Standard QLT proceeds now by neglecting all second-order terms only in Eq. 41.
Then ~n is solved in terms of V0 and rn0 by means of a Green function or propagator.
The result is then inserted in Eq. 41, that becomes an advection-di¤usion equation with
a renormalized eddy di¤usivity [18].
In our case, it is however better to retain ~V � r~n in Eq. 41 and neglect only the

contribution to ~n from <~V �r~n>, which can be shown by iteration that yields a vanishing
contribution (to lowest order) when inserted in Eq. 41 [5]. The reason for this non-
standard approach is that one deals then with the exact propagator, not that associated
to the mean �ow V0, which opens up the possibility of examining the case V0 = 0 and
avoid any asymmetries introduced by a mean �ow. The propagator for Eq. 41 (assuming
G(~r; 0) = 0) then satis�es:

@G

@t
+ ~V � rG = �(r� r0; t� t0); (42)

whose formal solution is (for t > t0),

G(r� r0; t� t0) = � (r0 �R(t0jr; t)) : (43)

The characteristic R(t0jr; t) results from solving Eq. 39 backwards in time (from t to t0):

dR

d�
= ~V(R; �); R(t) = r: (44)

We can then write the solution for ~n(r0; t0) in terms of the propagator (Eq. 43) and
insert the result in Eq. 41 to obtain:

@n0
@t

= r �
�Z t

0

dt0
D
~V(r; t)~V(R(t0jr; t); t0) � rn0(R(t0jr; t); t0)

E�
: (45)

Note that, in contrast to the more standard QLT result [18], rn0 depends on the
turbulent part of the �ow through R(t0jr; t) and cannot be taken out of the ensemble
average. This implies that Eq. 45 is clearly non-Markovian (due to the time integral over
the past history of the mean density gradient) and probably non-local (due to the char-
acteristic appearing in the �rst argument of the mean density gradient. The traditional
QLT shortcut is to assume the localization hypothesis [5]: rn0(R(t0jr; t); t0) ' rn0(r; t0).
Then, Eq. 45 turns into:

@n0
@t

' r �
�Z t

0

dt0CL(t0; t)rn0(r; t0)
�
: (46)

where we have de�ned the standard Lagrangian correlation matrix as:

CL(t0; t) =

Z
dr
D
~V(r; t)~V(R(t0jr; t); t0)

E
: (47)

In this way, the new equation (Eq. 46) is still non-Markovian, but becomes local!
An additional assumption of the standard QLT procedure eliminates also the non-

Markovian character of Eq. 46. After assuming homogeneity and isotropy (i.e., CL(t0; t) =
CL(t � t0)), one chooses an exponentially decaying Lagrangian correlation with some
decorrelation time �c,

CL
ij(�) = V 2

c exp(��=�c)�ij: (48)
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This assumption is tantamount to saying that the �ow "forgets" its past local history
after a lapse of time �c has passed. Memory e¤ects thus disappear for time lags larger
than �c and Eq. 46 then becomes [18]

@n0
@t

' Dr2n0(r; t); D = (V 2
c �c); (49)

with an eddy di¤usivity D that depends only on the �ow properties.
Our problem can then be formulated as the following question: How can one modify

the QLT procedure to allow the derivation of FDEs, which are in general non-local and
non-Markovian? The answer is clear. One has to avoid making the two ansatzs just
discussed: the locality hypothesis and the exponentially-vanishing memory. The latter is
the easiest one to avoid. One needs simply to make a di¤erent choice for the Lagrangian
correlation in Eq. 46. For instance, one that decays as a power-law instead [39]. Indeed,
this permits the derivation of FDEs with fractional time derivatives (even when there are
important subtleties in the process that need to be taken into account [19]). But how can
one also include the non-local e¤ects? That is, how can one derive equations in which
� < 2 in Eq. 38? This is the question that both Prof. Balescu and us started to attack
in 2004.
Clearly, the key to �nding an answer is to avoid assuming the locality hypothesis.

That is, to deal with the full Eq. 45 and compute the triple-product ensemble average.
This is a challenging problem. To �nd a solution, it is worthwhile to we rewrite Eq. 45 in
its form prior to integrating the propagator G:

@n0
@t

= r �
�Z t

0

dt0
Z
dr0 rn0(r0; t0) �

D
~V(r; t)~V(r0; t0)G(r; tjr0; t0)

E�
: (50)

The idea is then to �nd ways to estimate the ensemble average
D
~V(r; t)~V(r0; t0)G(r; tjr0; t0)

E
and manipulate it until it becomes the kernel that appears in the de�nition of both tem-
poral and spatial fractional di¤erential operators (Eq. 23).
Our approach to this calculation, which is described in detail in Ref. [19], consisted in

applying functional integration techniques to the �uctuating particle trajectories (assumed
self-similar). In the one-dimensional case, it is shown that the renormalization scheme we
constructed, allows to reduce Eq. 40 to the usual fractional di¤erential equations (i.e., like
Eq. 38) under quite general conditions. The "fractional order" of the resulting transport
FDE depends on two exponents, H and �, which are respectively related to the degree
of correlation of the Lagrangian velocity series of the �ow (i.e., H is its Hurst exponent)
and to the exponent of the asymptotic tail of the pdf of the Lagrangian cumulative
velocities rescaled appropriately [19]. These two exponents can be combined to de�ne the
third exponent, � � �H, that provides the temporal FDO appearing in Eq. 38 and that
determines whether the resulting FDE is Markovian (� = 1)or not (� 6= 1).
Prof. Balescu�s idea, on the other hand, was rooted in the search for generalizations

of the so-called Corrsin hypothesis, which assumes that [18]:D
~V(r; t)~V(r0; t0)G(r; tjr0; t0)

E
'
D
~V(r; t)~V(r0; t0)

E
hG(r; tjr0; t0)i : (51)

Then, one needs to insert reasonable ansatzs for both the Eulerian correlation function,
CE �

D
~V(r; t)~V(r0; t0)

E
and the averaged �ow propagator. In his last communication with

us, Prof. Balescu told us that he had found a solution along these lines but, regretfully,
the details of his derivation will probably remain unknown [17].
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6 Conclusions

Prof. Balescu was a man with profound physical insight and a never-ending curiosity for
everything scienti�c. We enjoyed greatly our short interaction with him and bene�ted
greatly from it both personally and professionally. He will certainly be missed. We also
hope that the short stroll we just took through his latest interests will contribute to
make his memory even larger for the younger physicists that did not have the privilege of
meeting or interacting with him.
As we have shown, the CTRW/FDEmay provide with a powerful stochastic/probabilistic

framework to model transport in systems where non-di¤usive behaviour is observed. The
essential information required to formulate these models are the probability distributions
(for the CTRWs) or the relevant exponents (for the FDEs), but both are intrinsically
connected. The physics of anomalous transport in magnetically con�ned plasmas appears
to be one of these systems where non-di¤usive e¤ects may be dominant, as suggested by
numerical simulations and some experimental evidence. We feel con�dent that some of
the ideas reviewed in this paper will �nd wide application in this �eld in the near future.
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