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Abstract

We review the construction of gauge field theories from BRST first-quantized systems and its
relation to the unfolded formalism. In particular, the BRST extension of the non-linear unfolded
formalism is discussed in some details.

1 Introduction

This contribution is based on the papers [1, 2, 3].
Hamiltonian BFV-BRST quantization [4, 5, 6] as a tool for constructing gauge invariant field

theories was originally used in the context of open string field theory in the mid eighties (see [7] for
an early review). Soon thereafter, this approach was also used to describe higher spin gauge theories
at the free level [8, 9, 10]. Despite several attempts to constructing consistent interactions in this
approach [11, 12], the full interacting theory was eventually constructed in the so-called unfolded
formalism [13, 14, 15].

In the latter approach, the theory is formulated at the level of equations of motion while con-
structing a Lagrangian is a separate problem that usually requires introducing additional structures.
Recently [2], the relation between the unfolded and the BRST approach has been understood at the
free level: an extended BRST parent system has been explicitly constructed which gives rise upon dif-
ferent reductions both to the standard Fronsdal formulation and to the unfolded form of the equations
of motion. From the first-quantized point of view, the construction of the parent theory corresponds
to a version of extension used in Fedosov quantization [16, 17]. More precisely, this version is adapted
to the quantization of cotangent bundles [18].

In this contribution, we develop further the general considerations of [2] concerning the interacting
case by describing in more details the BRST extension of the general non-linear unfolded equations.
We explicitly show that this BRST extension is well suited for the problem of incorporating additional
constraints and the analysis of various reductions. We also propose a geometrical interpretation of
the BRST extended unfolded formalism in terms of supermanifolds and show how it generalizes the
so-called AKSZ construction [19].

2 Generalities on the BRST formalism

In this section, we review the BRST construction in the non-Lagrangian/non-Hamiltonian case. We
want to emphasize here that the standard construction of the BRST differential (see e.g. [20]) does
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in general not depend on the existence of an even/odd bracket structure together with a generator
(BRST charge/master action) and can be constructed in terms of constraints and gauge generators
alone. In the exposition we closely follow [20].

The relevance of the non-Lagrangian generalization of BRST theory was emphasized recently in [2],
where a non-Lagrangian version of generalized auxiliary fields [21] was developed in order to discuss
possibly non-Lagrangian theories which become Lagrangian after elimination/addition of unphysical
degrees of freedom. The rationale behind this is the idea that no physical principle can force one to
require unphysical dynamics to follow from a variational principle. This approach has proved useful
both in the general setting and in the context of higher spin gauge theories. More recently, the
BRST theory for non-Lagrangian/non-Hamiltonian systems was also studied in [22], where the non-
Hamiltonian BRST formulation was extended to incorporate weak Poisson structures and to describe
their quantization.

Consider a phase/configuration space M0 and assume the physical system to be restricted to a
submanifold Σ0 ⊂ M0 described by some constraints/equations of motion. For a gauge system, Σ0 is
in addition foliated by integral submanifolds (leaves = gauge orbits) of an integrable distribution and
all points of a single integral submanifold describe the same physical state.

In the simplified, finite-dimensional setting we discuss now, let Σ be specified by regular equations
Ta = 0 and the distribution determined by a set of vector fields Rα on M0, which restrict to Σ. The
integrability condition on Σ takes the form

[Rα, Rβ] = Uγ
αβRγ + . . . (1)

where . . . denote terms vanishing on Σ. Note that there is some freedom for the choices of T and R.
The physical degrees of freedom are coordinates on the reduced space which is the quotient of Σ

modulo the gauge orbits. The basic idea of BRST theory (either Batalin–Fradkin–Vilkovisky in the
Hamiltonian or Batalin–Vilkovisky in the Lagrangian context [23, 24, 25, 26, 27] ) is to describe physical
quantities as the cohomology of an appropriately constructed BRST differential instead of explicitly
solving constraints and taking the quotient with respect to the gauge orbits. The construction of the
BRST differential involves two steps.

The first step consists in reducing to Σ. For simplicity, constraints Ta are assumed to have at
most first order reducibility relations. This means that there exist functions ZA

a such that TaZ
a
A = 0

and matrix Za
A has maximal rank on Σ, so that that there are no further reducibility relations. We

also assume that M0 is not a supermanifold and therefore the constraints and gauge generators are
Grassmann even. The cohomological description of the reduction is given by the Koszul-Tate complex:
one introduces Grassmann odd variables Pa, |Pa| = 1 and Grassmann even variables ρA, |ρA| = 0 and
considers then the algebra F0 of smooth functions on M0 with values in polynomials in P and ρ. This
algebra is graded according to the “antighost number”, F0 = ⊕i > 0F0

i , with

antigh(P) = 1 , antigh(ρ) = 2 . (2)

The Koszul-Tate differential δ :F0
i → F0

i−1 is given by

δ = Ta
∂

∂Pa
+ PaZ

a
A

∂

∂ρA
. (3)

Its nilpotency δ2 = δδ = 0 follows from the reducibility identity TaZ
a
A = 0. The cohomology of δ is

concentrated in degree zero and is given by functions on Σ:

H0(δ,F0) = C∞(Σ) , Hi(δ,F0) = 0 i > 0 . (4)

The next step is the factorization by the gauge orbits. Consider the space F0 of functions on M0

with values in polynomials in some Grassmann odd variables Cα. This algebra is graded according to
the “pure ghost number”, F0 = ⊕i > 0F i

0, with puregh(C) = 1. Because of (1), the vector field

γ = CαRα − 1

2
CαCβUγ

αβ
∂

∂Cγ
, (5)
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is nilpotent on Σ, i.e., γ2 is proportional to constraints Ta. In pure ghost number zero, the cohomology
of γ in C∞(Σ) ⊗ ∧

(C) is given by functions on Σ annihilated by Rα (i.e., functions on Σ that are
constant along the gauge orbits). Note that in contrast to δ, higher cohomology groups of γ do not
vanish in general.

Let us consider now F = ⊕i,j > 0F i
j , the space of functions on M0 with values in polynomials

in C,P, ρ. Algebra F is to be identified with the algebra of functions on a supermanifold M called
extended phase (or configuration) space. The natural degree in F is given by the difference of the
pure ghost number and the antighost number: for a homogeneous element f

gh(f) = puregh(f)− antigh(f) . (6)

The fact that γ is nilpotent up to terms vanishing on Σ can be reformulated as nilpotency of γ in
the cohomology of δ. Both vector fields γ and δ can be extended to F in such a way that δ remains
nilpotent while γ commutes with δ. The existence of additional vector fields s1, s2, . . . of antighost
number 1, 2, . . . such that

s = δ + γ + s1 + s2 + . . . , gh(s) = 1 , (7)

satisfies s2 = 0 is then guaranteed because the cohomology of δ is concentrated in antighost number
zero.

Let us recall how the BRST construction specializes to the case where M0 is the field space of
the Lagrangian system described by the gauge invariant action S(φ). In this case constraints Ta are
equations of motion ∂

∂φa S = 0 while the gage generators are symmetries of the action i.e., Noether
identities RαS = 0 hold. At the same time the Noether identities imply that equations of motion are
not independent: Ra

α
∂

∂φa S = 0.
Because the equations of motion can be considered as components of a 1-form on the field space

while reducibility identities and the gauge symmetries are determined by the same generators Rα =
Ra

α
∂

∂φa there is a natural odd Poisson bracket (antibracket) in F which is determined by
(
φa,Pb

)
= δa

b ,
(Cα, ρβ

)
= δα

β . (8)

In this context variables Pa and ρα are called antifields and usually denoted by φ∗a, C∗α. Note that
the bracket is Grassmann odd and carries ghost number 1. The BRST differential of the Lagrangian
gauge system can be taken to be canonically generated in the antibracket. Namely, for such an s there
exists a generating function S ∈ F with |S| = gh(S) = 0 such that

s =
(
S, · ) ,

1

2

(
S,S

)
= 0 . (9)

The function S is called master action while the second equation ensuring nilpotency of s is referred
to as the master equation. The expansion of S in the antifields reads as

S = S + PaR
a
αCα + 1

2
ραUα

βγCβCγ + . . . , (10)

where . . . denote higher order terms in the expansion with respect to the the antighost number. This
BRST construction and the corresponding quantization method is known as BV (Batalin–Vilkovisky)
formalism.

Finally, let us recall the BRST construction in the case where M0 is the phase space of a first-class
constrained system. In this case M0 is equipped with a symplectic structure and the gauge generators
are Hamiltonian vector fields generated by the constraints, i.e.

Rα = {Tα, · } , (11)

where { · , · } is the Poisson bracket determined by the symplectic structure on M0. Because the
constraints and the gauge generators are not any longer independent, the Poisson bracket can be
naturally extended to F by defining {

Pα, Cβ
}

= −δα
β , (12)
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with the bracket between ghosts and other phase space variables vanishing. In this case, the BRST
differential s is canonically generated in the extended Poisson bracket: there exists Ωcl ∈ F such that

s =
{

Ωcl, ·
}

,
1

2

{
Ωcl, Ωcl

}
= 0 . (13)

The expasion of Ωcl in ghost momenta P reads as

Ωcl = CαTα + 1

2
PγUγ

αβCαCβ + . . . . (14)

If in addition the Hamiltonian Hcl
0 ∈ F0

0 satisfies RαHcl
0 = TβV β

α for some V α
β (i.e. Hcl

0 is gauge
invariant on Σ), one can construct a BRST invariant Hamiltonian Hcl such that

{
Ωcl,Hcl

}
= 0 , gh(Hcl) = 0 , Hcl|P=C=0 = Hcl

0 . (15)

This Hamiltonian BRST construction and the corresponding quantization method is referred to as
BFV (Batalin–Fradkin–Vilkovisky) formalism.

3 Gauge theories associated to the first-quantized BFV-BRST sys-
tems

3.1 Operator BFV quantization

At the quantum level phase space observables become operators represented in a space of states. The
BRST operator Ω and the Hamiltonian operator H satisfy

1

2
[Ω,Ω] = 0, [Ω,H] = 0 , (16)

Physical operators are described by hermitian operators A such that [Ω, A] = 0 where two such
operators have to be identified if they differ by a BRST exact operator A ∼ A + [Ω, B]. These two
equations define the BRST operator cohomology. Note that if an inner product is specified on the
space of states, hermitian conjugation is just standard conjugation in this inner product. In general,
however, conjugation can be defined as an additional structure even if no suitable inner product is
given.

Similarly, physical states are selected by the condition Ωφ = 0. Furthermore, BRST exact states
should be considered as trivial, or equivalently, states that differ by BRST exact ones should be
identified φ ∼ φ+Ωχ. These two equations define the BRST state cohomology. Finally, time evolution
is described by the Schrödinger equation

i
dφ

dt
= Hφ. (17)

3.2 Free gauge theory on the space of quantum states

We consider a quantum BFV-BRST system which we assume to be time-reparametrization invariant
so that its Hamiltonian H vanishes. For a detailed discussion of the general case we refer to [1].

We also assume that among the degrees of freedom, there are coordinates xµ which are interpreted
as coordinates of a space-time manifold X0 and which are quantized in the coordinate representation.
The space of states is then given by functions of xµ taking values in an internal space H. (In a
geometrically nontrivial situation one should consider sections of a suitable vector bundle over space-
time instead.) Because we are not interested in constructing proper quantum mechanics, we are not
concerned with normalizability of the states. For simplicity, we thus can consider states with a smooth
dependence on xµ.

Given a graded superspace H, one associates to each basis vector eA a coordinate ψA with ghost
number gh(ψA) = −gh(eA) and Grassmann parity |ψA| = |eA|. One then considers MH to be the
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supermanifold with coordinates ψA. In what follows we denote by ψAk the fields associated with the
ghost number −k subspace H(k) ⊂ H, which implies in particular that gh(ψAk) = k. We also introduce
the object Ψ(x) = eAψA(x) with |Ψ| = 0, gh(Ψ) = 0, called string field, which is in particular useful
to avoid using indices (see [2] and references therein for precise definitions and the relation with the
similar notion [28] used in the context of string field theory).

The configuration space of the free field theory associated with the quantum system is the space
of maps from X0 to the submanifold M

(0)
H of ghost number zero fields. In terms of coordinates it is

described by fields ψA0(x). The equations of motion are given by

Ω
A−1

B0
ψB0(x) = 0 . (18)

Due to Ω2 = 0, these equations are invariant under the gauge transformations δεψ
A0 = ΩA0

B1
εB1 , for

some gauge parameters εB1 .
The fields associated with states in nonzero ghost number are to be interpreted as ghost fields,

ghosts for ghosts, and antifields for the BRST-BV description of the theory. The BRST-BV differential
s0 on the fields ψA(x) is then defined by

s0Ψ = ΩΨ ⇐⇒ s0ψ
A = ΩA

BψB. (19)

If in addition we are given with an inner product that makes Ω formally self-adjoint, one can build
a classical action and the Batalin-Vilkovisky master action which determine the equations of motion
and the BRST differential respectively (for more details, see [2] and references therein).

3.3 Algebraic structure of interactions

We now briefly discuss the general algebraic structures underlying consistent deformations of a theory
described by a linear BRST differential s0 given in (19). For simplicity, we use here De Witt’s con-
densed notation consisting in including the space-time coordinates xµ in the index A of the coordinates
ψA on MH.

A general nonlinear deformation s of s0 = ΩB
AψA ∂

∂ψB has the form

s = ΩB
AψA ∂

∂ψB
+ UC

ABψAψB ∂

∂ψC
+ UD

ABCψAψBψC ∂

∂ψD
+ . . . , (20)

with |s| = 1, gh(s) = 1, and . . . denoting higher order terms. The deformation is consistent if s2 = 0.
Such a nilpotent vector field s on a flat supermanifold associated with a superspace H is equivalent
to an L∞ algebra on H [29].

The simplest example is provided by an s that is at most quadratic. In this case, H is a differential
graded Lie algebra with [eA, eB] = eCUC

AB. In the more general case, the UA
BC determine a Lie algebra

structure only in cohomology of Ω and there are higher order brackets related to the higher orders
terms in s.

In the case of field theories, some complications arise because H is an infinite dimensional space
of field configurations and the algebraic structures are really represented by differential operators.
Moreover, space-time locality of the deformation is to be taken into account. However, in some cases
one can explicitly separate the space-time dependence in such a way that interactions do not involve
an explicit x-dependence or x-derivatives. We now turn to the discussion of systems of this type.

4 Geometry of the Vasiliev unfolded formalism

4.1 First-quantized BRST picture

Consider the special class of free theories associated with a BRST first quantized model for which
fields are defined on a supermanifold X with Grassmann-even coordinates xµ and Grassmann-odd
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coordinates θµ. The latter coordinates are space-time ghosts with gh(θµ) = 1 and can be identified
with the basic differentials dxµ. The fields take values in a supermanifold MH associated with the
graded superspaceH and the coordinates on MH are denoted by ΨA. The components in the expansion
of ΨA(x, θ) in θµ can be considered as differential forms on X0:

ΨA(x, θ) = (ψ0)A(x) + θµ(ψ1)A
µ (x) + θµθν (ψ2)A

µν(x) + . . . , (21)

with gh((ψp)A
µ1...µp

) = gh(ΨA)− p and |(ψp)A
µ1...µp

| = |ΨA| − p mod 2. We also assume that the BRST
differential s0 can be represented in the form

s0Ψ(x, θ) = dΨ(x, θ) + Ω̄Ψ(x, θ) (22)

with d = θµ ∂
∂xµ and Ω̄ a linear operator in H, i.e. Ω̄Ψ = eAΩ̄A

BΨB. Note that the system described
by s0 is explicitly space-time covariant.

Under sufficiently general conditions, one can show that nonlinear deformations of the theory
preserving the general covariance can be assumed to contain neither xµ and θµ derivatives nor an
explicit dependence on these variables [30, 31]. The deformed differential s is then determined by an
odd vector field Q on MH

Q = Ω̄A
BΨB ∂

∂ΨA
+ ΨBΨCUA

BC
∂

∂ΨA
+ ΨBΨCΨDUA

BCD
∂

∂ΨA
+ . . . , (23)

with gh(Q) = |Q| = 1 and satisfying the compatibility condition Q2 = 0. In other words, H is
equipped with an L∞ algebra structure.

Given such a Q, the BRST differential itself is then determined by

sΨA = dΨA + QA(Ψ) . (24)

The dynamical equations of the system determined by s are
(
dΨA + QA(Ψ)

) ∣∣∣
ψ(l)=0, l 6=0

= 0 (25)

where we have put to zero all the component fields (ψp)A
µ1...µp

(x) entering Ψ(x, θ) except those of ghost
number zero. In the case where gh(ΨA) > 0, this is exactly the form of the general unfolded equations
proposed in [32, 33, 34]. Equations of this form are also known as defining the structure of a free
differential algebra [35].

Some comments are in order. Note that for each coordinate function ΨA of ghost number gh(ΨA) =
pA, there is at most one component field (ψp)A

µ1...µp
with a given ghost number. Note also that if pB < 0

for some B, then equations (25) reduce to the constraint equations, QB(Ψ)|ψ(l)=0, l 6=0 = 0 because in
ΨB there is no ghost number zero component field so that the first term in (25) vanishes.

The BRST differential also determines gauge transformations for physical fields. Let ea be a
basis in the subspace of H with zero or negative ghost number, i.e., gh(ea) 6 0 so that the associated
coordinates Ψa carry nonnegative ghost numbers. It then follows that among component fields in the
expansion of Ψa with respect to θµ there is a field ψa

µ1...µp
with p = gh(Ψa) of zero ghost number. The

gauge transformation of ψa is given by

δεψ
a = sψa

∣∣
ψ(l)=0, l 6=0,1

(26)

with the ghost number 1 fields ψ(1) replaced by gauge parameters ε. Observing that the right hand
side is linear in ψ(1) and of the same form degree as ψa, one arrives at a more explicit form for the
gauge transformations:

δεψ
a = dεa + εA ∂Qa

∂ΨA

∣∣∣
ψ(l)=0, l 6=0

. (27)

The BRST differential (24) can naturally be considered as an extension of the unfolded equa-
tions (25). It allows for cohomological tools to be used at the level of the field theory, e.g., for the
introduction or elimination of generalized (non-Lagrangian) auxiliary fields [21, 2].
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Arbitrary unfolded equations can be embedded in such a BRST system. Indeed, suppose that the
equations of motion of a system are given by

dψA + QA(ψ) = 0 , (28)

where ψA are differential forms on X0 with form degree denoted by pA. Suppose furthermore that QA

are polynomial (in the sense of the wedge product of differential forms) functions in ψA satisfying the
compatibility condition

QB ∂QA

∂ψB
= 0. (29)

For simplicity we assume that these compatibility conditions are satisfied without making use of the
relations of the Grassmann algebra of basis 1-forms dxµ besides the supercommutativity of ψA-s with
respect to the wedge product.1 This can be equivalently formulated in terms of an auxiliary linear
supermanifold M with independent coordinates ΨA with |ΨA| = |(ψpA)A

µ1...µpA
|+pA and gh(ΨA) = pA

as the nilpotency condition Q2 = 0 for an odd vector field

Q = QA(Ψ) ∂

∂ΨA
, (30)

on M. One can then introduce additional fields on X0 to define superfields ψA(x, θ) on X taking values
in M with

gh((ψpA)A
µ1...µpA

) = gh(ΨA)− pA , |(ψpA)A
µ1...µpA

| = |ΨA| − pA , (31)

so that the original fields ψA
µ1...µpA

appear as ghost number zero component fields from ΨA(x, θ). If
one now considers the BRST differential (24) determined by Q, it is straightforward to verify that the
dynamical equations (25) coincides with the original unfolded equations (28).

4.2 Geometric picture – non-Lagrangian AKSZ procedure

When reformulated in BRST terms, the unfolded equations allow for a nice geometrical interpretation.
Consider two supermanifolds: a supermanifold X equipped with a degree, an odd nilpotent vector field
d, ghX(d) = 1, and a volume form dµ preserved by d and a supermanifold M equipped with another
degree, an odd nilpotent vector field Q, ghM(Q) = 1. As implied by the notation, the basic example
for X is the odd tangent bundle ΠTX0 which has a natural volume form and is equipped with the De
Rham differential. Note that supermanifolds equipped with an odd nilpotent vector field are often
called Q-manifolds [37].

Consider then the manifold of maps from X to M (more generally, one could of course consider the
space of sections of a bundle over X with fibers isomorphic to M). This space is naturally equipped
with the total degree denoted by gh(·) and an odd nilpotent vector field s, gh(s) = 1. If z are local
coordinates on X (in the case where X = ΠTX0 coordinates z split into xµ and θµ) and ΨA are
coordinates on M, the expression for s reads

s =
∫

X
dµ(−1)|dµ| [dΨA(z) + QA(Ψ(z))

] δ

δΨA(z)
. (32)

Vector field s can be considered as a BRST differential of a field theory on X. Indeed, the basic
properties s2 = 0 and gh(s) = 1 hold. In what follows we refer to this system as a quadruple
(X, d,M, Q), where manifolds X and M are equipped with the odd nilpotent vector fields d and Q
respectively. In addition, X is equipped with a d-invariant volume form and the ghost grading on X

and M is such that ghX(d) = 1 and ghM(Q) = 1.
For the system (X, d,M, Q) it is easy to check using the explicit form (32) that sΨA = dΨA + QA.

This shows that, locally, (32) describes the same theory as s defined in (24) if M = MH, X = ΠTX0,
and d = θµ ∂

∂xµ .

1Such free differential algebras are called universal, for details see e.g. [36].

52



In the case where the “target” manifold M is in addition equipped with a compatible (odd) Poisson
bracket { · , · } and Q = {S, · } is generated by a “master action” S satisfying the classical master
equation 1

2 {S, S} = 0, one can construct a field theory master action S on the space of maps. This
procedure was proposed in [19] as an approach for constructing BV-BRST formulations of topological
sigma models. Further developments can be found in [38, 39, 40, 41, 42, 43, 44] and references therein.
A generalization that also includes the Hamiltonian BRST formulation has been proposed in [45]
and covers the case where S is Grassmann odd and is to be interpreted as a BRST charge of the
BFV-BRST formulation of the theory.

4.3 Generalized auxiliary fields

The restriction that the compatibility condition (29) holds without making use of the Grassmann
algebra relations for the basic differential forms is not really necessary. Moreover, in practice it often
happens that there are some other constraints on M. Nevertheless, it is still possible to bring the
system to the form (24) by explicitly solving these constraints or by appropriately extending M.

To show how constraints on M can be incorporated in the BRST differential, suppose that we
are in the setting of the previous subsection and let also Σ ⊂ M be a submanifold in M such that
Q restricts to Σ. In terms of some constraints Ta determining Σ, this means that QTa|Σ = 0. The
system described in this way is just a system without constraints but with M replaced with Σ and
Q replaced by its restriction Q|Σ to Σ. For this system to be well defined, it is actually enough to
require that Q2 be zero in M only up to terms vanishing on Σ.

For simplicity, let Ta be independent, regular constraints. One then introduces variables Pa with
gh(Pa) = −1, |Pa| = |Ta|+ 1 and extends M to MP = M× Λ where Λ is a linear supermanifold with
coordinates Pa. Exactly the same arguments as in Section 2 then show that one can construct

QP = Ta
∂

∂Pa
+ Q + Q0 + Q1 + Q2 + . . . (33)

satisfying Q2
P = 0. Here, Qi denote terms of degree i in Pa.

We claim that the system (X, d, MP , QP) is equivalent to the system (X,d, Σ, Q|Σ) through elimi-
nation of generalized auxiliary fields (in the non-Lagrangian sense, see [2]). Indeed, let sP be a BRST
differential of (X,d, MP , QP) then Pa and sPPa are independent constraints because sPPa = Ta + . . ..
Moreover, equations sPPa = 0 at P = 0 are equivalent to Ta = 0, while Ta can be taken (locally)
as independent fields so that one concludes that Pa, sPPa are generalized auxiliary fields and can be
eliminated. The reduced system is obviously (X, d, Q|Σ,Σ).

Conversely, let wa be some constraints on M such that wa, Qwa are independent constraints deter-
mining a surface Σ ⊂ M. The same arguments then show that the system (X,d, M, Q) can be reduced
to the system (X, d, Σ, Q|Σ) through the elimination of generalized auxiliary fields

Consequently, if one works in BRST terms, one can assume without loss of generality that all
constraints on the fields are already incorporated in Q, which can be useful from various points
of view. In particular, this also shows that it is enough to consider the case where M is a linear
supermanifold with all the nontrivial geometry encoded in Q.

4.4 Elimination of pure gauge variables in space-time

As explained in general in Subsection 3.2, the field theory differentials d and the operator Ω̄ deter-
mining the linear part of Q can be understood in first quantized terms as a BRST operator acting in
a space of quantum states. The equivalence under elimination of generalized auxiliary fields for Q,
or more precisely, its linear part, can then be understood as a natural equivalence of first quantized
systems under elimination of pure gauge degrees of freedom.

Among the first quantized degrees of freedom, variables xµ, θµ and their conjugate momenta are
represented in the coordinate representations on functions in xµ and θµ and are identified with space-
time coordinates, while the other degrees of freedom are represented in the target space H. Of course
one could as well represent θµ in H. This makes no difference because the respective representation
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space is finite dimensional. That introduction/elimination of pure gauge variables represented in H
leads to theories related by introduction/elimination of generalized auxiliary fields was shown in details
in [2]. One can expect the same for pure gauge variables represented on functions on X. As we are
going to see, the respective theories are also related by elimination of generalized auxiliary fields if
one allows for nonlocal transformations in the sector of the pure gauge variables.

Consider then a not necessarily linear system determined by X, d, M, Q and replace X with X×Mt,θ

and d with d′ = d + θ ∂
∂t . Here, Mt,θ denotes a linear supermanifold with coordinates t, θ with

|t| = 0, |θ| = 1 and gh(t) = 0, gh(θ) = 1. Note that from a first quantized point of view, for the free
part of the system, this corresponds to adding a pair of pure gauge variabels t, πt together with their
associated ghost variables θ, πθ with commutation relations [πt, t] = −1, [πθ, θ] = −1 and adding the
respective term θπt to the BRST charge. These pure gauge variables are represented on functions of
t, θ so that the additional term in the BRST charge acts as θ ∂

∂t .
The resulting system is again a system of the same type, but living on the extended space–time

manifold X ×Mt,θ, and the question arises as to how it relates to the original system. To be able to
compare these two field theories, we first need to consider them as field theories determined on the
same space–time manifold. To this end we identify (X×Mt,θ, d+ θ ∂

∂t , M, Q) with (X, d, M′, Q′) where
M′ and Q′ are the configuration space and the BRST differential of the system (Mt,θ, θ

∂
∂t ,M, Q). In

other words, the space-time coordinate t becomes a continuous index for fields on X, while θ ∂
∂t becomes

a part of the target space BRST differential Q′.
The supermanifold M′ can then be identified with the manifold of smooth maps from Mt,θ to M

while the BRST differential Q′ is determined in coordinates by

Q′ΨA(t, θ) = θ
∂

∂t
ΨA(t, θ) + QA(Ψ(t, θ)) . (34)

On M′, it is useful to take the coordinates Ψ̃A, ΨA
0t, Ψ

A
1t with ΨA

0t

∣∣
t=0

= 0 so that a general map has
the form

ΨA(t, θ) = Ψ̃A + ΨA
0t + θΨA

1t . (35)

It then follows that fields ΨA
0t(z) and ΨA

1t(z) on X, with z denoting coordinates on X, are generalized
auxiliary fields. Indeed, in terms of the coordinates Ψ̃A, ΨA

0t, Ψ
A
1t, the term in Q′ corresponding to θ ∂

∂t

acts as
∫

dt( ∂
∂tΨ

A
0t)

δ

δΨA
1t

. This shows that at ΨA
1t = 0, equations Q′ΨA

1t = 0 takes the form ∂
∂tΨ

A
0t = 0

which has as unique solution ΨA
0t = 0 taking into account ΨA

0t

∣∣
t=0

= 0. The arguments from the end of
the subsection 4.3 then show that the fields ΨA

0t(z) and Ψ1t(z) are indeed generalized auxiliary fields
and can be eliminated, showing the equivalence to the original system on X. For systems in unfolded
form, the possibility to add/eliminate space time coordinates together with their differentials was first
observed in the context of higher spin gauge theories in [46] (see also [47, 48, 49] for a more recent
discussion).

More generally, if on X one can find constraints tα such that tα and dtα are independent, similar
arguments show that, locally in space-time, one can consistently reduce the theory to the “constraint
surface” X̃ ⊂ X determined by the constraints tα, dtα. In the case where d = θµ ∂

∂xµ , this means that
locally in X one can consistently reduce the theory to a point. From the BRST theory point of view,
this can also be understood as a version of the statement that, for theories of this type, representatives
of various cohomology groups can be taken not to depend on space-time derivatives [30, 31]. Hence,
cohomology groups are described by functions, tensor fields, etc. on the target space M. In particular,
this implies that possible consistent deformations and conserved currents of the system are determined
by appropriate Q-cohomology classes in M.

As a final remark, we comment on the BRST extension of the unfolded formalism as a generally-
covariant first-order formalism. Indeed, manifold M can be considered as the space of initial data
for the equations of motion, while the equations determine a multi-parametric flow, the number of
parameters being the space-time dimension. If one mods out by the constraints and the gauge freedom,
this multi-parametric evolution is uniquely determined by the initial data.
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As an illustration, it is useful to consider the one-dimensional case which corresponds to a time
reparametrization-invariant Hamiltonian system. Such a system is described by a BRST charge Ω and
a symplectic structure on the phase space M with coordinates ΨA. The BV-BRST extension of the
dynamics is governed by the master action S [50, 51, 52, 53]

S =
∫

dtdθ(VA(Ψ)θ ∂

∂t
ΨA − Ω(Ψ)) , (36)

which we wrote in the superfield form proposed in [45]. Here VA is the symplectic potential and θ is
the superpartner of the “time” variable t with |θ| = 1, gh(θ) = 1 (for details and precise definitions
see [45, 1]). The BRST differential determined by S can be written as

sΨA = dΨA + QA(Ψ) , d = θ
∂

∂t
, QA =

{
Ω, ΨA

}
, (37)

where { · , · } is the Poisson bracket corresponding to the symplectic structure on M. On the one hand,
s is just the standard BRST differential of the BV formulation for the reparametrization-invariant
Hamiltonian system on M written in terms of superfields. On the other hand, it can be considered
as the BRST differential describing the one-dimensional system in unfolded form. This illustrates, in
particular, the role of space-time coordinates in the unfolded formalism. They play exactly the same
role as an evolution parameter in the Hamiltonian formulation of time-reparametrization invariant
systems.

Note added: While this contribution was being completed, there appeared reference [54] where, among
other things, related aspects of the unfolded formalism are also discussed.
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