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Abstract

In this short note we show, at the level of action principles, how the light-cone action of higher
spin gauge fields can easily be obtained from the BRST formulation through the elimination of
quartets. We analyze how the algebra of cohomology classes is affected by such a reduction. By
applying the reduction to the Poincaré generators, we give an alternative way of analyzing the
physical spectrum of the Fronsdal type actions, with or without trace condition.

1 Introduction

The title of the lectures given by G. Barnich during the workshop was “Higher spin gauge fields:
Basics”. The discussion was restricted to free theories in 4 dimensions with integer spin. The
following material was covered1:

1. Representations of the Poincaré group [3], [4]

2. Mass-shell field representations [5]

3. Variational principles [6], [7], [8]

4. BRST formulation [9], [10], [11]

5. Connection to string theory [9], [10], [11], [13], [12], [14], [15]

6. Trivial pairs and auxiliary fields [16], [17]

7. Connection to the light-cone formulation [18]

8. Connection to Vassiliev’s formulation [19], [17]

In order to bridge between these lectures and the lectures by L. Brink “Light-cone frame for-
mulation of field theories and string theories, a non-BRST formulation”, we will elaborate on item
7 above and show, as a pedagogical exercice, how the light-cone action can be explicitly reached
from the BRST formulation.

More precisely, after reviewing the BRST formulation of the Fronsdal action, we recall that in
BRST language, the reduction to the light-cone gauge corresponds to the elimination of quartets
[20]. The free light-cone action for higher spin gauge fields [18] is then recovered directly from
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the reduced BRST operator. We develop in general terms the reduction of the Lie algebra of
BRST cohomology classes under the elimination of trivial pairs. As an application, we recover the
expression of the Poincaré generators [18] in the light cone gauge. Finally, we use these expressions
in 4 dimensions to give an alternative proof of the fact that the Fronsdal type action at level s
describes

(i) massless particles of helicities −s,−s + 2, . . . , s− 2, s if no trace constraint is required,
(ii) massless particles of helicity ±s if the trace constraint is imposed [8, 21, 22].

2 BRST formulation of the Fronsdal Lagrangian

We will mostly follow the notations and conventions of [17], to which we refer for further details.

2.1 Degrees of freedom, constraints and BRST charge

The variables are xµ, pµ, aµ, a†µ, where µ = 0, . . . , d − 1. Classically, xµ and pµ correspond to
coordinates on T ∗Rd−1 and aµ, a†µ correspond to internal degrees of freedom. After quantization,
they satisfy the canonical commutation relations

[pν , x
µ] = −ıδµ

ν , [aµ, aν†] = ηµν , (2.1)

where ηµν = diag(−1, 1, . . . , 1). We assume that xµ, pµ are Hermitian, (xµ)† = xµ, p†µ = pµ, while
aµ and a†µ are interchanged by Hermitian conjugation.

The constraints of the system are

L ≡ ηµνpµpν = 0, S ≡ pµaµ = 0, S† ≡ pµa†µ = 0. (2.2)

For the ghost pairs (θ,P), (c†, b), and (c, b†) corresponding to each of these constraints, we take
the canonical commutation relations in the form2

[P, θ] = −ı, [c, b†] = 1, [b, c†] = −1. (2.3)

The ghost-number assignments are

gh(θ) = gh(c) = gh(c†) = 1, gh(P) = gh(b) = gh(b†) = −1. (2.4)

The hermitian BRST operator is then given by

Ω = θL+ c†S + S†c− ıPc†c, (2.5)

and satisfies Ω2 = 0.

2.2 Representation space

Contrary to reference [17], we now choose the momentum instead of the coordinate representation
for the operators (xµ, pν) and also3 the holomorphic instead of the Fock representation for the
oscillators (aµ, a†µ), (c, b†), (b, c†), while the pair (θ,P) continues to be quantized in the coordinate
representation.

2We use the “super” convention that (ab)† = (−1)|a||b|b†a†.
3This step will allows us to write rather compact formulas below, but is not really necessary for the analysis.
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The “Hilbert space” H consists of the “wave functions” ψ(p, θ, α∗, β∗γ∗) = 〈p θα∗β∗γ∗, ψ〉. On
these functions, the operators pµ, θ, aµ†, b†, c† act as multiplication by pµ, θ, αµ∗, β∗, γ∗, while the
operators xµ, P, aµ, c, b act as ı ∂

∂pµ
, −ı ∂

∂θ , ∂
∂α∗µ

, ∂
∂β∗ , − ∂

∂γ∗ . The inner product is defined by

〈ψ, χ〉 =
∫

ddp dθ(
d−1∏

µ=0

dαµ∗dαµ

2πı
)dβ∗dγdγ∗dβ

exp (−αµ∗αµ − β∗γ + γ∗β)[ψ(p, θ, α∗, β∗γ∗)]∗χ(p, θ, α∗, β∗, γ∗). (2.6)

The string field becomes

Ψ =
∫

ddp dθ(
d−1∏

µ=0

dα∗µdαµ

2πı
)dβ∗dγdγ∗dβ

exp (−αµ∗αµ − β∗γ + γ∗β)|p θαβγ〉ϕ(p, θ, α∗, β∗, γ∗). (2.7)

The ghost numbers of the component fields of ϕ(p, θ, α∗, β∗, γ∗) are defined to be 1/2 minus the
ghost number (2.4) of the corresponding state in the first quantized theory. The ghost-number-zero
component of the string field can be parameterized as

Ψ(0) = Φ− ıθb†C + c†b†D, (2.8)

where
〈pθα∗β∗γ∗, Φ〉 = Φ(p, α∗), 〈pθα∗β∗γ∗, C〉 = C(p, α∗),

〈pθα∗β∗γ∗, D〉 = D(p, α∗) .
(2.9)

2.3 Physical and master actions

The action
S[Ψ] = −1

2

∫
ddp 〈Ψ, ΩΨ〉 (2.10)

is the solution of the Batalin-Vilkovisky master action associated with the physical action

Sph[Ψ(0)] = −1

2

∫
ddp 〈Ψ(0),ΩΨ(0)〉. (2.11)

The trace and level operators

T = ηµνa
µaν + 2cb , Ns = a†µaµ − c†b + b†c− s (2.12)

commute with the BRST charge Ω and satisfy [Ns, T ] = −2T so that they can be consistently
imposed as restrictions on the Hilbert space and on the string field: H̃s = KerT ∩KerNs, NsΨ̃ =
0 = T Ψ̃. Assuming appropriate reality conditions, the restricted action

Sph[Ψ̃(0)] = −1

2

∫
ddp 〈Ψ̃(0), ΩΨ̃(0)〉 (2.13)

is the gauge invariant Fronsdal action [8] (written with additional auxiliary fields contained in
C(p, α∗)), while

S[Ψ̃] = −1

2

∫
ddp 〈Ψ̃, ΩΨ̃〉 (2.14)

is the associated proper solution of the Batalin-Vilkovisky master equation.
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3 Reduction to the light-cone formulation

As an alternative to the analysis in [8], [21] or [22], we will analyze the physical spectrum of actions
(2.11) and (2.13) by going to the light-cone formulation. In order to do so, we use the grading
introduced in [20] to relate the BRST to the light-cone formulation in the context of string theory.
This grading allows one to identify quartets for the full BRST charge on the level of the lowest part
in the expansion.

3.1 Unconstrained reduction

Here and in the following, indices are lowered and raised with ηµν = diag(−1, 1 . . . , 1). The light-
cone operators are defined through p± = 1√

2
(p0 ± pd−1), a± = 1√

2
(a0 ± ad−1), with [a−, a+†] =

−1 = [a+, a−†] with transverse momenta and oscillators pi, ai, ai†, i = 1, . . . , d− 2, unchanged. In
the following, we denote the transverse momenta and oscillators collectively by a superscript T .
The BRST operator becomes

Ω = θ(pip
i − 2p−p+) + c†(−p−a+ − p+a− + pia

i)+

+ (−p−a+† − p+a−† + pia
i†)c− ıPc†c. (3.1)

The grading is defined through the eigenvalues of the operator

G = 2a−†a+ − 2a+†a− − b†c− c†b, (3.2)

so that
|a+| = 2, |a+†| = 2, |a−†| = −2, |a−| = −2,

|c| = 1, |c†| = 1, |b†| = −1, |b| = −1,
(3.3)

with all other operators having grading zero. The operator G acts on the wave functions
φ(p, θ, α∗, β∗, γ∗) and the associated string fields as

G = −2α−∗
∂

∂α−∗
+ 2α+∗ ∂

∂α+∗ − β∗
∂

∂β∗
+ γ∗

∂

∂γ∗
. (3.4)

The Hilbert space H can be decomposed according to this grading and, as the wave functions are
polynomial in the holomorphic variables, each wave function has a component with lowest degree.
The BRST operator decomposes as Ω =

∑3
i=−1 Ωi, with

Ω−1 = −p+(c†a− + a−†c), Ω0 = θ(−2p−p+ + pip
i),

Ω1 = c†pia
i + pia

i†c, Ω2 = −ıPc†c, Ω3 = −p−(c†a+ + a+†c).
(3.5)

If we assume p+ 6= 0, which is a standard assumption in the light-cone approach, states depending
non trivially on α+∗, α−∗, β∗, γ∗ form quartets for the differential Ω−1. Indeed, we have

K1 = − 1
p+

(a+†b− b†a+), [K1, Ω−1] = Nq,

Nq = −a+†a− − a−†a+ − c†b + b†c,
(3.6)

where the operator Nq acts on states and the associated string fields as the operator that counts
the unphysical variables,

Nq = α−∗
∂

∂α−∗
+ α+∗ ∂

∂α+∗ + β∗
∂

∂β∗
+ γ∗

∂

∂γ∗
. (3.7)
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The Hilbert space H can accordingly be decomposed as H = E ⊕ F ⊕ G with G = Im Ω−1,
F = Im K1 and E ⊂ KerΩ−1 corresponding to the states ψ(p, θ, α∗T ) that are eigenvectors of Nq

with eigenvalue zero.
Proposition 3.6 of [17] then implies that the full BRST charge is invertible between F and G:

if
FG
Θ ≡ (

GF
Ω )−1 denotes the inverse of the BRST charge

GF
Ω between F and G and ρ = (

GF
Ω −1)−1, we

have
FG
Θ =

∑

n > 0

(−1)nρ[(
∑

i > 0

GF
Ω i)ρ]n. (3.8)

Note that the inverse exists because the degree of each wave function is bounded from below.
Furthermore, because the cohomology of Ω−1 is concentrated in degree 0, the system (Ω,H) can
be reduced to the system (Ω0, E). According to proposition 3.4 of [17], the associated field theories
are related through the elimination of generalized auxiliary fields4. In addition, the elimination of
the quartets is compatible with the inner product: after elimination of the generalized auxiliary

fields the inner product on H reduces to an inner product on E that makes
EE
Ω0 formally self-adjoint.

This means that the elimination can be done on the level of the corresponding master equations,
and corresponds to the elimination of generalized auxiliary fields in the sense of [23]. Explicitly,
the reduced master action obtained from (2.10) reads

S[ΨE ] = −1

2

∫
ddp 〈ΨE , Ω0ΨE〉 =

= − 1

2

∫
ddp

(
d−2∏

i=1

dα∗i dαi

2πı

)
exp (−α∗iαi)[ϕ(p, α∗T )]∗(−2p−p+ + pip

i)ϕ(p, α∗T ). (3.9)

As it depends only on ghost number 0 fields, it coincides with the physical action and there is no
gauge invariance left.

3.2 Imposing the level and trace constraints

Because both Ω−1 and K1 commute with Ns the elimination can be done consistently also in
KerNs.

The reduction can also be done in KerT . To see this we use an expansion with respect to the
eigenvalues of Nq. The trace operator decomposes as T = T −2 + T 0, with T −2 = −2a−a+ + 2cb,
T 0 = aiai ≡ T T , while each wave function decomposes as ψ = ψ0 + . . . ψM . Suppose T ψ = 0. If
Ω−1ψ = 0, we have, for M 6= 0, ψM = Ω−1( 1

M K1ψ
M ). Because [T , K1] = − 4

p+ a+b, the term K1ψ
is double T traceless. In fact one can adjust K1ψ to make it T traceless using the expansion in
homogeneity in all oscilators. Namely, for each monomial ψ(d) of definite homogeneity d in all the
oscillators, φ(d) ≡ K1ψ(d)−k(−2α∗+α∗−+2γ∗β∗+α∗iα∗i )TK1ψ(d) is T traceless for an appropriate
choice of k. Since Ω−1 commutes with both T and −2α∗+α∗−+2γ∗β∗+α∗iα∗i , it follows, for M 6= 0,
that Ω−1( 1

M φ(d)) = ψM
(d) + . . . , where the dots denote terms of order strictly lower than M . Hence,

by summing over all monomials, ψ − Ω−1( 1
M φ) is T traceless, Ω−1 closed and its expansion stops

at the latest at M − 1. By induction we conclude that T ψ = 0 = Ω−1ψ implies ψ = ψ0 + Ω−1χ,
with T χ = 0 and T T ψ0 = T ψ0 = 0.

The same reasoning as in the previous subsection then shows that the Fronsdal master action
4Because we are not concerned with issues concerning locality of the associated field theories in our discussion,

the coordinates xµ and the momenta pµ are considered on the same foot with the other degrees of freedom. The
discussion of [17] is then simplified because only the Hilbert space H is involved in the discussion.
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(2.14) can be reduced to the master and physical action

S[Ψ̃E ] = −1

2

∫
ddp 〈Ψ̃E , Ω0Ψ̃E〉 =

= − 1

2

∫
ddp

(
d−2∏

l=1

dα∗l dαl

2πı

)
exp (−α∗iαi)[ϕ̃(p, α∗T )]∗(−2p−p+ + pip

i)ϕ̃(p, α∗T ) (3.10)

with T T Ψ̃E = 0 = T T ϕ(p, α∗T ) and also NsΨ̃E = 0 = Nsϕ(p, α∗T ).

3.3 Reduction of observables

By observables, we mean in this context BRST cohomology classes of operators, i.e., equivalence
classes of operators A which commute with the BRST charge Ω, up to such operators which are in
the image of the adjoint action of Ω,

[Ω, A] = 0, A ∼ A + [Ω, B], (3.11)

As discussed for instance in [13, 16, 17], if one restricts to antihermitian operators in ghost number
zero, these cohomology classes describe equivalence classes of global symmetries of the action (2.11),
with

δAΨ(0) = AΨ(0). (3.12)

In order for such observables to be well defined for the constrained action (2.13), they have to
commute with the trace and the level constraint,

[Ns, A] = 0 = [T , A]. (3.13)

In the following discussion we have in mind in particular the observables that describe the
Poincaré transformations. There are several ways to reduce such observables to the light-cone for-
mulation. One possibility, discussed in [18], is to work out the compensating gauge transformation
needed to stay in the light-cone gauge when performing the covariant Poincaré transformations.
Another possibility, followed in [11], is to use the quantum Dirac bracket. Alternatively, one could
use a Dirac-type antibracket for representatives 〈Ψ, AΨ〉 of antifield BRST cohomology classes in
ghost number −1, which describe the global symmetry on the level of the master action (2.10).
This approach has the advantage to extend to the non linear and non Lagrangian setting and will
be discussed elsewhere. Here we will follow a first quantized BRST approach.

Let (hA) ≡ (eα, fa, ga) denote a basis for H = E ⊕ F ⊕ G . Assuming only existence of

(
GF
Ω )−1 ≡

FG
Θ , we can consider the following invertible change of basis:

ẽα = eα − fb(
FE
R )b

α,
FE
R =

FG
Θ

GE
Ω (3.14)

f̃a = fb(
FG
Θ )b

a, (3.15)

g̃a = eβ(
EG
L )β

a + fb(
FF
Ω (

FG
Θ )b

a + ga,
EG
L =

EF
Ω
FG
Θ . (3.16)

In other words, h̃ = hC where

C =




EE
δ 0

EG
L

−
EE
R

FG
Θ

FF
Ω
FG
Θ

0 0
GG
δ


 , C−1 =




EE
δ 0 −

EG
L

GE
Ω

GF
Ω

GG
Ω

0 0
GG
δ


 . (3.17)
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with δ denoting the identity matrix. The new basis is chosen in such a way that the expression for
Ω simplifies to

Ω̂ = C−1ΩC =




Ω̃ 0 0
0 0 0

0
GF
δ 0


 , (3.18)

with

Ω̃ =
EE
Ω −

EG
L
GE
Ω −

EF
Ω
FE
R +

EG
L
GF
Ω

FE
R =

EE
Ω −

EF
Ω
FG
Θ

GE
Ω . (3.19)

If Â = C−1AC, and A is of parity |A|, [Ω, A] = 0 implies

Â =




Ã 0 0
0 0 0
0 0 0


 + [Ω̂, AE ], (3.20)

where

Ã =
EE
A −

EG
L
GE
A −

EF
A

FE
R +

EG
L
GF
A

FE
R , (3.21)

AE =




0 0 (−1)|A|(
EF
A −

EG
L
GF
A )

FG
Θ

(
GE
A −

GF
A
FE
R )

GF
A
FG
Θ (−1)|A|

GH
Ω
HF
A
FG
Θ

0 0 0




. (3.22)

In particular,

ΩE =




0 0 0

0
FF
δ 0

0 0 0


 . (3.23)

Equation (3.20) implies that the map g from linear operators on H to linear operators on E defined
through g(A) = Ã induces a well defined map g# from the cohomology of [Ω, ·] to the cohomology
of [Ω̃, ·]. It also follows directly from (3.20) that g#([A]) = [Ã] is an isomorphism which preserves
the Lie algebra of observables: g#([[A], [B]] = [[Ã], [B̃]].

3.4 Lorentz generators in the light-cone

Let ξµ = δµ +ωµνx
ν , with ωµν antisymmetric. The Poincaré generators are then obtained from the

antihermitian generating operators

L(ω, a) = −ı
(
ξµpµ + a†µ[pµ, ξν ]aν

)
, (3.24)

satisfying
[Ω, L] = 0, [L(ω1, δ1), L(ω2, δ2)] = L([ω1, ω2], ω1δ2 − ω2δ1) (3.25)

through

Jµν ≡ −2ı
∂L

∂ωµν
=

(
xµpν − xνpµ − ı(aµ†aν − aν†aµ)

)
, (3.26)

Pµ ≡ ı
∂L

∂δµ
= pµ. (3.27)
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Now we apply the reduction formula (3.21) to the Poincaré generators in the light-cone basis,
P+, P−, P i, J ij , J+i, J−i, J+−. First we note that the translations and the orbital parts of the
Lorentz transformations carry vanishing degree and map E to E . Moreover all the terms in (3.21)
besides the first one vanish for these operators because R and L carry strictly positive degree.

The same reasoning applies to the spin part Sij = −ı(ai†aj−aj†ai) of J ij , which are unchanged
in the reduction. The spin operator S+− = −ı(a+†a− − a−†a+) also carries vanishing degree, but
since its restriction to E vanishes, S̃+− = 0. The spin operator S+i = −ı(a+†ai − ai†a+) carries
degree +2 and therefore S̃+i = 0. Finally, the spin operator S−i = −ı(a−†ai − ai†a−) has degree
−2: therefore the first term in (3.21) vanishes. Furthermore, the fourth term also vanishes. Indeed,
it contains both R and L operators whose expansion contains terms with degree greater or equal

to 2. This is so because Θ is of strictly positive degree while the only possible contributions to
GE
Ω

and
EF
Ω are coming from Ω1 given in (3.5). Explicitly, one thus has

S̃−i = −
EF
S−i ρ

GE
Ω 1 −

EF
Ω1 ρ

GE
S−i . (3.28)

Choosing G = Ω−1H, F =
∑

M>0
1
M K1Ω−1HM , where the expansion is with respect to the eigen-

values of Nq, we have ρ = K1 and, for an arbitrary state ψE ∈ E ,

ρ
GE
Ω 1ψ

E = ρc†pja
j ψE = K1c

†pja
j ψE =

1
p+

a+†pja
j ψE (3.29)

ρ
GE
S−iψE = −ıρa−†ai ψE = −ıK1a

−†ai ψE =
ı

p+
b†ai ψE . (3.30)

Summing up, one finds
S̃−i =

ı

p+
(ai†pjaj − pja†ja

i). (3.31)

3.5 Physical spectrum

We now analyze the particle content of the actions (2.11) and (2.13) in 4 dimensions.
The Pauli-Lubanski vector is given by

W̃µ ≡ 1
2
εµνρσJ̃νρP σ =

1
2
εµνρσS̃νρP σ, ε0123 = −1. (3.32)

Using
S̃−1 =

ıp2

p+
(a1†a2 − a2†a1) , S̃−2 = − ıp1

p+
(a1†a2 − a2†a1) , (3.33)

and ε+−12 = 1, η−+ = −1 we get

W̃+ = S̃12P− + S̃−1P 2 − S̃−2P 1 = −ı(a1†a2 − a2†a1)(p+ − pµpµ

p+
), (3.34)

W̃1 = S̃−2P+ = −ı(a1†a2 − a2†a1)p1 (3.35)

W̃2 = −S̃−1P+ = −ı(a1†a2 − a2†a1)p2 (3.36)

W̃− = −S̃12P+ = −ı(a1†a2 − a2†a1)p− (3.37)

Let us define
α∗ =

1√
2
(α1∗ − ıα2∗), ᾱ∗ =

1√
2
(α1∗ + ıα2∗) . (3.38)

Then the operator −ı(a1†a2 − a2†a1) acts on a state φ(α∗, ᾱ∗) as ᾱ∗ ∂
∂ᾱ∗ − α∗ ∂

∂α∗ . Reduced fields
ϕ(p, α∗, ᾱ∗) of level s, Nsϕ(p, α∗, ᾱ∗) = 0 can be decomposed as
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ϕ(p, α∗, ᾱ∗) =
s∑

k=0

(ᾱ∗)k(α∗)s−kϕ−s+2k(p).

If these fields are on-shell, pµpµϕ−s+2k(p) = 0, the action of the Pauli-Lubanski vector is given by

W̃µϕ−s+2k(p) = (−s + 2k)Pµϕ−s+2k(p). (3.39)

hence, when restricted to level s, action (2.11) describes massless particles of helicities −s,−s +
2, . . . , s − 2, s. In addition, because T T acts as ∂

∂α∗
∂

∂ᾱ∗ , only the fields ϕs(p), ϕ−s(p) satisfy the
trace condition, so that action (2.13) describes massless particles of helicities ±s.
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