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Abstract

The investigation of interaction vertices that can be added to a free, massless
theory involving two Majorana spinors, a scalar field, and an Abelian vector field is
done. This is performed within the framework of the antifield-antibracket formal-
ism by deformation of the solution to the classical master equation combined with
specific techniques of BRST cohomology.

1 Introduction

The Standard Model, the current paradigm of the fundamental interactions (except the
gravitational one), is designed with initial massless quanta, irrespective of their bosonic or
fermionic nature. Then, the mass comes into play via the Higgs boson due to ‘breaking’
some internal higher symmetry of the initial theory. The experimental confirmation of
the Standard Model predictions, including the existence of the Higgs boson, has sparked
the interest of the scientific community in considering mass-generation schemes in field
theory [1, 2] that encompass the outputs of the standard Higgs mechanism [3, 4, 5, 6]. In
all these procedures, the gauge fields acquire mass in the context of their interactions with
some scalar matter fields. Whereas the standard procedure [3, 4, 5, 6] assumes a scalar
field potential that possesses a degenerate global minimum, the new procedures [1, 2]
do not ask for this assumption but only use the interaction as a sufficient context for
gauge fields to get masses. The original Higgs mechanism, devised to provide masses for
gauge fields, also impacts the leptonic mass spectrum in the electroweak sector, initially
trivial, by imposing a Yukawa-type interaction vertex between spinors and scalar fields
just from the outset. Given these broad advantages of the Higgs mechanism, it is natural
to investigate if the new procedures [1, 2] can be adapted to encompass the standard
mass-generation mechanism also in the fermionic field sector. In this paper, we fructify
the idea [1] by showing how a single Abelian 1-form gains mass in the presence of its
interactions with a matter field spectrum consisting of a real scalar and two Majorana
spinor fields.

The present paper is devoted to the analysis of consistent interactions that can be
added to a massless free field theory consisting of a real scalar field, two Majorana spinor
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fields, and an Abelian 1 form. The investigation is performed using the deformation
theory, implemented in the antifield-antibracket formalism as a deformation problem for
the solution to the classical master equation [12, 13], and solved with the help of specific
local BRST cohomology techniques [14, 15, 16]. This procedure, supplemented with
some reasonable hypotheses, standard in field theory, leads to some quadratic, derivative-
free interaction vertices naturally interpreted as mass terms for various field spectrum
components. In this approach, the derived interacting models depend on some free real
parameters, which verify a set of consistency equations with a twofold ‘dichotomy’ in
the behavior of its solutions: i) the 1-form and the scalar field cannot be simultaneously
massive, and ii) the 1-form and the spinor fields are simultaneously massive unless there
are cross-couplings between them.

The paper is organized into six sections as follows. Section 2 is dedicated to the
constuction of antifield-antibracket BRST symmetry associated to a massless free field
theory, with field spectrum comprising one real scalar field, two real spinors, and a single
Abelian 1-form. Section 3 sketches the BRST approach to the problem of constructing
consistent interactions mediated by gauge fields. In Section 4, one applies the BRST
strategy for deriving the interaction vertices to the considered free model, i.e., one solves
the equations that govern the deformation of the solution to the classical master equation
under analysis. At this point, one proves that the most general interacting gauge theory,
consistently constructed out of the considered starting model and subject to some standard
hypotheses in field theory, depends on a degree four polynomial function in the scalar field,
two real constants, and six 2×2 real matrices, which are subject to some purely algebraic
(consistency) equations. Section 5 displays the previously mentioned twofold ‘dichotomy’
by showing that the general solution to the consistency equations naturally splits into two
complementary classes. Section 6 ends the paper with the main conclusions.

2 Free model: the antifield-antibracket BRST sym-

metry

The assumed field theory context is a flat one, defined by a four-dimensional Minkowski
spacetime of mostly minus signature, R1|3, supplemented with the real (Majorana) rep-
resentation of the associated Clifford algebra C (1, 3). The field model exhibits four non-
interacting real massless fields: a scalar field, two Majorana spinors, and a single Abelian
1-form, with the local dynamics variational generated from the functional

SL
0 [A,φ,Ψ] =

∫
d4x

[
− 1

4
FµνF

µν + 1
2
∂µφ∂

µφ+ i
2
Ψ̄⊤/∂Ψ

]
, (1)

where Fµν is the usual field-strength, Fµν = ∂[µAν], Ψ is a column spinor-matrix

Ψ =

(
ψ1

ψ2

)
,

consisting of real (Majorana) spinors

ψC
∆ := (Cψ∆)

⊤ = ψ̄∆ := ψ†∆γ
0, ∆ = 1, 2.

By its very definition, the starting model (1) is manifestly invariant under the generating
set of gauge transformations

δϵA
µ = ∂µϵ, δϵφ = 0, δϵψ∆ = 0, (2)
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which is irreducible and Abelian.
The general prescriptions of the antifield-antibracket BRST formalism [7, 8, 9, 10, 11]

adapted to the current situation firstly assumes the identification of the BRST complex,
that is generated by

{Aµ, φ, ψ∆, η}, {A∗µ, φ∗, ψ∗∆, η∗}, (3)

whose degrees and Grassmann parities read

agh(Aµ) = agh(φ) = 0, agh(ψ∆) = 0, agh(η) = 0, (4)

agh(A∗µ) = agh(φ∗) = 1, agh(ψ∗∆) = 1, agh(η∗) = 2, (5)

pgh(Aµ) = pgh(φ) = 0, pgh(ψ∆) = 0, pgh(η) = 1, (6)

pgh(A∗µ) = pgh(φ∗) = 0, pgh(ψ∗∆) = 0, pgh(η∗) = 0, (7)

ε(Aµ) = ε(φ) = 0, ε(ψ∆) = 1, ε(η) = 1, (8)

ε(A∗µ) = ε(φ∗) = 0, ε(ψ∗∆) = 0, ε(η∗) = 0. (9)

The BRST complex is also equipped with a natural involution according to which the
fields are real and the antifields are purely imaginary, i.e.,

(Aµ)
⋆ = Aµ, (φ)⋆ = φ, (ψ∆)

⋆ = ψ∆, (η)⋆ = η,

(A∗µ)
⋆ = −A∗µ, (φ∗)⋆ = −φ∗, (ψ∗∆)

⋆ = −ψ∗∆, (η∗)⋆ = −η∗.

One secondly defines the BRST differential associated with the theory (1)–(2). Taking
into account the field independence of the gauge generators (2), it results that the BRST
differential s simply reduces to

s = δ + γ, (10)

with δ the Koszul–Tate differential, agh(δ) = −1, which enforces the algebra of smooth
functions on the stationary field equations in its homology, and the longitudinal exterior
derivative along gauge orbits, γ, pgh(γ) = 1. These two degrees do not interfere [agh(γ) =
0, pgh(δ) = 0]. The overall degree that grades the BRST algebra is known as the ghost
number [gh] and is defined like the difference between the pure ghost number and the
antifield number, such that gh(s) = gh(δ) = gh(γ) = 1. The two differentials act on the
BRST generators like

δAµ = 0, δφ = 0, δψ∆ = 0, δη = 0, (11)

δA∗µ = ∂νFµν , δφ∗ = □φ, δψ∗∆ = −iψ̄∆

←
/∂ , δη∗ = −∂µA∗µ, (12)

γAµ = ∂µη, γφ = 0, γψ∆ = 0, γη = 0, (13)

γA∗µ = 0, γφ∗ = 0, γψ∗∆ = 0, γη∗ = 0. (14)

At last, the BRST complex naturally possesses a Gerstenhaber-like structure, the
well-known antibracket, (·, ·), defined by decreeing the fields/ghosts conjugated with the
corresponding antifields. Within this structure, the BRST differential s admits a canonical
s· = (·, S), with S the canonical generator. It is a real [i.e., invariant under the natural
involution on the BRST algebra] bosonic functional of ghost number zero, involving both
field/ghost and antifield spectra, that encodes the entire gauge structure of the associated
theory and obeys the classical master equation

(S, S) = 0 (15)
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which is equivalent to second-order nilpotency of the BRST differential, s2 = 0. In the
present context, (1)–(2), the canonical generator of the BRST symmetry takes the simple
form

S = SL
0 +

∫
d4x

(
A∗µ∂

µη
)
. (16)

3 Consistent interactions: the BRST approach

The present part is devoted to a brief review of the BRST approach to the problem of
constructing consistent interactions that can be added to a given gauge field theory [12,
13], maintaining the field spectrum and the number of degrees of freedom. As this issue
can be formulated as a deformation problem [17], it can be addressed in the BRST context
as a deformation problem for the solution to the master equation corresponding to a given
“free” theory [12, 13] in the framework of the local BRST cohomology [14, 15, 16]. This
means that if an interacting theory can be consistently constructed, then the solution S
to the master equation associated with the “free” theory can be deformed into a solution
S̄

S → S̄ = S + λS1 + λ2S2 + λ3S3 + · · · , ε(S̄) = 0, gh(S̄) = 0 (17)

of the master equation for the deformed theory that pertains to the original “free” BRST
algebra, namely,

(S̄, S̄) = 0. (18)

By projecting the equation (18) on various powers in the deformation parameter λ, one
obtains the equivalent tower of equations:

λ0 : (S, S) = 0, (19)

λ1 : sS1 = 0, (20)

λ2 : 1
2
(S1, S1) + sS2 = 0, (21)

λ3 : (S1, S2) + sS3 = 0, (22)

λ4 : 1
2
(S2, S2) + (S1, S3) + sS4 = 0, (23)

...

As S is nothing but the solution to the classical master equation corresponding to the
“free” theory, it results that (19) is satisfied by construction. The remaining equations are
to be solved recursively, from lower to higher orders, such that each equation correspond-
ing to a given order of perturbation theory, say k (k ≥ 1), contains a single unknown
functional, namely, the deformation of order k, Sk. With the deformed solution to the
master equation (17) at hand, from its various antightost number terms, one can read the
entire gauge structure of the resulting interacting theory.

4 Cross-couplings between a scalar field, two Majo-

rana fields, and an Abelian 1-form

This section is devoted to the construction of consistent interactions that can be added
to a massless “free” theory consisting of a real scalar field, two real spinor fields, and
a single Abelian 1-from. This is done through the procedure sketched in Section 3, by
constructing, term by term, the functional (17), which starts with the “free” version (16).
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From the plethora of solutions to (18), one retains only those that comply with specific
hypotheses from field theory as analyticity in the coupling constant, Lorentz covariance,
space-time locality, and Poincaré invariance. Moreover, one discards the solutions involv-
ing free parameters of strictly negative mass-dimension, such that the power-counting
non-renormalizable [18] interacting field theories are avoided.

4.1 The deformed solution to the classical master equation

According to the working hypotheses, among other restrictions made at the beginning of
this section, only the local solutions to (18) are considered. This particularly implies that
the first-order deformation S1 can be expressed as

S1 =

∫
d4x a, (24)

where a depends smoothly on the BRST generators (3) and their space-time derivatives
up to a finite order, i.e., is a local function. Inserting this realization into (20), one obtains
the equivalent equation

sa = ∂µj
µ, gh(a) = 0, ε(a) = 0, (25)

with jµ a local current. As only non-trivial couplings are searched for, i.e., those that do
not come from some field redefinitions, the solutions of type a = sā + ∂µj̄

µ will not be
taken into account [14, 15, 16].

The simplest way for solving equation (25) makes use of the inhomogeneous struc-
ture of the field spectrum due to the three kinds of fields: scalar, vector, and spinor.
Accordingly, the first-order deformation naturally decomposes into seven components

a = a(φ) + a(ψ) + a(A) + a(φ−ψ) + a(φ−A) + a(A−ψ) + a(int), (26)

where a(φ), a(ψ), and a(A) govern the self-interactions of the scalar field φ, the spinor
fields ψ∆, and the vector field Aµ, respectively, a(φ−ψ), a(φ−A), and a(A−ψ) describe the
cross-couplings scalar-spinor, scalar-vector, and vector-spinor, respectively, whereas aint

effectively mixes all the three sectors. Inserting decomposition (26) into (25) and invoking
the independence of various sectors, it results that equation (25) is equivalent to seven
independent equations, one for each piece,

sa(sector) = ∂µj
µ
(sector) (27)

At this point, in solving equations (27), the working hypotheses made in the beginning
come into play. A simple analysis of the mass-dimension corresponding to the assumed
field spectrum displays

[A] =M = [φ] , [ψ∆] =M3/2, (28)

which, further, exhibits the general real solutions to (27) that comply with the specified
hypotheses

a(φ) = −V (φ), a(ψ) = Ψ̄⊤(V + iγ5Ṽ)Ψ, a(A) = α
2
ϵµνλρFµνFλρ, (29)

a(φ−ψ) = Ψ̄⊤(U + iγ5Ũ)Ψφ, a(φ−A) = n (φ∗η − Aµ∂µφ) , (30)

a(A−ψ) = Ψ⊤∗(W + iγ5W̃)Ψη − i
2
Ψ̄γµ(W + iγ5W̃)ΨAµ, a(int) = 0. (31)
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Previously, V is an arbitrary polynomial function in the scalar field, which is of degree
at most equal to four, such that its coefficients are of positive mass-dimensions, α and n
are arbitrary real numbers, while V, Ṽ, U, Ũ, W, and W̃ are some 2 × 2 arbitrary real
matrices with all symmetric, but W, which is skew-symmetric.

According to the deformation algorithm, once the first-order deformation has been
completed, one imposes its consistency, i.e., the requirement for equation (21) to possess
solutions. By direct computation one identifies the second-order deformation

S2 =
1
2

∫
d4x(n2AµA

µ), (32)

as well as the consistency equations

n
dV

dφ
= 0, (33)

and

[U,W] = {Ũ, W̃},
[
Ũ,W

]
= −{U, W̃}, (34)

[V,W] = {Ṽ, W̃} − nU,
[
Ṽ,W

]
= −{V, W̃} − nŨ. (35)

Inspecting the remaining equations, i.e., (22), (23), etc., direct computations based on
the results (24) and (32) yield

(S1, S2) = 0 = (S2, S2),

which allow to conclude that higher-order deformations can be made trivial

Sk = 0, k > 2. (36)

At this point we have determined the full deformed solution to the classical master equa-
tion

S̄ = S + λS1 + λ2S2 (37)

where the various order deformations S, S1, and S2 are given in (16), (24), and (32)
respectively. At this point, a whole family of interacting field theories has been displayed.
It is expressed in terms of an arbitrary polynomial function of degree at most four in the
undifferentiated scalar field, two real constants and six 2× 2 real matrices, all subject to
the consistency conditions (33)–(35).

4.2 The Lagrangian gauge structure of the interacting field the-
ories family

According to the general rules of the BRST formalism, information about the gauge
structure is derived from the antighost-homogeneous terms of the deformed solution (37).
More precisely, the antighost number zero piece of the functional (37)

SL [A,φ, ψ] =

∫
d4x

[
−1

4
FµνF

µν + 1
2
(∂µφ− λnAµ)(∂

µφ− λnAµ) + i
2
Ψ̄⊤ /DΨ

−λV + λα
2
ϵµνλρFµνFλρ + λΨ̄⊤(V + iγ5Ṽ)Ψ + λΨ̄⊤(U + iγ5Ũ)Ψφ

]
(38)
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is just the Lagrangian action of the family interacting field theories, while the antighost
number one terms display the generating set of gauge transformations for (38) as

δ̄ϵA
µ = ∂µϵ, δ̄ϵφ = gnϵ, δ̄ϵΨ = (W+ iγ5W̃)Ψϵ. (39)

As the functional (37) does not contain terms of antighost number greater or equal to
two, it results that the generating set of gauge transformations (39) is irreducible and
remains Abelian, as the starting one (2). In the Lagrangian action corresponding to the
interacting gauge theory (38) one used the covariant derivatives

/DΨ = γµ(∂µ − (W + iγ5W̃)Aµ)Ψ.

It is understood that the free parameters parameterizing the family of gauge theories
expressed by (38)–(39) are solutions to the consistency equations (33)–(35).

5 Representative interacting models

In this section, some representative interacting theories are singled out from the family
(38)–(39), with the members depending on the potential V , real constants α and n, and
the 2× 2 real matrices V, Ṽ, U, Ũ, W, and W̃. Remember that these free parameters are
subject to consistency conditions (33)–(35).

Equation (33) splits this family into two complementary subfamilies of interacting field
theories. The first one involves a massless 1-form, but a possibly massive scalar field, is
governed by

n = 0, V (φ) = α2

2
φ2 + α3

3!
φ3 + α4

4!
φ4, α2, α3, α4 ∈ R, (40)

with the matrix parameters being subject to

[U,W] = {Ũ, W̃},
[
Ũ,W

]
= −{U, W̃}, (41)

[V,W] = {Ṽ, W̃},
[
Ṽ,W

]
= −{V, W̃}. (42)

The second one displays a massive 1-form, but an unphysical massless scalar mode,
and is described by

n ̸= 0, V = 0, (43)

with the matrix parameters verifying the linear equations (34)–(35).
In the last part of this section, a detailed description of the obtained interacting models

is done. For the first subfamily, the fermionic dependent part is completely captured in
terms of the 2 × 2 real matrices V, Ṽ, U, Ũ, W, and W̃ subject to the linear equations
(41)–(42). The symmetry properties of these matrices lead to the solutions

W = 0, W̃ = w̃σ1, Ũ = ũσ3, Ṽ = ṽσ3, U = uσ3, V = vσ3, (44)

W = 0, W̃ = w̃σ3, Ũ = ũσ1, Ṽ = ṽσ1, U = uσ1, V = vσ1, (45)

with the lower-case Latin coefficients being arbitrary real numbers, supplemented with

W = wiσ2, W̃ = 0, Ũ = ũσ0, Ṽ = ṽσ0, U = uσ0, V = vσ0,
(46)

W = wiσ2, W̃ = ±wσ0, Ũ = ∓uσ3, Ṽ = ∓vσ3, U = uσ1, V = vσ1,
(47)
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with the same character of lower-case Latin coefficients as previously.
For the complementary subfamily of interacting gauge theories, namely those that

display a massive 1-form, the 2× 2 real matrices, which particularly control the masses of
fermionic modes, are subject to the linear equations (34)–(35). Invoking again the type
of matrices involved, it results the following classes of solutions

W = 0, W̃ ∈ Rs(2), Ũ = 0, Ṽ = 0, U = 0, V = 0, (48)

W = 0, W̃ = 0, Ũ = 0, Ṽ ∈ Rs(2), U = 0, V ∈ Rs(2), (49)

and

W = wiσ2, W̃ = 0, Ũ = 0, Ṽ = 0, U = 0, V = 0, (50)

W = wiσ2, W̃ = ±wσ0, Ũ = 0, Ṽ = ±vσ1, U = 0, V = vσ3. (51)

Previously, one employed the Pauli matrices σ1, σ2, and σ3, the unit 2× 2 matrix σ0,
while by Rs(2) one understood the set of symmetric 2× 2 real matrices.

It is worth noticing that even though the solutions (40) and (44)/ (45)/ (46) or (47), on
the one hand, or (43) and (48)/ (49)/ (50) and (51), on the other hand, do not represent
the general solution to the consistency equations (33)–(35), they display some interacting
theories with a non-trivial mass spectrum.

Based on the previous discussion, the first class of interacting gauge theories consists
in the Lagrangian action

SI [A,φ,Ψ] =

∫
d4x

[
−1

4
FµνF

µν + 1
2
∂µφ∂

µφ+ i
2
Ψ̄⊤ /DΨ− λ(α2

2
φ2 + α3

3!
φ3 + α4

4!
φ4)

+λα
2
ϵµνλρFµνFλρ + λΨ̄⊤(V + iγ5Ṽ)Ψ + λΨ̄⊤(U + iγ5Ũ)Ψφ

]
, (52)

which is invariant under the generating set of gauge transformations

δ̄IϵA
µ = ∂µϵ, δ̄Iϵφ0, δ̄IϵΨ = (W+ iγ5W̃)Ψϵ. (53)

Previously, the 2 × 2 real matrices can be chosen as in (44)/ (45)/ (46) or (47). This
class of theories exhibits a massless 1-form and possibly a massive scalar and/or spinor
modes. Moreover, all these models exhibit seven physical degrees of freedom, distributed
as in the starting model, i.e., two associated with the 1-form Aµ, one corresponding to
the scalar field φ, and four fermionic degrees of freedom.

The complementary class of interacting models is characterized by the Lagrangian
action

SII [A,φ,Ψ] =

∫
d4x

[
−1

4
FµνF

µν + 1
2
(∂µφ− λnAµ)(∂

µφ− λnAµ) + i
2
Ψ̄⊤ /DΨ

+λα
2
ϵµνλρFµνFλρ + λΨ̄⊤(V + iγ5Ṽ)Ψ + λΨ̄⊤(U + iγ5Ũ)Ψφ

]
, (54)

which is found invariant under the generating set of gauge transformations

δ̄IIϵ A
µ = ∂µϵ, δ̄IIϵ φ = gnϵ, δ̄IIϵ Ψ = (W+ iγ5W̃)Ψϵ. (55)

For this class of models, the 2 × 2 real matrices can be chosen as in (48)/ (49)/ (50) or
(51).
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It is worth noticing that the Stuekelberg coupling between the scalar field and the
Abelian 1-form present in the last models (54), combined with the shift gauge transfor-
mation of the scalar field in (55), show that the distribution of physical modes is no longer
as in the free model. Here, the seven physical degrees of freedom come from the three
bosonic modes due to the now massive 1-form Aµ and the four DOFs corresponding to
the fermionic modes ψ∆. At the same time, the scalar field is a purely gauge one as it
can be seen, at the classical level, from the reparametrization

Aµ → Āµ := Aµ − 1
gn
∂µφ, φ→ φ̄ := φ, ψ∆ → ψ̄∆ := ψ∆

of the jet bundle corresponding to the considered field theory.

6 Conclusions

In this paper, we analyzed the consistent couplings that can be added to a massless free
field theory comprising one real scalar field, two real spinor fields, and one Abelian 1-form,
using the deformation of the solution to the classical master equation [12, 13], combined
with specific techniques of local BRST cohomology [14, 15, 16]. This approach, completed
with some standard working hypotheses from field theory, led to two classes of interacting
theories, each containing quadratic, derivative-free interaction vertices naturally inter-
preted as mass terms for various field spectrum components. The first of them exhibits
a massless Abelian 1-form, a massive scalar field, and two spinor fields that are massive
whenever they are not coupled with the 1-form. Also, the physical degrees of freedom of
the interacting models are distributed just as in the starting model, i.e., two associated
with the 1-form Aµ, one corresponding to the scalar field φ, and four fermionic degrees
of freedom. The second class displays a massive 1-form, a massless scalar field, and two
fields that are massive unless these are cross-coupled with the massive 1-form. In this
context, the scalar field becomes purely gauge, while the 1-form gets an extra physical
degree of freedom.
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