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Abstract 
We have looked into Kaluza-Klein two-fluid cosmological models in the setting 
of )(Rf gravitational theory. In these models, the cosmic microwave background 
is represented by the radiation distribution, while the matter composition of the 
cosmos is represented by the first fluid. We take the  law that is mmp  )1(   

the equation of state for a perfect fluid, 21   as given. For both exponential 
and power law volumetric growth, exact solutions to the field equations are found. 
We determined the models' cosmic jerk and statefinder parameters and found that 
the cosmos smoothly transitions from its decelerating to accelerating phase. 
Finally, some of the models' geometrical and physical characteristics are 
discussed. 
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1. Introduction 
The most recent observable evidence for the accelerated cosmic expansion of the universe 
came from high redshift supernovae of type Ia (SN Ia) (Riess et al. 1998; Perlmutter et al. 
1999; Bennett et al. 2003). The late-time accelerated expansion of the universe was also 
discovered by recent cosmic observations, including the Cosmic Microwave Background 
(CMB) (Spergel et al. 2003; Oli 2012), the large-scale structure (Tegmark et al. 2004), and 
the CMB radiation (CMBR) (Caldwell & Doran 2004; Huang et al. 2006). Additionally, it is 
hypothesised that the cosmic acceleration is caused by the enormous negative pressure known 
as dark energy. Two different ways have been suggested to explain this. Investigating other 
dark energy contenders (Bento 2003, Cohen 1999, Sheykhi 2009, Padmanabhan 2003, 
Copeland 1998) and modifying Einstein's theory of gravitation are two options.  
Several modified theories of gravity have been put up as alternatives to Einstein's general 
theory of relativity in light of the universe's late-time acceleration and the existence of dark 
energy and dark matter. The cosmologically significant )(Rf gravity hypothesis stands out 
among them and has been thoroughly studied by various authors (Capozziello et al. 2005; 
Nojiri et al. 2006; Nojiri & Odintsov 2007). It has been demonstrated that )(Rf gravity 
theory, which is compatible in the dark epoch, is a plausible alternative to general relativity. 
It has been proposed that a general function of Ricci scalar R  might be used to replace the 
general relativity's Einstein's Hilbert action in order to accelerate the universe. First of all, the 
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class of modified theories of gravity was put forth by Buchdahl in 1970. Copeland et al. 
provide an extensive review of changed )(Rf gravity (2006). Researchers like Caroll et al. 
(2004), Nojiri and Odintsov (2003, 2004), Akbar and Cai (2006), and Chiba et al. (2007) 
have researched several aspects of )(Rf gravity. Gravitational Bianchi type I models have 
been studied by Gurovich and Starobinsky (1979). Multamki and Vilja discuss vacuum 
solutions for the spherically symmetric metric in )(Rf gravity (2006, 2007).  
The moving star gains a constant asymptotic speed at great distances, according to Sobouti's 
analysis of the modified Schwarzschild de Sitter metric in the )(Rf gravity, whereas in the 
weak field limit, one receives a minor logarithmic correction to the Newtonian potential. 
Sharif and Shamir (2010) investigate the cosmological models for the ideal fluid in )(Rf
gravity of the Bianchi type I and V. Shamir (2010) researches cosmological models of gravity 
of the Bianchi type. In their 2012 study, Shojai and Shojai examined the static, spherically 
symmetric interior solution to )(Rf gravity. By adopting symmetric space time for dark 
energy and the mesonic scalar field, Aktas et al. (2012) were able to create anisotropic 
universe models in terms of )(Rf gravity. In 2018, Capozziello et al. looked at the 
significance of energy conditions in )(Rf cosmology. Numerous physicists and cosmologists 
have discovered different contexts for )(Rf gravity, including Katore et al. (2016), Vijaya 
Santhi et al. (2017), Heba Sami et al. (2017), Roushan et al. (2019), Chaichain et al.( 2017), 
Shaikh and Katore(2016), Vijaya Santhi et al. (2019), Shah and Samantha (2019), Dagwal 
(2020), Maurya and Myrzakulov (2024). 
The early universe was thought to have been higher dimensional. Due to experimental 
restrictions, it is not now possible to detect more dimensions. However, Kaluza (1921) and 
Klein (1926) demonstrated that both four-dimensional gravity and Maxwell's electromagnetic 
unification are included in five-dimensional general relativity. According to the Kaluza-Klein 
theory, empty five-dimensional space's geometry is the sole source of four-dimensional 
matter (Patrico 2013). The fifth dimension is thought to be compressed and wrapped up into a 
little circle. Numerous theories, including the super symmetric Kaluza-Klein theory, the 
multidimensional unified theories, the string theory, etc., were founded on the concept of an 
additional dimension. According to Marciano (1984), there should be compelling evidence 
for the presence of extra dimensions if experiments show that fundamental constants vary 
throughout time. The equation of motion in higher dimensional gravity is stated in terms of 

)4(N dimension and typically exhibits additional effects when applied to four-dimensional 
space-time. Additional terms related to the fifth dimension are present in the generic five-
dimensional geodesic and can be seen as modifications to the conventional four-dimensional 
equation of motion (Wesson 2011). Some of the challenging problems in Big Bang 
cosmology and other areas of physics have been successfully addressed by five-dimensional 
models within the framework of Kaluza-Klein theory. The Kaluza-Klein cosmological model 
was examined in several contexts by Gross and Perry (1983), Sharif and Khanum (2011), 
Reddy and Vijaya Laxmi (2015), Adhav et al. (2012), Tikekar and Patel (2000), Santhi 
Kumar and Reddy (2015), Khadekar and Wanjari (2015), Pawar et. al.(2018) , Reddy and 
Aditya (2018) , Naidu et. al. (2021), Lambat and Pund (2023). 

Two-fluid cosmological models have become more significant in recent years. In general 
relativity, Coley and Dunn (1990) created a Bianchi type 0VI model with a two-fluid source. 

In their 2002 study, Pant and Oli used space-time of Bianchi type II to examine two-fluid 
cosmological models. Oli (2008a,2008b) studies Bianchi type I two-fluid cosmological 
models with and without variables G and  . In the FRW universe, Amirahashchi et al. 
(2011) created a two-fluid dark energy model with a time-dependent deceleration parameter. 
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In 2011, Harko and Lobo looked into the two-fluid dark matter models. The interacting two-
fluid viscous dark energy models in the non-flat cosmos have been studied by Amirahashchi 
et al. (2012). Mishra et al. (2017) have examined the accelerating dark energy cosmological 
model in a two-fluid with a hybrid scale factor. Mishra et al. (2018) investigate anisotropic 
cosmological models using two fluids. Anisotropic Bianchi type VI0 two fluid cosmological 
models coupled with massless scalar field and time-varying G and  have been studied by 
Satish and Venkateswarlu (2019), Solanke et al.(2021) have obtained accelerating cosmic 
model with mixture of fluids, first fluid show the perfect fluid and other show the dark 
energy. Shekh et. al (2023) studied Interacting two fluid models in modified theories of 
gravitation. 

In this study, we explore the Kaluza-Klein cosmological model with two-fluid in )(Rf
gravity, which is inspired by the aforementioned research. The work is structured as follows: 
Section 2 describes the field equation of )(Rf gravity. In section 3, we used the Kaluza-Klein 
metric to construct the field equations in the presence of minimally interacting two fluids. 
The volumetric exponential expansion concept is covered in Section 4. We looked into the 
volumetric power law expansion model in Section 5. Conclusion is found in Section 6. 

2. Formalism for the )(Rf gravity 
The mechanism for the )(Rf gravitational field is provided  

.))(
16

1
( 4 xdLRf

G
gS m  

      (1) 

mL  is the matter Lagrangian and the Ricci scalar's general function )(Rf . Simply substituting

)(Rf  for R  in the typical Einstein-Hilbert action yields this action. By changing the action in 
relation to the metric ijg as shown, the corresponding field equations are discovered 
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where the covariant derivative is i  and
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
)(

)( .In their 2016 study, Katore and 

Hatkar looked into two-fluid FRW cosmological models. Reddy et al. (2014) investigated 
vacuum solutions of )(Rf gravity-based Bianchi type I and V models with a unique 
deceleration parameter. In an anisotropic model, Singh et al. (2013) investigated the 
functional form with power law growth. In their 2016 paper, Katore et al. offered a unified 
description of the gravitational Bianchi type-I universe. Anisotropic plane symmetric two-
fluid cosmological models with time-varying G and have been examined by Verma et al. 
(2015). 

3. Solutions to field equations 
We consider a Kaluza-Klein metric with five dimensions that has the following form: 

,)(])[( 22222222 dtBdzdydxtAdtds       (3) 
where  the fifth coordinate is taken to the space, ,)(tA )(tB as the metric potentials. Kaluza-
Klein cosmological model in ),( TRf gravity with domain wall was researched by Biswal et 
al. (2015). Lyra Geometry was used by Sahu et al. (2017) to study the Kaluza-Klein slanted 
cosmological model. The energy momentum tensor for two-fluids is established by Letelier 
(1980) and Bayin (1982) i

j
ri

j
mi

j TTT )()(   ,where i
j

mT )(  the energy momentum tensor of 

the radiation field and i
j

rT )( the matter field are both present, which are (Coley and Dunn 
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Adhav et al. look into two-fluid cosmological models in space-time of Bianchi type-III in 
2011. Induced-matter theory with two-fluid four-dimensional FRW cosmological models was 
examined by Guang and Qian in 2006. Mete et al. (2013) have investigated the two-fluid 
source Kasner cosmological models in general relativity. As per Akarsu and Kilinic (2010), 
we first assume that the two sources interact minimally in order for their individual energy 
momentum tensors to be conserved. As a result, the single conservation equation 0; ij

jT for a 

system of two fluids leads to the following conservation equations: 

,0)(3)( 55
5 






  mmm p

B

B

A

A
  .0

3

3

4
)( 55

5 





  rr B

B

A

A
  

With (2), (3), and (7), the field equations are stated as  
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Here, the subscript "5" stands for a derivative with regard to t. 
Over three equations and seven unknowns are included (A, B, F, f, rmmp  ,, ).  Therefore, 

one might take into account extra factors as per a physical circumstance or an arbitrary 
mathematical assumption in order to arrive at the solution. For assuming the condition, one 
should keep in mind that a physical scenario may result in a differential equation that is not 
integrable, whereas a mathematical assumption may produce conclusions that are not 
consistent with reality. Johari and Desikan (1994) employed the Robertson-Walker model's 
power law relationship between the scale factor and scalar field in the context of Brans-Dicke 
theory. The relationship between the scale factor and the derivative of )(Rf gravity, as 

employed by Sharif and Shamir (2009, 2010), demonstrates that ,naF where 4

1

Va   is a 
scalar factor and n an arbitrary constant. We include above equation to solve the field 
equations in the form ,nbaF  where the proportionality constant b is used. We use as the 
specific value of the constants 1b , 3n . 
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On incorporating (8), there is ,exp 13
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where 1c  is the integrating constant, which is assumed to be zero for convenience. We have 
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where VF  and BAV 3 . We choose a  -law as an equation of state 

and follow the literature of Oli (2008b), Pant and Oli (2002), and Verma et al. (2015)

mmp  )1(  , where 21   .The model's spatial volume , mean Hubble's parameter are  
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 . The deceleration parameter is used to 

determine whether the cosmos is accelerating or decelerating. The universe is said to be 
decelerating when q is positive, while the cosmos is speeding up when q is negative. The 
definition of the deceleration parameter is 
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We have taken into consideration two volumetric expansion rules, namely provided by the 
volumetric power law and the volumetric exponential expansion law 

,4
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,4
3
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where lcc ,, 32 , m arbitrary positive constants and are present. The volumetric expansion is 

speeding up in the models with exponential growth and power law (for 1m ). For 1m , it 
displays constant volumetric expansion, whereas the model for displays decelerating 
volumetric expansion. Singh and Beesham(2011), Sahoo et al. (2016), and Akarsu and Kilnic 
(2010) have all explored these volumetric expansions. 
 

4. Exponential Expansion Model 
With (12) , the metric potentials are written as  
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With (13) and (14), the Kaluza-Klein metric changes in  
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As can be seen, the scale factor permits constant values at first, but as they go through time 
without experiencing any singularities, they eventually diverge to infinity. The model's Ricci 

scalar is determined to be .
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lR  It has been seen that at 0t , R is constant, 
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i.e., 
4
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4

3
20
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c
lR  and R exponentially diminishes, and tends to 220l at late time (i.e. 

t ).The Ricci scalar's time-based )(Rf  function is calculated as .)( 12
3
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2
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c
Rf  It can 

be seen from the diagram above that the function of the Ricci scalar )(Rf is constant at the 
start of the model, diminishes as time goes on, and finally becomes zero at enormous time. 
 
 

4.1 The Physical and Kinematical Properties 
The Spatial volume, mean Hubble's parameter, deceleration parameter, expansion scalar, 
shear scalar, mean anisotropic parameter are calculated as ltecV 4

2 , lH  , 1q , l4
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 respectively. The spatial volume of the model is seen to be 

initially bounded at 0t and then exponentially increase as t increases and become infinite 

at t . We have found in this model 1q  and 0
dt

dH
. As a result, it provides both the 

highest Hubble parameter value and the quickest pace of cosmic expansion. Therefore, this 
model might capture the extremely late period of the cosmos as well as the inflationary 
epoch in the early universe. This result is comparable to that of Sahoo et al (2014). It is 
significant to remember that, in general relativity 1q , whereas in )(Rf gravity 1q , 
(Samanta and Debata 2013). With passing time, the mean anisotropic parameter falls off 
exponentially until it reaches zero. As a result, the examined model is isotropic in the long 
run. The shear scalar vanishes at t whereas it is finite at 0t . Additionally, the 
expansion scalar does not change over the course of the universe's expansion. 
The formula for calculating matter's energy density is 
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Radiation's energy density is calculated as 
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Fig. 1 Plot of Energy density verses cosmic time for .
300

1
,1,2 2  cclk  

It can be shown from Fig. 1 that the universe is matter-dominated. The radiation energy 
density is negative for 2 , as shown by expressions (16) and (17), whereas the matter 
energy density is positive. As a result, matter energy density and radiation energy density are 
dominant in the cosmos, respectively. These results are similar to those of Samanta and 
Debata (2013). 

The parameter for matter density is calculated as 
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The parameter for radiation density is calculated as 
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The model's energy density parameter is determined to be 
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Fig. 2 Plot of density parameter verses cosmic time for 12  cclk  

Fig. 2 depicts the evolution of the density parameter across cosmic time. Throughout the 
evolution,  has a finite and bounded value. We noticed that close to 0t , 1 , and as

t , 3 . 

 

 
Fig. 3 Plot of density parameters verses cosmic time for 1,1 2  cclk . 
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Fig. 4 Plot of density parameters verses cosmic time for 1,2 2  cclk . 

Via Fig. 3,we noted that throughout the evolution, m  and r  are both finite and bounded. 

For 1 , 0m , as 1020  m , and 0 r  as 2010  r similarly via Fig. 4, it 

was discovered that for, 2 , 0m as 105  m , and 0 r as 46  r . 

4.2. Jerk Cosmic Parameter 
According to Capozziello (2006), the dark energy predominated the matter as the cosmos 
expanded larger over time and began to accelerate between five and six billion years ago. A 
dimensionless quantity known as the cosmic jerk parameter is what causes the universe to 
smoothly switch from a decelerating to an accelerating phase. It is provided by 

 
H

q
qqtj


 22)(         (22) 

With (22), we come to 1)( tj . For some models with positive values for the jerk parameter 
and negative values for the deceleration parameter, the universe transitions from a 
decelerating to an accelerating phase (Blandford et al. 2004, Chiba and Nakamura 1998). The 
behaviour like CDM is clearly visible in the investigated model. 
 

4.3. Statefinder Parameter 
Statefinder diagnostic pair, introduced by Sahani et al. (2003) and Alam et al. (2003), is a 
geometrical pair with the coordinates {r, s} . Given by the statefinder pair is 
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A space-time metric is directly used to build the state finder. Consequently, it has a wider use 
than physical factors. The statefinder pair for the CDM model is defined as {r.s}={1,0}, 
while the fixed value for SCDM is {r,s}={1,1} (Feng 2008). This model corresponds to 

CDM because we found that {r, s}={1,0}in it. 
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5. Power Law Model 
With (11), the metric potentials are written as  
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With (24) and (25), the Kaluza-Klein metric changes 
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It is obvious that the scale factor disappears very close. Then, as time goes on, they begin to 
change, eventually diverging over a long period of time. The model's Ricci scalar is 

determined to be mt
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3820  .It is observed that, R is infinite at the beginning 

of the model and decreases as time increases and ultimately become zero at late time .The 
Ricci scalar's time-based function is calculated as 
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  .Here, we saw that it was impossible to 

write in the form of R a single sentence. Here, )(Rf values tend to be high initially and last a 
long time. )(Rf  is achievable only for finite. It should be remembered that as m changes, so 
does their behaviour. 
 

5.1 The Physical and Kinematical Properties 
The Spatial volume, mean Hubble's parameter, deceleration parameter, expansion scalar, 

shear scalar, mean anisotropic parameter are calculated as mtcV 4
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 .The cosmos is currently accelerating, and the value 

of the deceleration parameter is somewhere in the range 01  q , according to recent 
observations of SN Ia. As a result, one can select a deceleration parameter value in our 
derived model that is compatible with the observed. It has been noted that the spatial volume 
V is zero at this time. It keeps growing forever for all positive values. The spatial volume 
continues to expand indefinitely over a long period of time. The Hubble's directional 
parameters are varied at 0t and go close to zero at t . The average Hubble's 
parameter decreases over time. As a result, the cosmos was expanding quickly when it first 
began, but that speed has now decreased as time has passed. The model under investigation 
accelerates for 1m , decelerates for 10  m , and displays constant-velocity volumetric 
expansion for 1m . These findings agree with those of Akarsu and Kilnic (2010), Sahoo et 
al. (2016), Singh and Beesham (2011), and others. The shear and expansion scalars at 0t
indicate that the cosmos begins to evolve from the original singularity with an infinite rate of 
shear, which ultimately becomes zero as t . The anisotropic parameter of expansion is 
infinite at the beginning, indicating that the model was strongly anisotropic during the 
universe's history. The parameter 0  indicates that the cosmos has been isotropic for a 
very long time. 
The formula for calculating matter's energy density is 
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Radiation's energy density is calculated as 
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Fig. 5 Plot of energy density verses cosmic time for .1,1.0,1 3  ckcm  

 
Fig. 6 Plot of energy density verses cosmic time for .1,1.0,2 3  ckcm  
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Fig. 7 Plot of energy density verses cosmic time for .1,2,1 3  ckcm  

 
Fig. 8 Plot of energy density verses cosmic time for .1,2,2 3  ckcm  

Via fig. 5-8, we found that the matter dominance of the dust ( 1 ) and stiff )2(  models 
are different for 1.0m , however the radiation dominance of the dust ( 1 ) and stiff 

)2(  universes are also different for 2m . In this instance, we have seen that the 
outcomes of our investigation differ with the general relativity results reported by Samanta 
and Debata (2013). This appears to be a general theory of relativity effect. 

The parameter for matter density is calculated as 
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The parameter for radiation density is calculated as 
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The model's energy density parameter is determined to be 
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Fig. 9 Plot of Density parameter versus time for 13  ckc . 

We noticed that for 1.0m , the universe 1  is closed throughout its evolution, but for

2m , we have 1  for 4.00  t . 
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Fig. 10 Plot of Density parameter versus time for .1,2,1 3  ckcm  

 

Fig. 11 Plot of Density parameter versus time for .1,2,2 3  ckcm  

Fig. 10 and 11depict how m and r  have changed throughout time. It is evident from Fig. 

10 that for the dust universe 1 , 0,0  rm , early time and as t both

0,  rm . Figure (11), which depicts the stiff universe 2 , shows that 0m ,

0 r , all through the universe's expansion. 
 

5.2. Cosmic Jerk Parameter 

The formula for the Cosmic Jerk parameter is .
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0m ; given a suitable selection of m , Eq. (32) yields a constant number that is positive. As 
a result, the cosmos smoothly switches from its decelerating to accelerating phase. 
 

5.3. State finder Parameter 

For this model, the state finder parameters, r and s, are determined as 
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It's interesting to observe that the parameters solely depend on the value of m and are 
independent of time.   
 

6. Conclusion 
In the theory of )(Rf gravity, two-fluid cosmological models have been examined in this 
study. There are two volumetric expansions, to find the precise answers to the field equation, 
exponential and power law expansions are taken into consideration. 

It is discovered that the model approaches isotropy in exponential expansion, which provides 
further insight on the universe's accelerating expansion (Tiwari 2013, Reddy et al. 2012, Shri 
Ram and Priyanka 2013). It is significant to remember that, 1q in general relativity, 
whereas 1q  in )(Rf gravity, (Samanta and Debata 2013). The cosmos is dominated by 
radiation and matter, respectively. This result is similar to that of Samanta and Debata (2013). 
The investigated model exhibits behaviour CDM consistent with an early closed cosmos 
that eventually became open. 

When the power law expands, it is noticed that the cosmos begins to expand at an endless rate 
but then stops for a very long time. The expanding universe is speeding up. The cosmos 
smoothly switches from its decelerating phase to its speeding phase. The examined model 
starts out strongly anisotropic and then moves toward isotropy. We found that the matter 
dominance of the dust ( 1 ) and stiff )2(  models are  different for 1.0m , however the 
radiation dominance of the dust ( 1 ) and stiff )2(  universes are also different for 

2m . In this instance, we have seen that the outcomes of our investigation differ with the 
general relativity results reported by Samanta and Debata (2013). This appears to be a general 
theory of relativity effect. We noticed that for 1.0m , the universe 1  is closed 

throughout its evolution, but for 2m , we have 1 for 4.00  t .It is evident that for the 
dust universe 1 , 0,0  rm , early time and as t both 0,  rm .  The stiff 

universe 2 , shows that 0m , 0 r , all through the universe's expansion. 
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