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Abstract 
 

Embarking on a theoretical exploration, the author delves into the prospect of 
integrating Modified Newtonian Dynamics (MOND) and the incorporation of 
viscosity into curved spacetime within the framework of general relativity. MOND, 
a proposition that modifies the laws of gravity at low accelerations, has been put 
forward as a potential explanation for galactic dynamics without invoking dark 
matter, although this aspect is not in the center of interest of this text. Conversely, 
the incorporation of viscosity through the viscosity tensor Πμν aims to capture the 
effects of viscosity on particle motion in curved spacetime. While these two ideas 
are independent, there is an intrigue in exploring their potential connection and how 
they might interact. Employing a mathematical and perturbative approach, the 
author investigates how MOND and viscosity might influence particle trajectories 
under specific conditions. 
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Discussion 

 
The path of this article progresses from less to more. From a small question to broader 
conclusions, following the process the author followed in writing it. A sphere is a particular 
case of an ellipse in the gravitational field? A planet or a star forms a sphere when 
gravitationally settled, but the objects orbiting them, or they themselves, trace ellipses (and 
sometimes circles) Why? Yes, a sphere can be considered as a particular case of an ellipse in 
the context of gravity. Both spheres formed by planets or stars and ellipses traced by orbiting 
objects are related to the gravitational forces acting between celestial bodies. 
 
When a massive body, such as a planet or a star, forms or settles due to gravity, it tends to take 
on a spherical shape. This is because the gravitational force acts uniformly from all directions 
towards the centre of mass of the body, it has central symmetry. In that case we have the 
particular case of an ellipse whose foci occupy the same point (the semi-major axis is zero): the 
centre of a sphere. This balances the internal pressures and, as the body collapses, all parts are 
compressed towards the centre, forming the sphere: this is the way in which a massive body 
can have the lowest gravitational potential energy. 
 
In contrast, when a smaller object, such as a moon or a satellite, orbits a massive body (such as 
a planet or a star), it follows an elliptical trajectory also due to gravity. This is because the 
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gravitational force varies as the object moves in its orbit, as there is another force at work: the 
centripetal force that causes the object to move. Gravity is stronger when the object is closer to 
the massive body and weaker when it is further away. In the extragalactic context, an elliptical 
galaxy can be modelled as several concentric ellipses sharing a flat area of space. 

Kepler's laws describe the elliptical orbits of moving objects under the influence of a central 
force, such as gravity (Russell, J. L., 1964). These laws were formulated by Johannes Kepler in 
the 17th century and are: 

 

1. The orbit of an object around a massive body is an ellipse, with the massive body located 
at one of the foci of the ellipse. 

2. The line connecting the massive body to the object will sweep equal areas at equal time 
intervals. 

3. The square of the orbital period (the time it takes for an object to make one complete 
revolution around the massive body) is proportional to the cube of the length of the 
semi-major axis of the ellipse. 

 

The formation of spheres and the elliptical orbits (and other trajectories) of celestial bodies can 
be deduced from the Einstein field equations, which are the core of the theory of general 
relativity. The Einstein field equations are a set of partial differential equations that describe 
how matter and energy affect the curvature of space-time. These equations are given by: 

 

 

where Gμν is the Einstein tensor, which describes the curvature of space-time, G is the 
gravitational constant, and Tμν is the energy-momentum tensor, which describes the 
distribution of matter and energy. 

 

For a massive body, such as a planet or a star, the energy-momentum tensor Tμν is not zero in 
the region occupied by the body. Solving the Einstein field equations with the appropriate 
conditions for a massive body yields a solution that describes the geometry of space-time 
around the object. For a spherically symmetric body, the solution to the Einstein field equations 
describes a curvature of space-time that resembles a sphere around the object. This is known as 
the Schwarzschild metric, which describes the gravitational field of a non-rotating spherical 
object (Kruskal, M. D., 1960). On the other hand, for an object in orbit around a massive body, 
the Einstein field equations also allow one to derive the trajectories of the orbits. The general 
solution for an orbiting object is known as the Kerr metric, which describes the gravitational 
field of a rotating spherical object. With these solutions it can be shown that a smaller orbiting 
object will follow an elliptical trajectory around a massive object, as predicted by the theory of 
general relativity and Kepler's laws. 

 

One might now ask whether MOND (Modified Newtonian Dynamics) theory could be related 
to the difference between spherical and elliptical trajectories in certain low acceleration 
situations. MOND is a modified theory of gravity that proposes a modification of Newton's 
laws at extremely low acceleration scales (Milgrom, M., 2014). 
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In the MOND framework, it is suggested that gravity behaves differently than it does according 
to Newton's laws (and Einstein's general relativity) in these low-acceleration situations. At very 
low acceleration scales, MOND introduces a modification of the gravitational forces, which 
can have effects on the orbits of celestial bodies. When gravitational accelerations are really 
very low, the differences between the gravity predicted by MOND and Newtonian or relativistic 
gravity can become more apparent. In the context of a sphere and an ellipse, MOND could 
influence the trajectories of objects in orbit around a massive body when the accelerations go 
to low values.  

The scenario where the differences between MOND and standard gravitational theories (such 
as general relativity and Newton's law of gravitation) are best reflected is in a Friedmann-
Robertson-Walker (FRW) universe. The FRW model describes a large-scale homogeneous and 
isotropic universe, in which the expansion of space-time is governed by the field equations of 
general relativity (Akbar, M. & Cai, R. G., 2006). 

In a FRW universe, the space-time metric is described by the following form: 

 

 

where ds2 is the line element (space-time interval), a(t) is the scaling factor that determines the 
expansion of the universe as a function of time t, r is the radial coordinate, θ is the latitude 
coordinate and ϕ is the longitude coordinate. 

The FRW model of the universe is based on the observation that it appears to be homogeneous 
and isotropic on a large scale, which would indicate that it has the same appearance from any 
position and direction in space. There is another model of the universe, the De Sitter model, 
which is a particular case of the FRW model, but with one important feature: in the De Sitter 
model, the expansion of the universe is purely exponential and contains no matter (there is no 
matter density in that universe) (Polyakov, A. M., 2008). In this model, the curvature of space-
time is dominated by the cosmological constant (which acts as a form of dark energy), and there 
is no dynamical evolution of matter density over time. 

Since MOND proposes a modification of gravity in low-acceleration situations and affects the 
dynamics of bodies as a function of the matter distribution, it is in a FRW universe that the 
differences between MOND and standard gravitational theories would be best reflected. In a 
De Sitter universe, the matter density does not vary with time, so differences in gravitational 
dynamics related to MOND might be less evident or have no significant impact compared to 
the FRW model, where the evolution of the matter density is an important feature. 

That said, let us add more complication to the matter. In an Einstein field equation with viscosity 
tensor added to contemplate a turbulent option Gμν = 8π(Tμν + Πμν), already proposed by the 
author (Quiroga, E., 2023), can the above mentioned circular trajectories also be deduced as a 
particular case of elliptic trajectories in the gravitational field? The addition of the viscosity 
tensor Πμν to the Einstein field equations introduces a modification that considers the effects 
of viscosity in the gravitational field. This modification may have implications for the dynamics 
of the trajectories of celestial bodies in the gravitational field, but its specific effect will depend 
on the form and properties of the viscosity tensor. In the standard Einstein field equations 
(without the addition of the viscosity tensor), the trajectories of celestial bodies in a 
gravitational field follow Kepler's laws, which include elliptical, circular and parabolic 
trajectories as particular cases, depending on the energy and angular momentum of the body in 
question. Circular trajectories are simply a particular form of elliptical orbits, where the semi-
major axis is zero. When the viscosity tensor is introduced into the Einstein field equations, the 
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gravitational dynamics can be modified and affect the trajectories of celestial bodies in the 
gravitational field. The viscosity tensor can represent effects such as resistance to motion or 
energy dissipation, which could influence how objects move in the gravitational field. 
 
The viscosity tensor Πμν added as a proposal by the author in the Einstein field equations 
represents the presence of a viscous medium in the very structure of space-time. The 
introduction of this tensor modifies the field equations of general relativity, which may have 
interesting consequences for the dynamics of celestial bodies and hence their trajectories. The 
factors that imply how viscosity would influence the trajectories of celestial bodies are diverse 
and complex. Some of them are: 

A. Viscosity intensity: The magnitude of the viscosity tensor Πμν will determine the drag force 
experienced by moving bodies. As the viscosity increases, the resistance to flow will also 
increase, which could lead to more significant deviations in the trajectories. 

B. Structure of the viscosity tensor: The specific structure of the viscosity tensor can have an 
impact on how the drag force is distributed along the trajectory of a body. Depending on the 
symmetry and anisotropy of the tensor, trajectory deviations could be asymmetric or depend on 
the angle of motion. 

C. Velocity and mass of the celestial body: The influence of viscosity can depend on the velocity 
and mass of the celestial body. More massive bodies with higher velocities may experience 
more significant resistance to motion, leading to larger deviations in their trajectories. 

D. Characteristics of the viscous medium: The nature of the viscous medium causing the 
resistance to movement will also play an important role. The density and viscosity of the 
medium (the space-time itself) will affect the magnitude of the drag force. 

We can attempt to characterise the influence of the viscosity tensor on the trajectories of 
celestial bodies mathematically using the Einstein field equations with the addition of the 
viscosity tensor. However, we should note that this can be a rather technical analysis and would 
require specific solutions of the modified equations, which can be complex and is not always 
available analytically. 

In the following, I will give a general description of how the viscosity tensor might affect the 
equations of motion of celestial bodies, but I will not provide a complete mathematical solution: 

 

1. Einstein field equations with viscosity: The modified Einstein field equation with the 
addition of the viscosity tensor is  (Quiroga, E., 2023): 

 Gμν=8π(Tμν+Πμν) 

Where: 

 Gμν is the Einstein tensor describing the curvature of space-time. 
 Tμν is the energy-momentum tensor representing the distribution of mass and energy in 

space-time. 
 Πμν is the viscosity tensor representing the viscous effects in space-time. 

 

2. Equations of motion of celestial bodies: To study the trajectories of celestial bodies in 
space-time with viscosity, we need to solve the equations of motion for particles under 
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the influence of gravity and the drag force due to viscosity. This requires solving the 
modified geodesic equations in the presence of the viscosity tensor. 

The geodesic equations describe how particles follow trajectories in curved space-time 
under the influence of gravity and are expressed by the following equation: 

 

 

 

Where: 

 xμ represents space-time coordinates. 
 τ is the affine parameter (a parameter that parameterises the trajectory). 
 μ

αβ Γare the Christoffel symbols defining the metric connections. 
 gμν is the metric tensor describing the geometry of space-time. 

 

3. Specific solutions: To fully characterise the effect of the viscosity tensor on the 
trajectories of celestial bodies, we need to solve the Einstein field equations with 
viscosity and the modified geodesic equations for specific systems involving the 
presence of viscosity. This may require the specification of a particular metric, a 
viscosity tensor and appropriate initial conditions. 

 

Without wishing to over-complicate this article, the author would like to add some additional 
considerations on specific solutions: 

1. Metric and Viscosity Tensor: To study specific systems, a metric describing the space-
time geometry and a viscosity tensor representing the resistance to flow in that context 
must be specified. The choices of metric and viscosity tensor will depend on the problem 
under study and the characteristics of the viscous medium involved. 

2. Initial Conditions: To solve the equations of motion (geodesic equations) and obtain 
specific trajectories for celestial bodies, appropriate initial conditions must be 
established. These initial conditions will determine the initial position and velocity of 
the bodies at a given time, from which the equations can be integrated to obtain the 
trajectories over time. 

3. Approximations and Numerical Methods: Since the Einstein field equations with 
viscosity are highly non-linear and complex, in most cases, it is not possible to find 
exact analytical solutions. Instead, approximation techniques or numerical methods are 
used to obtain approximate solutions that describe the behaviour of the system. 

4. Special Cases: In certain cases, exact analytical solutions can be found for simplified 
systems with special symmetries and specific properties of the viscosity tensor. For 
example, homogeneous and isotropic systems could be studied, where symmetries 
simplify the equations and allow more tractable solutions to be obtained. 

 

The geodesic equations are fundamental to the theory of general relativity, as they describe how 
objects follow trajectories in curved space-time. These equations are essential for understanding 
how gravity affects the motion of celestial bodies, and play a crucial role in predicting planetary 
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orbits, particle trajectories and other gravitationally related phenomena (Pasterski, S. et al., 
2016). 

 

In extending the conclusions related to the geodesic equations, we can highlight some important 
points: 

1. Geodesics and Trajectories of Celestial Bodies: The geodesic equations describe the 
natural trajectories of celestial bodies in curved space-time. When a body moves under 
the influence of gravity alone (with no other significant external forces), it follows a 
geodesic in space-time. For a body in orbit around a massive object, its trajectory will 
be a geodesic in space-time curved by the mass of the central object. 

2. Square Momentum Preservation: In general relativity, the geodesic equations have an 
interesting property: the square momentum of a particle, defined as p pμ

μ , where pμ is 
the particle's square momentum, is conserved along the geodesic. This property implies 
that particles moving under gravity will move along trajectories that preserve a certain 
magnitude of momentum, which affects the shape of the orbits and their stability. 

3. Difference with Newtonian Laws of Motion: In the Newtonian theory of gravitation, the 
equations of motion are expressed as second-order ordinary differential equations. In 
general relativity, on the other hand, the geodesic equations are second-order covariant 
differential equations, which means that the trajectory of a particle is determined by the 
geometry of space-time in its environment. This leads to differences in the trajectories 
predicted by the two theories in certain scenarios, such as the orbit of Mercury, where 
general relativity predicts deviations from Newtonian orbits. 

4. Trajectories under the Influence of Other Fields: Although the geodesic equations 
describe the motion of celestial bodies under the influence of gravity, they can also be 
extended to take into account other forces or fields present in space-time. For example, 
in the presence of electromagnetic fields, particles will follow trajectories that are 
solutions of the geodesic equations modified to include the electromagnetic interaction. 

 

By incorporating the viscosity tensor Πμν into the geodesic equations, the effect of viscosity on 
the motion of particles in curved space-time is considered. The addition of this tensor modifies 
the geodesic equations and may have interesting implications for how celestial bodies follow 
trajectories under the combined influence of gravity and viscous drag. 

The geodesic equations modified with the presence of the viscosity tensor would be expressed 
as follows: 

 

 

 

Where: 

 xμ represents space-time coordinates. 
 τ is the affine parameter (a parameter that parameterises the trajectory). 
 μ

αβ Γare the Christoffel symbols defining the metric connections. 
 gμν is the metric tensor describing the geometry of space-time. 
 Παν is the viscosity tensor representing the viscous effects in space-time. 
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The presence of the second term on the right-hand side of the equation, which involves the 
viscosity tensor, modifies the acceleration of the particles compared to the case without 
viscosity. The drag force due to viscosity affects how the particles move in gravitationally 
curved space-time. When considering the viscosity tensor in the geodesic equations, it is 
possible that the particle trajectories will be different from those predicted by standard geodesic 
equations without viscosity. Viscous drag can alter the shape of the orbits, their stability and 
their time evolution. However, it is important to note that the incorporation of the viscosity 
tensor introduces additional complexity into the geodesic equations, which can make them 
difficult to solve analytically. In many cases, researchers resort to numerical methods to obtain 
approximate solutions and to understand how viscosity affects the trajectories of celestial 
bodies. An exact analytical solution for the geodesic equations with the viscosity tensor Παν in 
the context of general relativity can be extremely difficult and in many cases no general 
analytical solution has been found. However, we can make an approximate approach in a 
simplified case to illustrate how the viscosity tensor might affect trajectories. Consider the case 
of a flat space-time, where g =ημνμν , which corresponds to the Minkowski metric, and where 
there is only one non-zero component of the viscosity tensor, i.e. Π00 (as a simplified example).  

The geodesic equations for a massive body experiencing viscous drag would be given by: 

 

 

 

where i,j are spatial indices (integers: 1, 2, 3) and τ is the affine parameter. 

In the case of viscous drag, the viscosity tensor Π00 could depend on the velocity of the body, 
and let us assume that it is linearly related to the velocity: 

 

 

where η is a coefficient of viscosity. 

 

The geodesic equations would then reduce to: 

 

 

 

In this simplified case, viscosity manifests itself as an additional term in the equations of 
motion, similar to an acceleration-dependent force. However, it is important to note that this is 
only a rudimentary example and the actual solutions would depend on the specific metric and 
viscosity tensor, which can result in more complex geodesic equations. When viscosity is 
incorporated into the geodesic equations of general relativity, the viscosity tensor Πμν adds an 
additional term to the particle acceleration, which behaves similarly to an acceleration-
dependent force. This viscous term is proportional to the acceleration of the particles and is 
related to the resistance to motion they experience due to the interaction with the viscous 
medium present in space-time. 
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In the example I mentioned above, where we assume that there is only one non-zero component 
of the viscosity tensor Π00  and that it is linearly related to the velocity, the geodesic equation 
simplifies as: 

 

 

 

 

Where the term viscous 

 

 

is added to the acceleration  

 

 

 

which is normally found in geodesic equations without viscosity. 

 

 

 

This viscous term represents the viscous drag faced by the particle as it moves in the curved 
space-time. The magnitude of the term depends on the coefficient of viscosity η and on the 
acceleration  

 

 

 

of the particle in that spatial direction. 

 

When the acceleration is large, the viscous term becomes more significant and affects the 
trajectory more. That is, at high accelerations, the viscosity is more effective and can noticeably 
change the particle trajectory compared to geodesic equations without viscosity. On the other 
hand, when the acceleration is small, the contribution of the viscous term may be negligible and 
the trajectories will more closely resemble those of standard geodesic equations without 
viscosity. 

In general, viscosity introduces a modification in the equations of motion that depends on 
acceleration and thus affects the behaviour of the trajectories of celestial bodies in 
gravitationally curved space-time. Viscous drag can alter the shape, stability and time evolution 
of trajectories, which adds an additional layer of complexity to the study of how bodies move 
in general relativity. In the case of small acceleration, can we relate this addition of viscosity to 
MOND? Could a MOND scheme with viscosity in spacetime be possible? Suppose we are 
working in a galactic system where MOND is relevant because of the low accelerations present 
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in the outer regions of the galaxy. In these regions, the gravitational forces are dominated by 
the baryonic mass, and MOND proposes that the effective gravitational force FMOND is a 
modified function of the acceleration a and the standard Newtonian acceleration aN: 

 
 
 
 

 

Where μ(x) is an interpolating function that is fitted to match Newtonian predictions at high 
accelerations (a "aN) and has asymptotic behaviour at low accelerations (a "aN). 

Now, let us consider the effect of the viscous medium in curved space-time. Assume that the 
viscosity tensor Πμν depends on the particle velocity and is linearly related to the velocity: 

 

 

 

Where η is the coefficient of viscosity and uμ is the quadravelocity of the particle. 

With these considerations, the equations of motion for the particle would be given by: 

 

 

 

Where m is the particle mass, uμ is the quadratic velocity, τ is the affine parameter and Γμ
αβ are 

the Christoffel symbols defining the metric connections. Solving this equation of motion 
analytically is very complex due to the presence of MOND and the viscosity tensor. The 
interpolating function μ(x) of MOND introduces additional non-linearities, and the viscosity 
tensor adds terms dependent on the derivatives of the metric and velocity. The analytical 
solution for this system may not be feasible and it is likely that numerical approaches and 
approximations will have to be used to study how the combination of MOND and viscosity 
affects particle trajectories in curved space-time. 

This equation of motion incorporates both the MOND modifications to gravity and the viscous 
effect of the medium in curved space-time. However, it is worth reiterating that solving this 
equation analytically can be extremely complicated due to the presence of MOND and the 
viscosity tensor, and the interpolating function μ(x) introduces additional non-linearities. In 
practice, numerical methods and approximations are likely to be required to study how these 
two ideas interact and affect particle trajectories in curved space-time. 

Perturbation techniques can be used to study the effect of viscosity as a small correction to the 
MOND equations of motion. This can lead to approximate solutions for specific cases where 
viscosity is a minor influence and can be treated as a perturbation in the equations. 

Another possible approach is to consider limiting cases or simplified situations where certain 
mathematical or physical approximations are valid. For example, in regions where the 
accelerations are sufficiently high, the MOND term could be reduced to the standard Newtonian 
law, and the viscosity tensor could be considered as a small additional correction. In such cases, 
more tractable approximate analytical solutions could be obtained. 
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Let us consider a specific scenario in which MOND-modified gravity is relevant in regions 
where accelerations are low, such as in the outer regions of a galaxy. Furthermore, let us assume 
that the viscosity in space-time is small enough that it can be treated as a small additional 
correction to the equations of motion. These assumptions allow us to make a perturbative 
approximation to describe the motion of the particle. 

Let us start with MOND's equations of motion, which as indicated above can be expressed as: 

 

 

 

Where uμ is the particle quadravelocity, τ is the affine parameter, xμ  are the space-time 
coordinates, Γμ

αβ are the Christoffel symbols defining the metric connections and aN is the 
Newtonian acceleration. 

Next, let us incorporate the viscosity tensor Πμν as a small correction. Recall that the viscosity 
tensor is linearly related to the quadravelocity: 

 

 

To maintain our perturbative approximation, let us assume that the viscosity tensor has a much 
smaller contribution than the other forces present, and we can treat it as a perturbation. Then, 
we can add the viscosity tensor term to the MOND equations of motion as: 

 

 

 

Where δΓμ
α represents the perturbation of the viscosity tensor. This perturbation can be related 

to the viscosity through the coefficient η and the velocity of the particle. 

 

Finally, there is a pending discussion; the four-velocity uμ provides a fundamental description 
of the motion of particles in curved space-time, representing both their direction and magnitude 
of movement relative to proper time. In the context of this exploration involving MOND with 
the inclusion of viscosity, the four-velocity parameter serves as a key parameter in 
understanding how particles navigate through the gravitational field of massive bodies while 
also experiencing viscous effects. The four-velocity encapsulates the trajectory followed by a 
particle as it traverses through space-time, accounting for the modifications introduced by 
MOND and viscosity. In regions of low accelerations, where MOND becomes relevant, the 
four-velocity may reflect the altered gravitational dynamics proposed by MOND theory, 
capturing deviations from classical newtonian predictions. The inclusion of viscosity in the 
Einstein field equations introduces also additional complexities to the motion of particles. The 
four-velocity now also accounts for the resistance to motion experienced by particles due to the 
presence of a viscous medium in this space-time concept. As particles move through this 
viscous medium, their trajectories are influenced by drag forces, altering their paths compared 
to scenarios without viscosity.  

This approximation is simplified and based on specific assumptions, so the results obtained 
may be approximate and valid only under certain specific conditions.  
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Conclusion 

The author delves into the possibility of merging the Theory of Modified Newtonian Dynamics 
(MOND) with the incorporation of viscosity in curved spacetime, within the framework of 
general relativity. MOND proposes a modification to the laws of gravity at low accelerations, 
aiming to explain the observed dynamics in galactic regions without invoking the existence of 
dark matter; The author's primary interest is in exploring the conceptual core of MOND, not in 
its application as a dark matter criticising tool. On the other hand, the incorporation of viscosity 
through the viscosity tensor Πμν is considered to investigate viscous effects on particle motion 
in curved spacetime. While these concepts are independent, there is a potential to explore 
possible connections between MOND and viscosity, as both influence the motion of particles 
in curved spacetime. However, to date, a well-established and widely accepted formulation that 
coherently combines these two ideas has yet to be developed. 

Taking a mathematical approach, the author encounters a complex and nonlinear system due to 
the presence of the MOND interpolating function μ(x) and the viscosity tensor Πμν in the 
equations of motion. Consequently, obtaining accurate analytical solutions is challenging. This 
approach considers a scenario where MOND is relevant in regions of low accelerations, and 
viscosity is treated as a small additional correction. Perturbative techniques and series 
expansions are employed to explore how these two ideas might affect the motion of a particle 
in curved spacetime. However, it is emphasized that this approach is simplified, and its results 
need to be validated and compared with more precise observations and analyses. 
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