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Abstract

The present paper deals with the solutions of the 3-dimensional modified Dirac equation (MDE) for
the extended relativistic interactions for nuclei *”0 and *’F under the modified quadratic Hellmann
potential (MQHP) model within Bopp's shift method and standard perturbation theory framework. The
two mirror nuclei can be modeled as doubly magic isotopes 70 =n+ (N=Z=8) and "F =p +
(N = Z = 8), with one additional nucleon (valence) in the 1ds,, level under the MQHP model in 3-
dimensional relativistic non-commutative space (3D-RNCS) symmetries. The new relativistic energy
eigenvalues for the ground state 1d; ,, the first excited state 25, ,, the second excited state 1d;,, and the
nY; excited state is obtained by adopting Bopp's shift method and using the standard perturbation
theory. The corresponding modified Hamiltonian operator has been calculated in 3D-RNCS symmetries.
It is found that solutions of the new spectrum can be expressed by the discrete subatomic quantum
numbers (j, k, l(f),s(E) and m(m)), the strength parameters (a, b), the range of studied potential a in
addition to non-commutativity parameters (0, 8), which are induced by the effects of (space-space) non-
commutativity properties. The total complete degeneracy of new relativistic energy levels for nuclei
170 and’F under the MQHP model changed to become equal to the value 2n? instead of the values n?
in ordinary relativistic quantum mechanics, which is known in the literature.

Keywords: Dirac equation; mirror nuclei *”0 and ’F; the quadratic Hellmann potential; non-
commutative space phase, and Bopp's shift method.

1. Introduction

The Dirac equation (DE) is significant in relativistic quantum mechanics symmetries because the eigensolutions reveal
crucial physical information about the quantum systems for relativistic quantum problems. This equation is well known
to describe the motion of a spin-1/2 particle, such as an electron or positron, at high energy on the atomic scale, and
research into this equation is currently a hot topic in particle physics and nuclear physics. However, this equation can be
extended to describe other physics phenomena on subatomic scales because spin and pseudo-spin symmetries of the
relativistic Hamiltonian have recently been empirically recognized in nuclear and hadronic spectroscopes. Therefore, the
symmetries in the single-particle spectra of nuclei are the most critical concepts in nuclear structure [1—4]. The study of
isotopes at the subatomic scale has attracted considerable interest in both theoretical and experimental physics, and it has
many vital applications in both theoretical and practical research. Isotopes include the two nuclei *”0 and *’F, which are
suitable examples. Due to its significant experimental findings on binding energy, single-particle energy, etc.. To put the
microscopic theory to the test in future investigations, it is helpful to calculate these quantities [5-7]. Mousavi et al. [6]
solved the Schrodinger equation and the Dirac equation with the quadratic Hellmann potential model (QHP) using the
parametric Nikiforov-Uvarov method and obtained energy eigenvalues and wave functions for the mirror nuclei of 170
and *”F in relativistic and nonrelativistic shell models. These isotopes can be modeled as a doubly magic isotope’’0 =
n+(N=Z=8)and '’F = p + (N = Z = 8) with one additional nucleon (valence) in the 1ds /2 level. The ground-
state spin and parity of (*”0 and *’F) are jIl = 5/2*, which correspond to the spin and parity of the level where the
valence nucleon resides [6-7]. In the relativistic shell model with modified Eckart plus Hulthén potentials for the
interaction between the core and a single nucleon, Mousavi et al. (2016) [8] analyzed various static features of *'Ca and
41Sc. They computed the energy values and wave function. To examine the interaction between the core and the single
nucleon for elements #'Ca and *“°Ca, Mousavi et al. [9] obtained the energy levels and charge radius for the stability line
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nucleus in 2017 using Eckart plus Hulthén potentials and a relativistic shell model that took into account a closed shell
for each nucleus containing a double magic number and a single nucleon energy level. The main objective is to develop
the research article for Mousavi et al. in [6] and expand it to the significant symmetry known by non-commutative
quantum mechanics (NCQM) in the case of spin and pseudo-spin symmetry conditions to achieve a more accurate
physical vision so that this study becomes valid in the field of nanotechnology. This is to achieve a comprehensive study
highlighting the topological effects resulting from the deformation in space due to the mass effect of matter. The
researchers believe that highlighting the impact of these new symmetries would give greater clarity and perception and
could address some of the obstacles in which quantum mechanics failed, such as the problem of the normalization and
unification of the cosmic four forces. On the other hand, one can explore the possibility of creating new applications and
more profound interpretations in the subatomic and nanoscales using a new version of the QHP. We called it the modified
quadratic Hellmann potential (MQHP) model because these combined potentials are significant nuclear potentials for a
description of the interaction between nucleons, which has the following form:

Vip(®) = Vo (1) + ViR (r, a, b, a)LG) +0(6?),

ey
Shp(F) = Sqn(r) + Vir?(r,a, b, a)i..@ +0(62).
The attractive quadratic scalar potential Sqp, (1) and a repulsive potential V,p, (r) QHP is given by [6,10,11]
a  be 9T
Van(r) = —Tt 0 @
_ as , bse™“
Sn(r) = 22422
While the induced potential V; Vit (r,a, b, a) expressed as (see the third section):
md (T' a, b (Z) — abexp(—ar) . bexp(—ar) _a (3)

2r3 r4 2r3

where a / as and b/bg are strength parameters, while «a is related to the range of the potential. We refer to the couplings

-

(LO and L@) in the next section. The new structure of 3D-RNCS symmetries based on new non-commutative canonical
commutations relations in three representations of Schrodinger, Heisenberg, and Interactions pictures (SP, HP, and IP),
respectively, as follows (In this research, we applied the system of natural units c = A = 1) [12-17]:

j( wr pv] - [f,u(t)Tﬁv(t)] = [flu(t)fﬁlv(t)] = iha,uv = |A5€\uAﬁv| 2 heff%;
I

“4)
2,02] = [20): 2, (O] = [210(0); 20y (O] = 16, hey = 42,45, = '9””'

where the indices (u,v) = 1,3 and A, £r = h. This means that the principle of uncertainty for Heisenberg is generalized
to include another new uncertainty related to the positions (J?w %, ) in addition to the ordinary uncertainty of (J?W Py ). The
minimal parameter 8* is invertible antisymmetric real constant (3x3) matrices, and (*) denotes the Weyl-Moyal star
product, which is generalized between two arbitrary functions to the new form ( fg )(x) - ( fg ) &) = (f * g)(x) in 3D-
RNCS symmetries [18-25]:

(f * 9GO ~ (fg - 5095 f0Fg) (x) ®)

The second term in the above equation presents the effects of (space-space) non-commutativity properties. However, the
new operators: ﬁMH = (J?u % ﬁu)(t) and ﬁm(t) = (’?Iu v f)m)(t) in (HP and IP, respectively) are dependent on the
corresponding new operator &g = %, V P, in SP from the following projection relations:

Ryu(t) = exp(l/heff T) * R+ exp(— l/heff T)

{RH (t) = exp( i/hﬁth)RS exp(— i/hﬁth)
:Rl(t) = exp(l/heff ncoT) * RS * exp( - l/hefancoT)

Y P 6
R (8) = exp( i/hHoth)RS exp( — i/hHoth) ©

Here =t —ty, Rys = x, V Dy, Ryu(®) = (xu Y pu)(t) and R, (t) = (x,u Y p,u)(t) are three representations in RQM
symmetry, the operators oqn and a qn are the free and global Hamiltonian in RQM for quadratic Hellmann potential, while

ﬁ,‘{ﬁo and H,‘jf the corresponding Hamiltonians in the 3D-RNCS symmetries. The dynamics of new systems AR : ©) Which

is described by the modified Ehrenfest theory from the following motion equations in 3D-RNCS symmetries:
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L) — (i /1) [Ryy (8), Hgp] + (20 = LRI = i /h, )[Ry (0); B + (19 ™
It should be recalled that Heisenberg first proposed non-commutativity in 1930 [22], and then Syndre confirmed it in
1947 [23]. The organization of this paper, which is divided into six sections, is as follows: We quickly go over the DE
with the quadratic Hellmann potential in the following section. The MQHP model and the modified spin-orbit operator
for the mirror nuclei of (170 and *”F) under spin (pseudo-spin) symmetry conditions are obtained by using Bopp's shift
approach in Section 3 to examine the MDE. The ground state and various excited states for the studied mirror nucleus,
the magnetic Hamiltonians for the MQHP model, and their related spectra are covered in the following section. Section
5 analyzes the global relativistic energy in 3D-NRNCS symmetries and the corresponding Hamiltonian operator under
the MQHP model in the presence of spin and (pseudo-spin) symmetry conditions. We studied the nonrelativistic energy
limit and compared it with our previous study. Finally, a concluding summary and conclusions are given in the last section.

2. Review of the DE for the quadratic Hellmann potential

Here, we present the basic concepts of DE under the quadratic Hellmann potential in outline form. We introduce the
formalism of the DE for a spherically symmetric potential in 3-dimensional space reads for a single nucleon with the mass
of M and relativistic energy E,;/E % moving in an attractive scalar potential Sgy, (r) and a repulsive potential V(1) as
follows (Refs .[6, 23-25] gives a detailed description of this concepts):

(@p + B(M + SN (r,6,¢) = (E = Vou(r)) ¥ (r,6, ) ®)
. 0 g; IZXZ 0 . . . . . .
With a; = <a 0 ) andf = < 0 I ) while (01, 05, 03) are just the Dirac matrices. Thus, the corresponding ordinary
i 2X2
Hamiltonian operator ﬁqh can ban be expressed as:

Han = (ap + B(M + S(r))) + Vo () )
The spinor ¥ (r, 8, ¢p) can be written as [6, 23-25]:

fnk(?)> 1 (Fnk(r)Y,-’m(e, ) )

gnk(?) T iGn,;(r)Yj%(Q,gb)

Where, F,; (r) and G, (r) are the upper and lower components of the Dirac spinor, lem (6, ¢) and Y]Zﬁ (6, ¢) are the spin

Y(r0,¢) = < (10)

and pseudo-spin spherical harmonics, while k (k) is related to the total angular momentum quantum numbers for spin
symmetry land pseudo-spin symmetry [ as [25-26]:

(—(+ 1) =—-G+12) if (51/2, p3/2,etc)

I_] =1 + -, aligned spin (k(0)
k=] an
I+l = +(_] + 12) lf (pl/Zl d3/2,etc)
=l-- unahgned spin (k)0)
and
I( I =—=0+12) if (513 etc),
j= Z— —, aligned -spin (k(0)
k= (12)
+(l + 1) +(G +12) if (i, dsja etc),
U =0+- ,unallgned spin (k)0)
The two radial functions (Fyy, (r),Gﬁ,—c (1)) are obtained by solving the following differential equations [27-29]:
d? k(k+1) d(‘;ir)(dr_'—r) qh qh s
R e VIV TS — (M + Ep — 49" (r))(M — Epy + 29%(r)) | F5(r) = 0 (13)
and
@ _kten | ") P _ aan n p
LT e (M + B2, — 29%() ) (M = Ey + 292(r)) | G, (r) = 0 (14)
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. . . . da?h(r) azihm
The QHP bound-state solutions for the spin symmetric and pseudo-spin symmetry when ( e 0 and e 0) are
satisfied, respectively. The upper and lower components F3, (1) and G, () of the Dirac spinor gives by [6]:

F5(r) = NrWXot17a+1/2) gy (— [ o) [ 2V o1/ ((2 + 21/)(2,1)1”) (15)

p — xE+1/4 -
") = Npr(Jxoz+1/4+1/2) exp( szn )L \/ ol ((2 + ZJX§n> r) (16)

here N and N? are the normalization constants, xo, = 2pt + k(k + 1), x5, = 2u+ k(k — 1), xon = M?> — EZ and x5, =
M? — Efflz . The relativistic positive energy eigenvalues for the MQHP model under the pseudo-spin-symmetry conditions
are obtained as [6]:

and

(2n + 1)\/M2 — E%, — 2(E,, + M)(a + 2ba) + 2\/(M2 —E2)(k(k + 1) + 2b(E + M) +1/4) =0 17)
and

(2n+ 1)\[1\/12 — E?} — 2(E?, — M)(a + 2ba) + 2\/(1\42 — EP)(k(k — 1) + 2b(E?, — M) +1/4) =0 (18)

The lower component G5, and the upper component F5, (1) of the Dirac spinor can be calculated as [6]:

(&) .
(@R F) = 2T (500, 6L )

nl

3. NC Hamiltonian operator for relativistic MQHP model
3.1.  Overview of the Bopp shift method

To find the MDE for the MQHP model in 3D-RNCS symmetries, we replace both the ordinary Hamiltonian operator
H(p;, x;), ordinary spinor 1 (;), and ordinary energy E,, with the NC Hamiltonian operator H(p;, £;), new spinor & (77,;),

and new energy E,‘l’? and the ordinary product will be replaced by the star product (), respectively. This allows us to write
the MED for MQHP as follows [31-44]:

A 2P (1) = ELP (1) = Hie <9 (7) = ExPy (7) (19)

her (0 = 7;,). Thus, in 3D-RNCS symmetries, the upper component Fy5;. () and lower component G?, () of the Dirac
spinor, which corresponds to spin and pseudo-spin symmetry, can be written in the following form:

(;fz KD (M + By — C)(M = By + W(r))) * Fi(r) (20)
and

d?  k(k-

(m—%—(M%’Zz—Mh(r)) ™ - Enk+cp))*6 () =0 (1)

The Bopp shift method was discussed in detail in [45-47]. Here, we will mention the main points to remind the reader of
the main idea of the Bopp shift method. Bopp shift method is usually used to transform the fundamental four equations
deformed Klein-Gordon equation [48], the deformed Dirac equation [49], the deformed Schrodinger equation [50,51]., and
the Duffin—Kemmer—Petiau equation [52] with the notion of star product to the Klein-Gordon equation, the Dirac equation
and the Schrodinger equation with the idea of ordinary product. It is worth noting that the Bopp shift method permutes us
to reduce the above equations to the simplest form:

2
(55— 52 = (M 4 By = €)M = By + Z9(5)) ) Fie(r) = 0 (22)
and
d?  k(k-1
(5 — 52— (M + B2 = 47 () (M = Enge + C7)) GH(r) = 0 (23)

The new operator of the Hamiltonian operator Hﬁ? (py, X;) can be expressed in three general varieties: both NC space and
NC phase (3D-RNCPS) symmetries, only NC space (3D-RNCS) symmetries, and only NC phase (3D-RNCP) symmetries,
respectively:
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th(pwxv) H( Pp=Du+ l xv, X =x,— iezﬂpv> for 3D — RNCPS symmetries

4 H (D 2,) = H( =Pk, = x# — O p,,) for 3D —RNCS symmetries (24)
|
U‘Inc (wav) H (Pu Pyt j xv, X = xu) for 3D —RNCP symmetries

In recent work, we are interested in applying the second variety. Therefore, the modified Hamiltonian Hg? (ﬁw )?,,) defined

as a function of (X, = x, — j e pv and p, = p,,) as follows:

HIR (B 2,) = aP + B(M + Sqn(Tnoc)) + Von (F) (25)

where the MQHP V() is given by:
b JpS

Van(r) = Van (1) = =+ e (26)

k(k+1) k(k 1)

bexp(—ary) and k(k+1)

™2 ™2

‘!l\)‘lc.

To obtain new centrifugal terms ( ), 2 (1) and A(#), we need to calculate (— %

obtain for spin symmetry the followmg equatlons as follows in 3D-RNCS symmetries:

— =0 L0+ 0(6%), (27.1)
™ r
=5+ L0+ 0(eY), 27.2)
bexp(—ary) __ bexp(—ar) ab
T (Zr_3+ r4) exp (~ar)L.© + 0(62), (27.3)
and
k(k+1) _ k(k+1) | k(k+1) & ~
T = T Le+0(0%), (27.4)

Similarly, for pseudo-spin symmetry, the previous values can be expressed as

—r—:—;——L0+0(02) (28.1)
b o_b b7 2
2= tEl0+000%), (28.2)
bexp(-ary) _ bexp(-ar) ab b
T = 2 (5+=)exp (- @)L © + 0(62), (28.3)

and

k(k-1 _ k(-1 k(k 137

P r2

Lo+ 0(062). (28.4)

We are substituting Egs. (27) and (28) into Egs. (22) and (23), we get an expression for two equations:

d?  k(k+1
(m MEXD _ (M + By — C5)(M = Epye + Z0(r)) — zggﬂ(r)> () =0 (29)
and
d?  k(k-1 o
(m KD — (M + BB, + A7) (M = By + CP) — Apm(r)> GP(r) =0 (30)
with
s () = [(M + E, — CHVI(r a b, a) + "("“)] L. +0(0%) for s 31.1
pert nl qh 1,04, D0, pin symmetric case, (31.1)
and
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]i.. 0+0(0?) for pseudo-spin symmetric case. (31.2)

: k(k—1
A%, = [(M = B + CP)Vie . b, ) + D

Here de (r,a, b, @) is the induced potential that we have previously seen in Eq. (3). By comparing (Egs. (13) and (14))
and (Egs. (29) and (30)), we observe two additive potentials ( "Qﬁ(r) and q'elrt(r)) Moreover, these terms are

proportional to the infinitesimal non- commutat1v1ty couplings (LO and L(?)) From a physical point of view, this means
that these two spontaneously generated terms (X pert(r) and Apen(r)) as a result, the topological properties of the
deformation space-space can be considered very small compared to the fundamental terms (£9*(r) and 49"(r)),
respectively. Furthermore, using the unit step function (also known as the Heaviside step function 6(z) or simply the
theta function) to rewrite the two global induced two potentials (X pert(r) and 4

pert(r)) for spin and pseudo-spin

symmetries corresponding to upper and lower components (Fyy (), G5, (s)) and (F}, (s), GF, (s)), respectively as

pert s
) = S )~ 0 ER ) = e @
" ~ AT (r)  for B, (1)
AP (r) = 40T ()6 (B ) — A% (e (—| B ) = { W) for G e ) (33)
Here, the step function 6(z) is given by, Lforg> 0
0(z) = {0 for z 2 0 (34)

The quadratic Hellmann potential is extended by including new additive potentlals < eﬂ(r) and Apeﬂ(r)) expressed to the

exp(—ar) exp(— ar) 1

radial terms (—, 5 and —) which are coupled with two couplings (LO and LO) to become the improved quadratic

r4
Hellmann potential in 3D-RNCS symmetries. The two global induced potentials (27 pe" (r)and AP°TE (r)) represent the physical
interaction between the system's physical properties that correspond to spin and pseudo-spin symmetries (L and L) and the
distance between diatomic molecules r with topological deformations of space-space characterized by non-commutativity

=

vector O. The newly generated two effective potentials (X pe”(r) and Apert (1)) are also proportional to the two infinitesimal

couplings (L@ and L@) This allows us to consider the new additive parts of the effective potentials (525" (r) and AP (r) )
as perturbation potentials compared with the main potentials (2. (r) and 4. (1)) which are also known with the parent potential
operator in the symmetries of MDT, that is, the two inequalities (Z'ff”(r) << Xso(r) and A?frt(r) << A4 (1)) have been
achieved. All physical justifications for applying the time-independent perturbation theory become satisfied when calculating
the expectation values of previous radial terms. This allows us to give a complete prescription for determining the energy level
of the generalized nY; excited states. The aim is to derive the energy spectrum for a mirror nucleus (*”0 and *"F) with one
additional nucleon (valence) in the 1ds,, level and other excited states, for example, the first excited state 25, ,, the second
excited state 1ds,,and the generalized excited states nY; which are characterized by discrete quantum numbers

7 h . . . . . .-
(n, j, L1 s,§m, ﬁt)t in the presence of a potential given by (27) under spin (pseudo-spin) symmetry conditions.

4. The perturbed relativistic spin-orbit Hamiltonian and the corresponding spectrum for the MQHP model for the
ground state and other excited states for the mirror nucleus 170 and’F under spin (pseudo-spin) symmetry
conditions in 3D-RNCS symmetries

4.1. The perturbed relativistic spin-orbit Hamiltonian for mirror nuclei 1’0 and ' Funder the MQHP in (RNC: 3D-
RS) symmetries
The results (26) can be rewritten in a more accessible physical form, and we replace both (LG) and LO ) with (LS and LS),
respectively, and then the two perturbative terms pert(r) and Apert(r) for the spin (pseudo-spin) symmetry conditions,
respectively, can be rewritten to the equivalent new form for MQHP as follows:

ranr

pert

(r,0,a,b,a) = [(M + E — Co)YV, i”d(r a,b,a) + k(k+1)] @L S for spin symmetric case,
(35)
Al (r,0,a,b,a) = [(M —EY + CP)Viri(r,a,b,a) + ke 1)] @L S for pseudo-spin symmetric case.
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Furthermore, the above perturbative terms ert (r,0,a,b,a) and A2 ert (r,0,a,b,a) can be rewritten to the following new
equivalent form:
Z‘ggﬂ(r, 0,a,b,a) = [(M + Epe — CHViR4(r,a,b, @) + k(k+1)] OG? for spin symmetric case,

(36)
A% (r,0,a,b,a) = [(M — BB, + CP)Vind(r,a, b, ) + 52

]OGZ for pseudo-spin symmetric case.

with

2_1—> - -
@=3(12-12-5?)
L - S 37
'Gz=l(]2_£z_§2)
2

To the best of our knowledge we just replaced the coupling spin-orbit (pseudo-spin-orbit) L S and L. S with the two

expressions = (] 2_q2_5g ) and (] 2 §2), respectively. In relativistic quantum mechanics. The set
H (P, %)), ]2 12,12, $2,5% and J,) forms a complete of conserved physics quantities, and the spin-orbit quantum
number k (k) is related to the quantum numbers for spin symmetry land pseudo-spin symmetry [ as represented in Eqs.
(11) and (12). In this case, we can form two diagonals (3 X 3) matrixes HZ" and quf , for MQHP, respectively, in 3D-

RNCS symmetries as:

k(k

(AL, 0er) = [(M + Ene = €V (r,a,b,@) + 52 k0
for the states (51/2,p3/2, etc) j=1l+ : aligned spin (k(0)

d : k(k+1) (%)
(A%, (k) = [(M + Eyy = CWVEA(r, 0, b, @) + 552 k,0
for the states  (py,, ds 2, etc),j=1— % unaligned spin (k)0)

and
~an - ; k(k 1)
(A), (k) = [(M ~ Ef + CP)Vi(ra,b, @) + 5552 ky
for the states (51/2, p3/2, etc),j =7-1 > aligned spin (k(O)
(39)

(%), (ko) = [(M ~ ER + cp)v;;:d(r a,b,a) + 2] k6
for the states (Pl/z, ds2, etc), j=1+ 5’ unaligned spin (k)0)

while (AL 5= (Hg:)ga = 0 in the two above cases.

4.2. The perturbed relativistic spin-orbit spectrum for mirror nucleus (}”0 and F) under MQHP in the presence
of spin symmetry conditions in 3D-RNCS symmetries

In this subsection, we Will study the modifications to the energy levels (E Peri(o, k) EPS 4(0,k) EPT" u(@ E) and
EPS™(0,k) for (j =1 + ~: spin-up/down for spin symmetry) and (j = [ + =: spin-up/down for pseudo-spin symmetry),
at the first order of the 1nﬁn1tes1ma1 parameter O, for (n, j. L Is,5m, m) exc1ted states under the spin (pseudo-spin)

symmetry conditions, created by the effect of the relativistic spin-orbit operator, obtained by applying the standard
perturbation theory, using Egs. (10) and (36) as:

k(k+1)

EPeT(0,k,) = 0(ESM)k,0 [ FS'(r) [(M + Ep — CVEA(r, a,b, @) + ]Fsk(r)dr

40
ERE4(0,k) = O(E )k J " (1) [(M + Eyye = CIViRA(r,a,b, ) + ""‘“)] o
and
ER(6,ky) = 0(EL),6 [ Gl () [(M + ED, — CPYVird (r,a,b, @) + 2| i (r)dr .
EPeT(0,ky) = 0(EIMK,0 [ 6P, (r) [(M+ — CP)Vird(r,a, b, @) + 55 1)]G (r)dr “h

It is necessary to apply the orthogonality property of spherical harmonics:
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f Y™(0, )Y (6, ¢) sin(8) dOd¢ = 61y
To obtain the explicit expressions of modified energy eigenvalues (E-c' (0, kl),E,fCer:d(O, k,)) for the MDE with the
MQHP model under spin symmetry conditions, we use Eqgs. (15) and (40):
End(0,ky) = N?k;O(M + Epyc — C°)

2
f0+°°r(2vxw+1/4+1) exp(—2,/xanr) [Lflv Xort1/4 ((2 + 2,/)(271)7‘)] (tiﬁd(r, a,b,a)+ k(k+1)) dr 42.1)

T'4
and

EPS"%(0,ky) = N2k, O(M + Epy — C5)
[ r VR exp(=2. figur) L (2 + 2 an)r) (ViR a,b, @) + 252 ar (42.2)

q r4

Now, we can rewrite the above equations to the simplified new form:
EFS™(0,ky,n, L j) = kyON?(M + Epy — C5) Yooy Ry (n, D) (43.1)

and
EPS"%(@, ky,m, 1, j) = kyONZ(M + Epye — C5) 41 Ro(n, 1) (43.2)

The expressions of the 4-factors Ri(i = 1,_4) are presented as follows:

2
Ri(n 1) = abe0+oor(2M0[+1/4_2) exp(—(2y/xzn + a@)r) [Liv Xork1/4 ((2 + 2,/}(2,1)7‘)] dr

2
R,(n,)=b fo+°or(2\/X01+1/4—3) exp(—(2/xzn + @)1) [Lfl Xort1/4 ((2 + 21/)(2,1)1”)] dr

2

R;(n, 1) = —%f;wr(zm‘z) exp(—Z\/Er) [Lfl Xor*1/4 ((2 + Zm)r)] dr

2
Ra(n,D=k(k+1) f0+°°r(2*/x01+1/4‘3) exp(—2/xan1) [Liv Xork1/4 ((2 + 21/)(2,1)7‘)] dr

(44)

It should be noted that the ground state of the nuclei (*’0 and *”F) can be modeled as a doubly magic isotope (}’0 =
n+ (N =Z2=8)and '’F = p + (N = Z = 8)) with one additional nucleon (valence) in the 1d /2 level. If identified
with the typical state nY; [53], the quantum numbers (n = 1,Y =d, j = 5/2 and | = 2). Besides k(k — 1) = 6, which
gives k = 3. We have :

10N (24 2y (k= 3)r) = —ar + 4

n=1
with
X21(1=2) = M* — EZ, \
0=2(2+ 21k = 3)) }
A=2010,(0=2) +1/4+1)
Which allows us to find the 4-factors R,-(i = ﬂ) as follows:

(Ru(L,1=2) = 5 776 exp(=(2Zer + @)r) [-0r + A)%dr
{Rz(l,l =2)=b f0+°°r(502‘3) exp(—(2+/xz1 + @)r) [-2r + A]?dr
+00

| R;(1,1=2) = —%fo (80272 exp(—2+[x217) [—02r + A]?dr
(R(1,1=2) = 12 [["*r®03) exp(—=2yx5:7) [~ + Adr

(45)

Here

8oz = ZVon(k =3)+1/4 (46)
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A direct simplification gives the 4-factors R;(1,l = 2) (i = 1,_4) as follows:

(Ri(1,l=2)= a?bfoﬂo exp(—(2y/xz1 + a)r) (22r%02*1=1 4 20 Aro21 4 A2pSo2-1-1)qy
R,(1,1=2)=b f0+°° exp(—(2xz1 + 1) (22r%02~1 4 20ArS02=1-1 4 f2802-2-1) gy

w (47)
IR3(1,l =2)= —%f; exp(=2+/xz11) (Q%r002t1=1 4 20 Ardo2=1 4 A2y02-1-1)qy
\R(1,1=2) = 12 [ exp(—2y/xz1r) (Q2r00~1 + 2041802711  A2r¥02=2"Y)drr
Utilizing the following particular integral is practical [54]:
T -1 d _ B
J, z¥texp(—Bz)dz = ——TI'(e/d) (48)

Here I'(¢/d) is the Gamma function and (Re 8)0 , Re €)0, d)0). Simple calculations can yield the following clear results:

.(R1(n =1l=2)= a?b(ﬂzﬁ1_(602+1)r(602 +1)+ 29/1ﬁ1_502r(502) + /12,81_(602_1)[‘(502 - 1))
| Ry = 1,1 = 2) = b (228,71 (8) + 2048, (8, = 1) + 26, D1 (8, - 2) w
{Ro(n=1,1=2)= — 2028, VI (80, + 1) + 2048, T (802) + 428, VT (8, — 1))

(Ra(n = 1,1 = 2) = 12 (028,7°%I (803) + 2048, OT (80 = 1) + 428,” T (8¢, — 2)
with f; = 24/x,1 + a and B, = 24/x,,. This allows us to obtain the exact modifications Eﬁfhu 0,ky =-31,1=2,j=

5/2) and EP"4(0,k, = 2,1,1 = 2,j = 5/2) of the ground state for the nuclei (0 and *’F) with one additional
nucleon (valence) in the 1ds, level for spin symmetry conditions:

EPET(@,ky = =3,1,1 = 2,j = 5/2) = —30ON?(M + E,, — CR;1(1,1 = 2) 50)
EPT(@,ky = 2,1, = 2, = 5/2) = 20N2(M + Epy. — C5)Ry4(1,1 = 2)
with
Ri1(1,1=2) =351 R, (1,1 =2) (51)

The 25/, level corresponds to the one additional nucleon (valence) containing the first excited state. Therefore, the
additional nucleon or the single nucleon (neutron or proton) corresponds to the subatomic quantum numbers (n = 2,Y =
S, j=1/2 and [=0), then, to obtain the exact modifications Ebc *“(@,k; =-1,2,1=0,j=1/2) and

EPS"%(@,k, = 0,2,1 = 0,j = 1/2) for the first excited state, we replace Li Xor+1/4 ((2 + 2,/)(2n)r) in Eq. (44) by

Li=)§00+1/4((2 + 2\/)(22)7”) = h1T2 + hzr + h3 Wlth hl = %(2 + 21/){22 )2, hz = _(ZWIXOO + 1/4 + 2)(2 + 2\(}(22 ),
hs = 2 (2/X00 + 1/4 + 1)(2y/X00 + 1/4 + 2) while yoo(l = 0,k = 0) = 2ba , or xoo(l = 0,k = 1) = 2ba + 2 and

x22(1 = 0) = M? — E2,, we obtain the following results:

EPS™(0,ky = —1,2,1 = 0,j =5/2) = —ON?*(M + Ep, — C5)R1,(2,1 = 0)
{Eﬁf“d(a, k,=01,1=2,j=5/2)=0 (52)
with
R,(2,l=0)=Y%_R,(2,1=0) (53)
We can express the 4-factors R, (2,1 = 0), R,(2,1 = 0), R5(2,1 = 0) and R,(2,l = 0) as follows:
(R(2,1=0) = %bfomr(‘sm‘z) exp(—(2\x2z + @)1) (hir? + hyr + hy)%dr
R,(2,1=0)=b f0+°°r(500‘3) exp(—(2\x2z + @)1) (hyr? + hyr + h3)%dr 54)

+oo _
IR3(2,l =0)= _%fo 780072 exp(—24/x227) (hy7% + hyr + h3)%dr
(R,(2,1=0)=2 f0+°°r(500‘2) exp(—2+/X221) (M2 + hyr + h3)?dr

Here 559 = 2\/}(00 + i. A simple calculation gives the 4 — factors R;(2,1 = 0) (i = 1,4) as follows :
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(Ry(2,l=0)= a?bfom exp(—(2y Xz + @)r) (z,7%00%371 4 z,7000+271 4 7,pS00¥171 7, pB00=1 4 7 p-S00=2) gy
R,(2,1=0)=b f0+°° exp(—(2yxzz + @)r) (z,7%007271 7,780 4 75780071 4 7,7800=171 | 7 -S00=2-1) gy
|R3(2’l =0) = _%fo"'m exp(—2 ’_XZZT) (er5oo+3—1 + ZZT500+2—1 + 23r600+1—1 + Z4r500—1 + Z5T6°0_1_1)d7‘

(R, (2,1=0)=2 f0+°° exp(—2v/x2z7) (2170007371 4 z,70004271  7.p800%1=1 4 7, pd00~1 4 zySo0=1-1) gy

(55)

with (g1, 92, 93, 9ar gs) = (h1%, 2hyhy, 2Ry hathy?, 2hshy, he®). Applying the special integral from Eq. (48) allows it
straightforward to obtain the four factors R, (2,1 = 0), R,(2,1 = 0), R;(2,1 = 0) and R,(2,1 = 0) as follows:

R I=0) = {gll OIS0 + 3) + gody " CO DI (S0 + 2) + guhy T COI(8y0 + 1)}
' +9sh~ 0011(500) +95/11_(600+3) (860 — 1)

Ry(2,1=0) = b {91’11_(8°°+2)F (800 +2) + g4~V (890 + 1) + gg/h‘%“r(aoo)}’
+g441 OV (800 — 1) + gsA, 0TV (8pp — 2) 0
Ry(2,1=0) = - ﬂ{gﬂz_w‘””* (800 +3) + gaAy~ PO (800 + 2) + gady 0T (590 + 1)}‘
’ 9425700 T (800) + gsA, P00V (00 — 1)
Ru(2,1 = 0) = {gll 2~ Co0tI (500 + 3) + g2, 00D (S50 + 2) + gady 0T (8o + 1)}
+04A2 2T (800) + gshy ®0 VI (8o — 1)

with A; = 2y¥22 + @ and A, = 24/¥,,. The second excited state corresponds to the nuclei *”0 and '’ Fwith an additional
nucleon (valence) in the 1ds,, level, thus, the additional nucleon or the single nucleon (neutron or proton) corresponds

to subatomic quantum numbers (n = 1,Y =d, j = 3/2 and | = 1), we replace Li‘ Xork1/4 ((2 + Zw/)(Zn(l))r) in Eq.
(44) by [RXoleERr ((2 + 2/ = 1))r> =0,r+4, with 0Q,= (2 + 21l = 1)), A, =

n=1
2x01(k =2) +1/4 + 1, 01 (k = 2) = 2ba + 6 and y,, (I = 1) = M? — E;,, then, the exact modifications of the
energy levels EFS™(0,k, = —2,n=1,1=1,j =3/2) and E**"*(0,k, = 1,n = 1,1 = 1,j = 5/2) are given by:

{Eﬁf"”(@, ky=-21,1=1,j =3/2) = —20N*(M + E,;, — C5)R;(1,1 = 1) 57

EPe (@, k, = 1,1,1 = 1,j = 5/2) = ON2(M + Epy — C5)Ry1(1,1 = 1)
with Ryy(n=1,1=1)=R;;(n=1,1=2)(2 > N, and A - A,). Now, the (n, k,j, )" excited states of the nuclei

(*"0 and V'F ) with one additional nucleon (valence) in the nY; level, under the MQHP model under spin symmetry
conditions, in global quantum group symmetry 3D-RNCS is given by:

ERT™M(0,ky = —(L+ 1),n,1,j) = —(l + 1)ON?(M + Epy — C)Ryn(n, 1) (58)
EP"(@,ky = L,n,1,j) = ION2(M + Epy — C5)Ryn(n, 1)
with
Rin(m, ) = ¥2-1 Ry (n, 1) (59)

4.3 The perturbed relativistic spin-orbit spectrum for mirror nucleus (*’0 and *”F)under the MQHP model in the
presence of the pseudo-spin symmetry conditions in 3D-RNCS symmetries

In this subsection, in the case of deformation Dirac theory symmetries, we find the energy levels

EPT du(@ ky=-Inlj=1+ 1/2) and EPE" d(@, ky=—(+1,nlj=1- 1/2) which produced by the relativistic

pseudo (spin-orbit) effect under the pseudo-spin symmetry conditions can be determined by applying the same procedures
as before, and to avoid repetition, we make the following steps:

{IV o Nk =k ky =k, (60)

k(k +1) o k(k — 1)

Allow us to obtain (ELS™(0,ky = —In,1j =1+1/2), EL"Y(0,k, = —(+1),n,1j=1-1/2)) as follows,
respectively:

{ V(g oy = —Ln,Lj = [+1/2) = —[ONP*(M — E?, + C?)Ryn(n, ) (61)

EP Y0,k = I+ 1,01 j=1-1/2) = —( + 1)ONP*(M — E?, + CP)Ry,(n, 1)
4.4 The perturbed relativistic magnetic spectrum for mirror nucleus (*’0 and *’F) under the MQHP model in the
presence of spin (pseudo-spin) symmetry conditions in 3D-RNCS symmetries
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Having obtained the exact modifications of the energy levels (Efffr:u O,k =—1+D,nLj=1+1/
2)andEES" (0, ky = Lin,Lj = 1 — 1/2)), (EE™(0,k, = ~I,n,,j =1+ 1/2) and EE"(0,ky = =+ 1),n,j =
-1/ 2)) under the spin /(pseudo) symmetry conditions, respectively, for the nuclei (*”0 and ”F) with one additional
nucleon (valence) in the 1ds, level (the subatomic quantum numbers are n =1, Y =d, j=5/2 and [ =2, m =
—2,+2). The first excited state 25, /2 (the subatomic quantum numbers aren =2,Y =5, j=5/2and [ = 0, m = 0).
The second excited state 1d3, (the subatomic quantum numbers aren =1,Y =d,j=3/2andl =1, m =0,11). In

.. ) s \th ) . .
addition to the generalized (n, j, L1 s, 8 m, m) excited states nX; (the subatomic quantum numbers are n,j, l and m =

—I, +1), which are produced by the effect of the NC spin-orbit Hamiltonian operator. We are now considering another
interesting physically meaningful phenomenon, which is also produced from the perturbative terms of the MQHP model
related to the influence of an external uniform magnetic field (@ — yB); it is sufficient to apply the following two
replacements to describe these phenomena:

k(k +1)1- =
a —jLe~

[(M 4 Eyp — COVIM(r b, a) +

k(k+1)] B.L for spin symmetry (62)

4

X [(M + Epe — CHViRA(r,a,b, @) +

and

) k(k—1)12 =
[(M —ER + CP)Vir(r,a,b,a) + %] Loe-
Kk(k—1)

r4

X [(M — EP, + CP)ViR(r,a,b,a) + ] B.L for p-spinsymmetry (63)

Here y is an infinitesimal real proportional constant, and we choose the magnetic field B = Bk, which allows us to
introduce the modified new magnetic Hamiltonian ﬁﬂlh (r,a, b, a, y) in 3D-RNCS symmetries as:

( [(M + Ep — CS)ti,’}d (r,a,b,a) + @] (B] -B §) for spin symmetry

k(k—1) (64)

r4

(B] —B§> for pseudo-spin symmetry

|
A3 (ra,b,a,x) = XJ ,
U(M — EP, + CP)Vi(r, a,b, @) +

Here (B.S and B.S) are present the new Zeeman effect and the pseudo-Zeeman effect in 3D-RNCS symmetries. To
obtain exact contributions of the  magnetic modifications of energy levels Er?f;g (x,n,m,,a,b,a) and
Eﬂ;g (x,n, M, a,b,a) for the MQHP model under the spin (pseudo-spin) symmetry conditions, respectively, which are

produced automatically by the effect of H,?lh (r,a,b,a, ), we make the following two simultaneous replacements:
k,->m ,ky-»m and ©-yB (65)

Thus, the relativistic magnetic modifications (E#l}}zg (X,n =1,1=2,j=5/2,(m= 12,0, il)) ’ Eg:‘l‘g (}(,n =1l=
2,j = 5/2,( = £2,0,+1))), By (Gtn = 1,1 = 0,j = 1/2,m = 0), i, (x,n = 1,1 = 0, = 1/2,7 = 0)),
g (v =11=1,7=2,0n = 0,4D)), Efly (xn=11=1, =%, = 0,£D) "

(Ex?ql;g()(, n,j,Lmab,a), EI‘,*};g(;(, n,j,l,fii,a,b,a))  corresponding (1dsz, 1s12,1dy/; and nY;) in 3D-RNCS
symmetries, respectively, can be determined from the following relations:

1d5/2 i
{Eﬂl’;g()(,n =1,1=2,j=5/2,(m = £2,0,%1)) = yN?Ry;(n = 1,1 = 2)Bm for spin symmetry

EM" ()(,n =1,0=2,j =5/2,(f = +2,0, il)) = yNP?R,,(n = 1,1 = 2)Bii for pseudo-spin symmetry

mag
(66)
. EM,(un=11=0,j=1/2,m=0)=0 for spin symmetry 7
S1/2 > .
12 EM,(xn=11=0,j=1/2,=0)=0 for pseudo-spin symmetry
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y E,‘ff;g()(,n =1,1=1,j=3/2,(m=0,%£1)) = yN?Ry;(n = 1,1 = 1)Bm for spin symmetry
vz ES, ()(,n =1,1=1,j=3/2 (M= O,il)) = yNP2R,,(n = 1,1 = 1)Bfii for pseudo-spin symmetry
(68)

and

nY: -»

J

{Er?l:g(X' n,j,LLmab,a) = )(NZRln(n' DDBm for spin symmetry 69)

E,?lk;g()(, n,j,1, M, a,b,a) = NP?Ry,(n,1)Bfit for pseudo-spin symmetry

where #i and m are the angular momentum quantum numbers (—I < # < +I and — < m < +1), which allow us to fix
(21 +1) and (21 +1) values of Emdz’()(,n j. 1, M,ab,a) and mdz’(}( n,j,l,m,a,b,a) under pseudo-spin (spin)
symmetry conditions, respectively.

5. The perturbed modified global spectrum for the mirror nucleus (*’0 and *’F) under the MQHP model in
the presence of spin and (pseudo-spin) symmetry conditions in 3D-RNCS symmetries

In the previous sub-sections, we have obtained the solutions of the MDE for the nuclei (*”0 and *’F) with one additional
nucleon (valence) in the ground state 1ds,,, the first excited state 2S;,,, the second excited state 1dz,,, and the

generalized (n, LI m, n’i)th excited states nX; under the MQHP model using Bopp's shift method and standard
perturbation theory. The energy eigenvalues were calculated in 3D-RNCS symmetries, under-spin (and pseudo-spin)
symmetry conditions for two perturbed principal physics interesting phenomena corresponding to the perturbed spin-orbit
interaction and modified Zeeman effect. Now, we will use the physical superposition principle to find the corrective total
energy resulting from the topological effects of space, which correspond to the previously nominated excited states (the
ground state 1ds,, the first excited state 25;,,) based on our original results presented in Eqs. ((50), (52), (57), (58))
and Egs. ((66), (67), (68), (69)), in addition to ordinary energies E,,; and E f:z for quadratic Hellmann potential, which is
presented in Egs. (17) and (18) for spin and pseudo-spin symmetry in three-dimensional relativistic quantum mechanics
symmetries.

5.1 The corrective total energy resulting from the topological effects of space for spin symmetry:

For spin symmetry, the modified relativistic eigenenergies (Epl", Enl")(n=1,(m =0,+1,+2),j=5/2,1=
2),(Ew™ B (n = 2,(m = 0),j = 1/2,1 = 0), (EX™ ES™(n=1,(m=0,%41),j=3/2,l=1) and
(E:fcqh, dqh)(n (m =-l +l) J, l) with spin-1/2 for single nucleon are obtained in this paper based on our original
results presented in previously mentioned equations as follows:

Y { Wt (1,(m ==2,42),j = 5/2,l = 2) = Ey, + N*(—36 + xBm)R;, (1,1 = 2) 0

52 7 B9 (1, (m = Z2,%2),) = 5/2,1 = 2) = Eyy + N%(20 + xBm)Ry; (1,1 = 2)

EXMM2,(m =0),j = 1/2,1 = 0) = E;g — ON2R;,(2,1 = 0)
151/ plon (71)
(2,(m=0),j =1/2,1=0) = Ep

1d _){ EMM(1,(m = 0,+1),j = 3/2,1 = 1) = Ey; + N2(—260 + yBm)R,,(1,1 = 1) 72)

V2B (1, (m = 0,4+1),j = 3/2,1 = 1) = E;; + N2(0 + xBm)R,, (1,1 = 1)

and
v Ex"(n,(m = =1, +1),j,1) = Ep + N2(=(L + 1)@ + xBm)R;,,(n, 1) a3
nY; -
g Eg"(n, (m = =1, +1),j,1) = Ey + N2(16 + xBm)R;,(n, 1)

where E,(k = 0), E,o(k = 2) and E;, (k = 2) are the energy of the ground state 1ds/,, the first excited state 25, /5, the
second excited state 1d3,, for mirror nuclei 170 and '"F in the symmetries of relativistic quantum mechanics under
quadratic Hellmann potential, which are determined from the following equations:

- Elz2 —2(E;p + M)(a + 2ba) + 2\/(M2 - Elzz)(Zb(E12 + M)+ 1/4)=0 (74)
5 M2 — EZ) — 2(Ez + M)(a + 2ba) + 2,/(M2 — E2)(6 + 2b(Ey + M) + 1/4) = 0 (75)
— B — 2(Ey; + M)(a + 2ba) + 2,/(M? — E)(6 + 2b(Ep, + M) + 1/4) =0 (76)

5.1 The corrective total energy resulting from the topological effects of space for pseudo-spin symmetry:
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For the case of pseudo-spin symmetry, the modified relativistic eigenenergies of the single nucleon (neutron or proton)
Eran (n, (fr’l =, +Z) J Z) and EZI" (n, (m =1, +Z) J l) which correspond to the up and down polarities for the
generalized (n, Jk, I, r?t)th excited states nX; under the MQHP model in 3D-RNCS symmetries:

Exd" (n, (7 = =L +1),,T) = EZ + NP?(=16 + xBift)Ryn(n, )
- — ) 77)
B (n (m ==L +1),j,1) = E?, + NP2((I + 1)O + xBi)Ryy (n, )

Now, it is crucial to construct the Hamiltonian operator ﬁ,‘f? for the MQHP model based on previously obtained results.
Naturally, the first term in the modified Hamiltonian operator represents the kinetic energy and the potential energy in
the ordinary commutative space H, of the nuclei (*’0 and 'F) which is presented by Eq. (19). The second term
Hfoh (kq, k) or ﬁsqoh (fcl, Ez) represents, the induced spin-orbit parts for the pseudo-spin symmetry conditions and spin
symmetry, and the last term is the modified new magnetic Hamiltonian ﬁﬂ;g (r,a,b,a, x) (see Eq. (64)). Thus, we have
obtained the global new Hamiltonian operator ﬁ,‘{? in 3D-RNCS symmetries as follows:

-

Kkt1) (B] - BS) for spin symmetry

r4

A (ky k) + 2 [(M + Eyye — CHVERA(r, 0, b, a) +

(

|
an - H‘Ih + { zqh o » . ind Kk(k—1) I -2 .

kHSO (kv ko) + x [(M —Ef + CP)Vir(r,a,b,a) + T] BJ — BS |for pseudo-spin symmetry

(78)

This way, we can obtain the complete energy spectra for the MQHP model in 3D-RNCS symmetries. Now, the
following accompanying constraint relations are given:

e The original spectrum contains only one value of energy in ordinary three-dimensional spaces, which Egs. (17) and
(18) present,

e As mentioned in the previous subsection, the quantum numbers m and 7 satisfied the two intervals: =l < m < +1
and —! < M < +1, thus we have (2l + 1) and (2] + 1) values, respectively,

e We also have two polarities corresponding to the values (j =1+ ; andj=1— %) and (j = [ + % andj=1-— %) for
spin and (pseudo-spin) symmetry conditions. This allows us to deduce the important original results: Every state in usually

3-dimensional spaces will be replaced by 2(2] + 1) and 2(2[ + 1)sub-states. Then, the degenerated states for mirror
nuclei (*”0 and *F) changed to the new values:

(T @L+1) =n? - 235021+ 1) = 2n?

{ 3D-RQM 3D-RNCS (79)
Yio(I+1)=n? - 23 (2l + 1) = 2n?
3D-RQM 3D-RNCS

in 3D-RNCS symmetries. Finally, we resume our original results in this article; the first is the induced spin (pseudo-spin)-
orbit Hamiltonian operators (A% (ky, ky)and HE'(ky,k;)) and corresponding eigenvalues (EES™™(6,k,j,n, 1),

EPe"%(@,k, j,n, 1)) and (Efl’fr:d(O, k,j,n 1), EXS"(0,k, j,n, 1)), respectively as:

iy Fn : . Fn
(72,00 (2%1,0,9)) = E27(0, kjim, 1) (22211, 0,

AL r,6,0) = | (29),, 0) (22271, 6,00 = B2 (0, 1) (227, 6, ) (50)
'((ﬁ;’o’l(kl, k), (22vL.0.9)) = 0

33
and
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( LD (@, ¢>)> = B2 (0,k,jm, D( eyl (o, ¢>)> (81)
(A), ( LD, ¢)> =0

The second original result is the induced modified new magnetic Hamiltonian operator ﬁ,‘;{;g (r,a, b, a, x) and corresponding

(A
|
ﬁqh’{’(r 0,¢) = {
|
[\

eigenvalues E,‘zl’;g (x,n,j,l,m) and E,‘l[;g ()(, n,j, I, ﬁi), respectively as:

EgtgGonji b Lm) 22 L (6, )

(r,a,b,a, ))¥(r,0,¢) = )
mag G,z (M)
Emag (0, K, 1) ’; A CR)

(82)

Now, it is essential to return to the case of the nonrelativistic limit to obtain the nonrelativistic energy in 3-dimensional
nonrelativistic non-commutative space (3D-NRNCS) symmetries; we apply the transformation known in the works of literature as
follows:

Ex™(n,(m = =0, +1),j,k,1) =M - ENR ., (n, (m = =L +1),j,1) 3)
EX™(n, (m = =1,+0),j,1) + M > 2u
and
Ex™(n, (m = =1, +1),j,k,1) =M - ENR, . (n, (m = =1, +1),j,1) (s4)
Eg™(n,(m = =L,+1),j,k, 1) + M > 2p
where E,ﬁ’fuqh(n, (m =-l +l),j, l) and ENquh(n (m =—l, +l) J, l) are the nonrelativistic energy in the 3D-NRNCS
symmetries, inserting the above transformation into Eq. (73) yields the following:
ENR on(n (m = =1, +1),j,1) = 2E} — 2(1 + 1)ON2TRy,(n, 1) + 2YN?Ry,(n, )Bm (55)
ENRn(n, (m = =1, +1),j,1) = 2E} + 21ON?R;,(n,1) + 2xN?Ry,(n, )Bm
Here E;;] denotes the nonrelativistic energy in 3D-RQM symmetries given by:
nro_ (a+ba)?
i =2 2n+1+2ub+I(1+1)+1/4 (86)

In the case of the nonrelativistic limit, Eq. (85) becomes a Schrédinger equation with an interaction potential of 2V, (r). To aim
for Vg, (), not 2V, ()in the interaction potential under the nonrelativistic limit, we apply the same procedure as has been applied
by Alhaidari et al. [55] and Xiang-Jun Xie et al. for the Morse potential [56] to rescale the vector potential 1, ()and scalar potential
Smp (1) and rewrite Eq. (85) in the form of:

ENR gn(n, (m = —1, +l) jo 1) = Eff + N2(—=(L + 1)O + xBm)Ry,(n, 1) for j =1 +§

(87)

ENRon(n, (m = =L, +1),j,1) = EIT + N2(10 + xBm)Ry,(n,1)  forj =1 —%
These results are in excellent agreement with our work's results in a nonrelativistic study [57]. The above equation represents the
nonrelativistic energy spectrum for the extended nonrelativistic shell model in 3D-RNCS symmetries. It is worth mentioning that
(in the limit (O, y) — (0,0), we obtain the commutative results obtained in [6] with the influence of quadratic Hellmann potential
related to the relativistic and nonrelativistic energies eigenvalues in 3D-RQM and 3D-NRQM symmetries known in the works of
literature.

6. Conclusions

In this paper, we have performed exact analytical bound state solutions: the energy spectra of mirror nuclei (*”0 and *’F) and the
corresponding NC Hermitian Hamiltonian operator for MDE in 3-dimensional relativistic non-commutative space symmetries for
the modified quadratic Hellmann potential model within Bopp's shift method and standard perturbation theory framework under the
spin and pseudo-spin-symmetry conditions. It is found that the energy eigenvalues of the ground state 1ds, (the first excited state
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251 /2, the second excited state 1d3,, and the nY; the excited state depends on the dimensionality of the problem (a, b, @), new
subatomic quantum numbers (j = [+ 1/2,j =1+ 1/2,5 = +1/2,1,1,/iiand m) in addition to the two infinitesimal parameters
(0,x), and we also showed that the obtained energy spectra degenerate and every old state will be replaced by 2(21 + 1) and

2(21 + 1) sub-states under the pseudo spin symmetry and spin symmetry conditions, respectively, for (n, i L1s,5m, r?l)th excited
states. Therefore, with the realization of this work, we have shown that the first term in the modified Hamiltonian operator represents
a new Hamiltonian operator in 3D-RNCS symmetries composed of the main part in 3D-RQM symmetries and the perturbed two
parts, which are induced with the deformation space-space effect; we call it the perturbed spin (pseudo-spin) orbit interaction, while
the other is the perturbed modified Zeeman effect (Eq. (78)). For the MQHP, our computed nonrelativistic energy eigenvalues for
mirror nuclei (170 and '7F) are in excellent agreement with existing results in the literature.
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