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Abstract 

        The present paper deals with the solutions of the 3-dimensional modified Dirac equation (MDE) for 
the extended relativistic interactions for nuclei 𝑂ଵ଻  and 𝐹ଵ଻  under the modified quadratic Hellmann 
potential (MQHP) model within Bopp's shift method and standard perturbation theory framework. The 
two mirror nuclei can be modeled as doubly magic isotopes 𝑂ଵ଻ ൌ 𝑛 ൅ ሺ𝑁 ൌ 𝑍 ൌ 8ሻ and 𝐹ଵ଻ ൌ 𝑝 ൅
ሺ𝑁 ൌ 𝑍 ൌ 8ሻ, with one additional nucleon (valence) in the 1𝑑ହ/ଶ level under the MQHP model in 3-
dimensional relativistic non-commutative space (3D-RNCS) symmetries. The new relativistic energy 
eigenvalues for the ground state 1𝑑ହ/ଶ, the first excited state 2𝑆ଵ/ଶ, the second excited state 1𝑑ଷ/ଶ and the 
𝑛𝑌௝ excited state is obtained by adopting Bopp's shift method and using the standard perturbation 
theory. The corresponding modified Hamiltonian operator has been calculated in 3D-RNCS symmetries. 
It is found that solutions of the new spectrum can be expressed by the discrete subatomic quantum 
numbers (𝑗, 𝑘, 𝑙൫𝑙ሚ൯, 𝑠ሺ𝑠̃ሻ and 𝑚ሺ𝑚෥ )), the strength parameters (𝑎, 𝑏), the range of studied potential 𝛼 in 
addition to non-commutativity parameters ሺΘ, 𝜃), which are induced by the effects of (space-space) non-
commutativity properties. The total complete degeneracy of new relativistic energy levels for nuclei 

𝑂ଵ଻  and 𝐹ଵ଻  under the MQHP model changed to become equal to the value 2𝑛ଶ instead of the values 𝑛ଶ 
in ordinary relativistic quantum mechanics, which is known in the literature.  
Keywords: Dirac equation; mirror nuclei 𝑂ଵ଻  and 𝐹ଵ଻ ; the quadratic Hellmann potential; non-
commutative space phase, and Bopp's shift method. 

1. Introduction 

The Dirac equation (DE) is significant in relativistic quantum mechanics symmetries because the eigensolutions reveal 
crucial physical information about the quantum systems for relativistic quantum problems. This equation is well known 
to describe the motion of a spin-1/2 particle, such as an electron or positron, at high energy on the atomic scale, and 
research into this equation is currently a hot topic in particle physics and nuclear physics. However, this equation can be 
extended to describe other physics phenomena on subatomic scales because spin and pseudo-spin symmetries of the 
relativistic Hamiltonian have recently been empirically recognized in nuclear and hadronic spectroscopes. Therefore, the 
symmetries in the single-particle spectra of nuclei are the most critical concepts in nuclear structure [1–4]. The study of 
isotopes at the subatomic scale has attracted considerable interest in both theoretical and experimental physics, and it has 
many vital applications in both theoretical and practical research. Isotopes include the two nuclei 𝑂ଵ଻  and 𝐹ଵ଻ , which are 
suitable examples. Due to its significant experimental findings on binding energy, single-particle energy, etc.. To put the 
microscopic theory to the test in future investigations, it is helpful to calculate these quantities [5-7]. Mousavi et al. [6] 
solved the Schrödinger equation and the Dirac equation with the quadratic Hellmann potential model (QHP) using the 
parametric Nikiforov-Uvarov method and obtained energy eigenvalues and wave functions for the mirror nuclei of 𝑂ଵ଻  
and 𝐹 ଵ଻ in relativistic and nonrelativistic shell models. These isotopes can be modeled as a doubly magic isotope 𝑂ଵ଻ ൌ
𝑛 ൅ ሺ𝑁 ൌ 𝑍 ൌ 8ሻ and 𝐹ଵ଻ ൌ 𝑝 ൅ ሺ𝑁 ൌ 𝑍 ൌ 8ሻ with one additional nucleon (valence) in the 1𝑑ହ/ଶ level. The ground-
state spin and parity of ( 𝑂ଵ଻  and 𝐹ଵ଻ ) are 𝑗∏ ൌ 5/2ା, which correspond to the spin and parity of the level where the 
valence nucleon resides [6-7]. In the relativistic shell model with modified Eckart plus Hulthén potentials for the 
interaction between the core and a single nucleon, Mousavi et al. (2016) [8] analyzed various static features of  41Ca and 
41Sc. They computed the energy values and wave function. To examine the interaction between the core and the single 
nucleon for elements 41Ca and 40Ca, Mousavi et al. [9] obtained the energy levels and charge radius for the stability line 
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nucleus in 2017 using Eckart plus Hulthén potentials and a relativistic shell model that took into account a closed shell 
for each nucleus containing a double magic number and a single nucleon energy level. The main objective is to develop 
the research article for Mousavi et al. in [6] and expand it to the significant symmetry known by non-commutative 
quantum mechanics (NCQM) in the case of spin and pseudo-spin symmetry conditions to achieve a more accurate 
physical vision so that this study becomes valid in the field of nanotechnology. This is to achieve a comprehensive study 
highlighting the topological effects resulting from the deformation in space due to the mass effect of matter. The 
researchers believe that highlighting the impact of these new symmetries would give greater clarity and perception and 
could address some of the obstacles in which quantum mechanics failed, such as the problem of the normalization and 
unification of the cosmic four forces. On the other hand, one can explore the possibility of creating new applications and 
more profound interpretations in the subatomic and nanoscales using a new version of the QHP. We called it the modified 
quadratic Hellmann potential (MQHP) model because these combined potentials are significant nuclear potentials for a 
description of the interaction between nucleons, which has the following form: 
 

ቐ
𝑉௛௣ሺ𝑟̂ሻ ൌ 𝑉௤௛ሺ𝑟ሻ ൅ 𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ𝐋
→

𝚯
→

൅ 𝑂ሺ𝛩ଶሻ,

𝑆௛௣ሺ𝑟̂ሻ ൌ 𝑆௤௛ሺ𝑟ሻ ൅ 𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ𝐋ሚ

→

𝚯
→

൅ 𝑂ሺ𝛩ଶሻ.
                                            (1) 

The attractive quadratic scalar potential 𝑆௤௛ሺ𝑟ሻ and a repulsive potential 𝑉௤௛ሺ𝑟ሻ QHP is given by [6,10,11]  

ቐ
𝑉௤௛ሺ𝑟ሻ ൌ െ

௔

௥
൅

௕௘షഀೝ

௥మ ,

𝑆௤௛ሺ𝑟ሻ ൌ െ ௔ೞ

௥
൅ ௕ೞ௘షഀೝ

௥మ .
                                                                     (2) 

While the induced potential 𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ expressed as (see the third section): 

𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൌ ఈ௕ ௘௫௣ሺିఈ௥ሻ

ଶ௥య ൅ ௕ ௘௫௣ሺିఈ௥ሻ

௥ర െ ௔

ଶ௥య                                                        (3) 

where 𝑎/𝑎௦ and 𝑏/𝑏௦ are strength parameters, while 𝛼 is related to the range of the potential. We refer to the couplings 

(L
→

Θ
→

 and L෨
→

Θ
→

) in the next section. The new structure of 3D-RNCS symmetries based on new non-commutative canonical 
commutations relations in three representations of Schrödinger, Heisenberg, and Interactions pictures (SP, HP, and IP), 
respectively, as follows (In this research, we applied the system of natural units  𝑐 ൌ ℏ ൌ 1) [12-17]: 

⎩
⎪
⎨

⎪
⎧ൣ𝑥ොఓ ,∗ 𝑝̂ఔ൧ ൌ ൣ𝑥ොఓሺ𝑡ሻ,∗ 𝑝̂ఔሺ𝑡ሻ൧ ൌ ൣ𝑥ොூఓሺ𝑡ሻ,∗ 𝑝̂ூఔሺ𝑡ሻ൧ ൌ 𝑖ℏ𝛿ఓఔ ⇒ ห𝛥𝑥ොఓ𝛥𝑝̂ఔห ൒ ℏ௘௙௙

ఋഋഌ

ଶ
,

 

ൣ𝑥ොఓ ,∗ 𝑥ොఔ൧ ൌ ൣ𝑥ොఓሺ𝑡ሻ,∗ 𝑥ොఔሺ𝑡ሻ൧ ൌ ൣ𝑥ොூఓሺ𝑡ሻ,∗ 𝑥ොூఔሺ𝑡ሻ൧ ൌ 𝑖𝛿ఓఔℏ௘௙௙ ⇒ ห𝛥𝑥ොఓ𝛥𝑥ොఔห ൒
หఏഋഌห

ଶ
.

 

                                     (4)                    

where the indices ሺ𝜇 , 𝜈ሻ ≡ 1,3 and ℏ௘௙௙ ൎ ℏ. This means that the principle of uncertainty for Heisenberg is generalized 
to include another new uncertainty related to the positions ൫𝑥ොఓ, 𝑥ොఔ൯ in addition to the ordinary uncertainty of ൫𝑥ොఓ, 𝑝̂ఔ൯. The 
minimal parameter 𝜃ఓఔ is invertible antisymmetric real constant (3×3) matrices, and ሺ∗ሻ denotes the Weyl-Moyal star 
product, which is generalized between two arbitrary functions to the new form    xfg  ൫𝑓መ𝑔ො൯ሺ𝑥ොሻ ≡ ሺ𝑓 ∗ 𝑔ሻሺ𝑥ሻ in 3D-

RNCS symmetries [18-25]: 

ሺ𝑓 ∗ 𝑔ሻሺ𝑥ሻ ൎ ቀ𝑓𝑔 െ
௜

ଶ
𝜃ఓఔ𝜕ఓ

௫𝑓𝜕ఔ
௫𝑔ቁ ሺ𝑥ሻ                                                    (5)                   

The second term in the above equation presents the effects of (space-space) non-commutativity properties. However, the 
new operators: ℛ෠ఓுሺ𝑡ሻ ൌ ൫𝑥ොఓ ∨ 𝑝̂ఓ൯ሺ𝑡ሻ and ℛ෠ఓூሺ𝑡ሻ ൌ ൫𝑥ොூఓ ∨ 𝑝̂ூఓ൯ሺ𝑡ሻ  in (HP and IP, respectively) are dependent on the 

corresponding new operator  𝜉መௌ ൌ 𝑥ොఓ ∨ 𝑝̂ఓ in SP from the following projection relations:   

ቊ
ℛுሺ𝑡ሻ ൌ 𝑒𝑥𝑝ሺ 𝑖/ℏ𝐻෡௤௛𝑇ሻℛௌ 𝑒𝑥𝑝ሺ െ 𝑖/ℏ𝐻෡௤௛𝑇ሻ

ℛூሺ𝑡ሻ ൌ 𝑒𝑥𝑝ሺ 𝑖/ℏ𝐻෡௢௤௛𝑇ሻℛௌ 𝑒𝑥𝑝ሺ െ 𝑖/ℏ𝐻෡௢௤௛𝑇ሻ
⇒ ൝

ℛ෠ுሺ𝑡ሻ ൌ 𝑒𝑥𝑝ሺ 𝑖/ℏ௘௙௙𝐻෡௡௖
௤௛𝑇ሻ ∗ ℛ෠ௌ ∗ 𝑒𝑥𝑝ሺ െ 𝑖/ℏ௘௙௙𝐻෡௡௖

௤௛𝑇ሻ

ℛ෠ூሺ𝑡ሻ ൌ 𝑒𝑥𝑝ሺ 𝑖/ℏ௘௙௙𝐻෡௡௖௢
௤௛ 𝑇ሻ ∗ 𝑅෠ௌ ∗ 𝑒𝑥𝑝ሺ െ 𝑖/ℏ௘௙௙𝐻෡௡௖௢

௤௛ 𝑇ሻ
               (6) 

Here ൌ 𝑡 െ 𝑡଴, 𝑅ఓௌ ൌ 𝑥ఓ ∨ 𝑝ఓ, ℛఓுሺ𝑡ሻ ൌ ൫𝑥ఓ ∨ 𝑝ఓ൯ሺ𝑡ሻ and ℛఓூሺ𝑡ሻ ൌ ൫𝑥ூఓ ∨ 𝑝ூఓ൯ሺ𝑡ሻ are three representations in RQM 
symmetry, the operators 𝐻෡௢௤௛ and 𝐻෡௤௛ are the free and global Hamiltonian in RQM for quadratic Hellmann potential, while 

𝐻෡௡௖௢
௤ℎ  and 𝐻෡௡௖

௤௛ the corresponding Hamiltonians in the 3D-RNCS symmetries. The dynamics of new systems  
ௗ〈ோ෠ಹሺ௧ሻ〉

dt
  which 

is described by the modified Ehrenfest theory from the following motion equations in 3D-RNCS symmetries: 
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ௗ〈ℛಹሺ௧ሻ〉

dt
ൌ െሺ𝑖/ℏሻൣℛுሺ𝑡ሻ, 𝐻෡௤௛൧ ൅ 〈డℛಹሺ௧ሻ

డ௧
〉 ⇒ ௗ〈ோ෠ಹሺ௧ሻ〉

dt
ൌ െሺ𝑖/ℏ௘௙௙ሻൣ𝑅෠ுሺ𝑡ሻ,∗ 𝐻෡௡௖

௤௛൧ ൅ 〈ோ෠ಹሺ௧ሻ

డ௧
〉                                      (7)          

It should be recalled that Heisenberg first proposed non-commutativity in 1930 [22], and then Syndre confirmed it in 
1947 [23]. The organization of this paper, which is divided into six sections, is as follows: We quickly go over the DE 
with the quadratic Hellmann potential in the following section. The MQHP model and the modified spin-orbit operator 
for the mirror nuclei of ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ under spin (pseudo-spin) symmetry conditions are obtained by using Bopp's shift 
approach in Section 3 to examine the MDE. The ground state and various excited states for the studied mirror nucleus, 
the magnetic Hamiltonians for the MQHP model, and their related spectra are covered in the following section. Section 
5 analyzes the global relativistic energy in 3D-NRNCS symmetries and the corresponding Hamiltonian operator under 
the MQHP model in the presence of spin and (pseudo-spin) symmetry conditions. We studied the nonrelativistic energy 
limit and compared it with our previous study. Finally, a concluding summary and conclusions are given in the last section. 
 

2. Review of the DE for the quadratic Hellmann potential 
 

    Here, we present the basic concepts of DE under the quadratic Hellmann potential in outline form. We introduce the 
formalism of the DE for a spherically symmetric potential in 3-dimensional space reads for a single nucleon with the mass 
of 𝑀 and relativistic energy 𝐸௡௟/𝐸௡௟ሚ

௣  moving in an attractive scalar potential 𝑆௤௛ሺ𝑟ሻ and a repulsive potential 𝑉௤௛ሺ𝑟ሻ as 
follows (Refs .[6, 23-25] gives a detailed description of this concepts): 

ሺ𝛼𝑝 ൅ 𝛽ሺ𝑀 ൅ 𝑆ሺ𝑟ሻሻሻ𝛹ሺ𝑟, 𝜃, 𝜙ሻ ൌ ቀ𝐸 െ 𝑉௤௛ሺ𝑟ሻቁ 𝛹ሺ𝑟, 𝜃, 𝜙ሻ                                           (8) 

 

With 𝛼௜ ൌ ൬
0 𝜎௜
𝜎௜ 0 ൰ and 𝛽 ൌ ൬

𝐼ଶൈଶ 0
0 𝐼ଶൈଶ

൰ while ሺ𝜎ଵ, 𝜎ଶ, 𝜎ଷሻ are just the Dirac matrices. Thus, the corresponding ordinary 

Hamiltonian operator 𝐻෡௤ℎ can ban be expressed as: 

𝐻෡௤௛ ൌ ሺ𝛼𝑝 ൅ 𝛽ሺ𝑀 ൅ 𝑆ሺ𝑟ሻሻሻ ൅ 𝑉௤௛ሺ𝑟ሻ                                               (9)                    
The spinor 𝛹ሺ𝑟, 𝜃, 𝜙ሻ can be written as [6, 23-25]: 

 

𝛹ሺ𝑟, 𝜃, 𝜙ሻ ൌ ቆ
𝑓௡௞൫ 𝑟→൯

𝑔௡௞෨ ൫ 𝑟→൯
ቇ ൌ ଵ

௥
ቆ

𝐹௡௞ሺ𝑟ሻ𝑌௝௠
௟ ሺ𝜃, 𝜙ሻ

𝑖𝐺௡௞෨ ሺ𝑟ሻ𝑌௝௠෥
௟ሚ ሺ𝜃, 𝜙ሻ

ቇ                                                     (10)                    

 
Where, 𝐹௡௞ሺ𝑟ሻ and 𝐺௡௞෨ ሺ𝑟ሻ are the upper and lower components of the Dirac spinor, 𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ and 𝑌௝௠෥
௟ሚ ሺ𝜃, 𝜙ሻ are the spin 

and pseudo-spin spherical harmonics, while 𝑘 (𝑘෨) is related to the total angular momentum quantum numbers for spin 
symmetry 𝑙and pseudo-spin symmetry 𝑙ሚ as [25-26]: 
 

𝑘 ൌ

⎩
⎪
⎨

⎪
⎧

െሺ𝑙 ൅ 1ሻ ൌ െሺ𝑗 ൅ 12ሻ  if  ,൫𝑠1/2, 𝑝ଷ/ଶ, 𝑒𝑡𝑐൯,

𝑗 ൌ 𝑙 ൅ ଵ

ଶ
, aligned spin ሺ𝑘⟨0ሻ

൅𝑙 ൌ ൅ሺ𝑗 ൅ 12ሻ   if , ൫𝑝1/2, 𝑑ଷ/ଶ, 𝑒𝑡𝑐൯,

𝑗 ൌ 𝑙 െ ଵ

ଶ
, unaligned spin ሺ𝑘⟩0ሻ

                                                     (11) 

and 

           𝑘෨ ൌ

⎩
⎪
⎨

⎪
⎧

െ𝑙ሚ  ൌ െሺ𝑗 ൅ 12ሻ   if  ൫𝑠1/2, 𝑝ଷ/ଶ, 𝑒𝑡𝑐൯, 

𝑗 ൌ 𝑙ሚ െ ଵ

ଶ
, aligned -spin ሺ𝑘⟨0ሻ

൅൫𝑙ሚ ൅ 1൯ ൌ ൅ሺ𝑗 ൅ 12ሻ    if   , ൫𝑝1/2, 𝑑ଷ/ଶ, 𝑒𝑡𝑐൯, 

𝑗 ൌ 𝑙ሚ ൅
ଵ

ଶ
, unaligned- spin ሺ𝑘⟩0ሻ

                                               (12) 

 

The two radial functions (𝐹௡௞
௦ ሺ𝑟ሻ,𝐺௡௞෨

௣ ሺ𝑟ሻ) are obtained by solving the following differential equations [27-29]: 

൭
ௗమ

ௗ௥మ െ ௞ሺ௞ାଵሻ

௥మ ൅
೏೩ሺೝሻ

೏ೝ ቀ
೏

೏ೝା
ೖ
ೝቁ

ெାா೙ೖି௱ሺ௥ሻ
െ ൫𝑀 ൅ 𝐸௡௟ െ 𝛥௤௛ሺ𝑟ሻ൯൫𝑀 െ 𝐸௡௞ ൅ 𝛴௤௛ሺ𝑟ሻ൯൱ 𝐹௡௞

௦ ሺ𝑟ሻ ൌ 0              (13) 

and 

൭
ௗమ

ௗ௥మ െ ௞ሺ௞ିଵሻ

௥మ ൅
೏೸ሺೝሻ

೏ೝ ቀ
೏

೏ೝି
ೖ
ೝቁ

ெାா೙ೖିఀሺ௥ሻ
െ ቀ𝑀 ൅ 𝐸௡௟ሚ

௣ െ 𝛥௤௛ሺ𝑟ሻቁ ൫𝑀 െ 𝐸௡௞ ൅ 𝛴௤௛ሺ𝑟ሻ൯൱ 𝐺௡௞
௣ ሺ𝑟ሻ ൌ 0             (14) 
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The QHP bound-state solutions for the spin symmetric and pseudo-spin symmetry when (
ௗ௱೜೓ሺ௥ሻ

ௗ௥
ൌ 0 and 

ௗఀ೜೓ሺ௥ሻ

ௗ௥
ൌ 0) are 

satisfied, respectively. The upper and lower components 𝐹௡௞
௦ ሺ𝑟ሻ and 𝐺௡௞

௣ ሺ𝑟ሻ of the Dirac spinor gives by [6]: 
 

𝐹௡௞
௦ ሺ𝑟ሻ ൌ 𝑁𝑟ሺඥఞబ೗ାଵ/ସାଵ/ଶሻ 𝑒𝑥𝑝൫െඥ𝜒ଶ௡𝑟൯ 𝐿௡

ଶඥఞబ೗ାଵ/ସ
ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ                                      (15)     

and 

𝐺௡௞
௣ ሺ𝑟ሻ ൌ 𝑁௣𝑟

ሺටఞబ೗
೛ ାଵ/ସାଵ/ଶሻ

𝑒𝑥𝑝 ቆെට𝜒ଶ௡
௣ 𝑟ቇ 𝐿௡

ଶටఞబ೗
೛ ାଵ/ସ

൭ቆ2 ൅ 2ට𝜒ଶ௡
௣ ቇ 𝑟൱                                     (16)                    

here 𝑁 and 𝑁௣ are the normalization constants, 𝜒଴௞ ൌ 2𝜇 ൅ 𝑘ሺ𝑘 ൅ 1ሻ, 𝜒଴௞
௣ ൌ 2𝜇 ൅ 𝑘ሺ𝑘 െ 1ሻ, 𝜒ଶ௡ ൌ 𝑀ଶ െ 𝐸௡௟

ଶ   and 𝜒ଶ௡
௣ ൌ

𝑀ଶ െ 𝐸௡௟
௣ଶ. The relativistic positive energy eigenvalues for the MQHP model under the pseudo-spin-symmetry conditions 

are obtained as [6]: 
 

ሺ2𝑛 ൅ 1ሻඥ𝑀ଶ െ 𝐸௡௟
ଶ െ 2ሺ𝐸௡௟ ൅ 𝑀ሻሺ𝑎 ൅ 2𝑏𝛼ሻ ൅ 2ඥሺ𝑀ଶ െ 𝐸௡௟

ଶ ሻሺ𝑘ሺ𝑘 ൅ 1ሻ ൅ 2𝑏ሺ𝐸௡௟ ൅ 𝑀ሻ ൅ 1/4ሻ ൌ 0               (17) 
and 

ሺ2𝑛 ൅ 1ሻට𝑀ଶ െ 𝐸௡௟
௣ଶ െ 2൫𝐸௡௟ሚ

௣ െ 𝑀൯ሺ𝑎 ൅ 2𝑏𝛼ሻ ൅ 2ට൫𝑀ଶ െ 𝐸௡௞
௣ଶ൯൫𝑘ሺ𝑘 െ 1ሻ ൅ 2𝑏൫𝐸௡௞

௣ െ 𝑀൯ ൅ 1/4൯ ൌ 0              (18) 

 
The lower component 𝐺௡௞

௦  and the upper component 𝐹௡௞
௣ ሺ𝑟ሻ of the Dirac spinor can be calculated as [6]:     

ሺ𝐺௡௞
௦ ሺ𝑟ሻ, 𝐹௡௞

௣ ሺ𝑟ሻሻ ൌ
ቀ

𝑑
𝑑𝑟 േ 𝑘

𝑟ቁ

𝐸௡௟ሚ
௦/௣ ൅ 𝑀

ሺ𝐹௡௞
௦ ሺ𝑟ሻ, 𝐺௡௞

௣ ሺ𝑟ሻሻ 

 
3. NC Hamiltonian operator for relativistic MQHP model 

3.1.     Overview of the Bopp shift method 

     To find the MDE for the MQHP model in 3D-RNCS symmetries, we replace both the ordinary Hamiltonian operator 

𝐻෡ሺ𝑝௜, 𝑥௜ሻ, ordinary spinor 𝜓 ቀ𝑟
→

ቁ, and ordinary energy 𝐸nk with the NC Hamiltonian operator 𝐻෡ሺ𝑝̂௜, 𝑥ො௜ሻ, new spinor 𝛹෡ ቀ𝑟௡
→

ቁ, 

and new energy 𝐸௡௖
௤௛ and the ordinary product will be replaced by the star product ሺ∗ሻ, respectively. This allows us to write 

the MED for MQHP as follows [31-44]:  
 

𝐻෡ሺ𝑝̂௜, 𝑥ො௜ሻ𝛹෡ ቀ𝑟௡
→

ቁ ൌ 𝐸௡௖
௤௛𝛹෡ ቀ𝑟௡

→
ቁ ⇒ 𝐻௡௖

௤௛ ∗ 𝜓 ቀ𝑟
→

ቁ ൌ 𝐸௡௟
௦/௣𝜓 ቀ𝑟

→
ቁ                                                       (19) 

 
her ሺ𝑟௡௢௖ ൌ 𝑟௡ሻ. Thus, in 3D-RNCS symmetries, the upper component 𝐹௡௞

௦ ሺ𝑟ሻ  and lower component 𝐺௡௞
௣ ሺ𝑟ሻ of the Dirac 

spinor, which corresponds to spin and pseudo-spin symmetry, can be written in the following form: 
 

ቆ
ௗమ

ௗ௥మ െ ௞ሺ௞ାଵሻ

௥మ െ ሺ𝑀 ൅ 𝐸௡௟ െ 𝐶௦ሻ൫𝑀 െ 𝐸௡௞ ൅ 𝛴௤௛ሺ𝑟ሻ൯ቇ ∗ 𝐹௡௞
௦ ሺ𝑟ሻ                                            (20) 

and 

ቆ
ௗమ

ௗ௥మ െ ௞ሺ௞ିଵሻ

௥మ െ ቀ𝑀 ൅ 𝐸௡௟ሚ
௣ െ 𝛥௤௛ሺ𝑟ሻቁ ሺ𝑀 െ 𝐸௡௞ ൅ 𝐶௣ሻቇ ∗ 𝐺௡௞

௣ ሺ𝑟ሻ ൌ 0                                         (21)                   

 
The Bopp shift method was discussed in detail in [45-47]. Here, we will mention the main points to remind the reader of 
the main idea of the Bopp shift method. Bopp shift method is usually used to transform the fundamental four equations 
deformed Klein-Gordon equation [48], the deformed Dirac equation [49], the deformed Schrödinger equation [50,51]., and 
the Duffin–Kemmer–Petiau equation [52] with the notion of star product to the Klein-Gordon equation, the Dirac equation 
and the Schrödinger equation with the idea of ordinary product. It is worth noting that the Bopp shift method permutes us 
to reduce the above equations to the simplest form: 
 

ቀ
ௗమ

ௗ௥మ െ
௞ሺ௞ାଵሻ

௥೙
మ െ ሺ𝑀 ൅ 𝐸௡௜ െ 𝐶௦ሻሺ𝑀 െ 𝐸௡௞ ൅ 𝛴௤௛ሺ𝑟௡ሻሻቁ 𝐹௡௞

௦ ሺ𝑟ሻ ൌ 0                                      (22) 

and 

ቀ
ௗమ

ௗ௥మ െ ௞ሺ௞ିଵሻ

௥೙
మ െ ሺ𝑀 ൅ 𝐸௡௟ሚ

௣ െ 𝛥௤௛ሺ𝑟௡ሻሻሺ𝑀 െ 𝐸௡௞ ൅ 𝐶௣ሻቁ 𝐺௡௞
௣ ሺ𝑟ሻ ൌ 0                                      (23) 

 
The new operator of the Hamiltonian operator 𝐻௡௖

௤௛ሺ𝑝̂௜, 𝑥ො௜ሻ can be expressed in three general varieties: both NC space and 
NC phase (3D-RNCPS) symmetries, only NC space (3D-RNCS) symmetries, and only NC phase (3D-RNCP) symmetries, 
respectively: 
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⎩
⎪
⎨

⎪
⎧𝐻௡௖

௤௛൫𝑝̂ఓ, 𝑥ොఔ൯ ≡ 𝐻 ൬𝑝̂ఓ ൌ 𝑝ఓ ൅ 𝑖
ఏഋഌ

ଶ
𝑥ఔ; 𝑥ොఓ ൌ 𝑥ఓ െ 𝑖

ఏഋഌ

ଶ
𝑝ఔ൰ for 3D െ RNCPS symmetries

𝐻௡௖
௤௛൫𝑝̂ఓ, 𝑥ොఔ൯ ≡ 𝐻 ቀ𝑝̂ఓ ൌ 𝑝ఓ; 𝑥ොఓ ൌ 𝑥ఓ െ

௜ఏഋഌ

ଶ
𝑝ఔቁ  for    3D െ RNCS    symmetries

𝐻௡௖
௤௛൫𝑝̂ఓ, 𝑥ොఔ൯ ≡ 𝐻 ൬𝑝̂ఓ ൌ 𝑝ఓ ൅ 𝑖

ఏഋഌ

ଶ
𝑥ఔ; 𝑥ොఓ ൌ 𝑥ఓ൰ for 3D െ RNCP     symmetries

                 (24)   

 
In recent work, we are interested in applying the second variety. Therefore, the modified Hamiltonian 𝐻௡௖

௤௛൫𝑝̂ఓ, 𝑥ොఔ൯ defined 

as a function of ሺ𝑥ොఓ ൌ 𝑥ఓ െ 𝑖
ఏഋഌ

ଶ
𝑝ఔ and 𝑝̂ఓ ൌ 𝑝ఓሻ as follows: 

 
𝐻௡௖

௤௛൫𝑝̂ఓ, 𝑥ොఔ൯ ൌ 𝛼𝑃෠ ൅ 𝛽ሺ𝑀 ൅ 𝑆௤௛ሺ𝑟௡௢௖ሻሻ ൅ 𝑉௤௛ሺ𝑟̂ሻ                                                   (25)                    
 
where the MQHP 𝑉௤ℎሺ𝑟̂ሻ is given by: 

𝑉௤௛ሺ𝑟ሻ ⇒ 𝑉௤௛ሺ𝑟௡ሻ ൌ െ ௔

௥೙
൅ ௕

௥೙
మ 𝑒ିఈ௥̂                                                                (26)                    

To obtain new centrifugal terms (
௞ሺ௞ାଵሻ

௥೙
మ  , 

௞ሺ௞ିଵሻ

௥೙
మ ),  𝛴ሺ𝑟̂ሻ and 𝛥ሺ𝑟̂ሻ, we need to calculate (െ ௔

௥̂
, 

௕

௥̂మ , 
ୠୣ୶୮ሺିఈ௥೙ሻ

௥೙
మ   and 

௞ሺ௞ାଵሻ

௥೙
మ )  can 

obtain for spin symmetry the following equations as follows in 3D-RNCS symmetries:  

െ ௔

௥೙
ൌ െ ௔

௥
െ ௔

ଶ௥య 𝐋
→

. 𝚯
→

൅ 𝑂ሺ𝛩ଶሻ,                                                              (27.1) 

௕

௥೙
మ ൌ

௕

௥మ ൅
௕

௥ర 𝐋
→

. 𝚯
→

൅ 𝑂ሺΘଶሻ,                                                                       (27.2) 

ୠୣ୶୮ሺିఈ௥೙ሻ

௥೙
మ ൌ ୠୣ୶୮ሺିఈ௥ሻ

௥మ ൅ ቀ
ఈ௕

ଶ௥య ൅ ௕

௥రቁ exp ሺെ𝛼𝑟ሻ𝐋
→

. 𝚯
→

൅ 𝑂ሺ𝛩ଶሻ,                         (27.3) 

and 

௞ሺ௞ାଵሻ

௥೙
మ ൌ ௞ሺ௞ାଵሻ

௥మ ൅ ௞ሺ௞ାଵሻ

௥ర 𝐋.
→

𝚯
→

൅ 𝑂ሺ𝛩ଶሻ.                                    (27.4) 

                   
Similarly, for pseudo-spin symmetry, the previous values can be expressed as  

െ ௔

௥೙
ൌ െ ௔

௥
െ ௔

ଶ௥య 𝐋ሚ
→

. 𝚯
→

൅ 𝑂ሺ𝛩ଶሻ,                                               (28.1) 

௕

௥೙
మ ൌ ௕

௥మ ൅ ௕

௥ర 𝐋ሚ
→

. 𝚯
→

൅ 𝑂ሺΘଶሻ,                                                  (28.2) 

ୠୣ୶୮ሺିఈ௥೙ሻ

௥೙
మ ൌ ୠୣ୶୮ሺିఈ௥ሻ

௥మ ൅ ቀ
ఈ௕

ଶ௥య ൅ ௕

௥రቁ exp ሺെ𝛼𝑟ሻ𝐋ሚ
→

. 𝚯
→

൅ 𝑂ሺ𝛩ଶሻ,                         (28.3) 

and 

௞ሺ௞ିଵ

௥೙
మ ൌ ௞ሺ௞ିଵ

௥మ ൅ ௞ሺ௞ିଵ

௥ర 𝐋ሚ
→

. 𝚯
→

൅ 𝑂ሺ𝛩ଶሻ.                                    (28.4) 

 
We are substituting Eqs. (27) and (28) into Eqs. (22) and (23), we get an expression for  two equations: 

ቆ
ௗమ

ௗ௥మ െ ௞ሺ௞ାଵሻ

௥మ െ ሺ𝑀 ൅ 𝐸௡௟ െ 𝐶௦ሻ൫𝑀 െ 𝐸௡௞ ൅ 𝛴௤௛ሺ𝑟ሻ൯ െ 𝛴௣௘௥௧
௤௛ ሺ𝑟ሻቇ 𝐹௡௞

௦ ሺ𝑟ሻ ൌ 0                                    (29) 

 
and 

 

ቆ
ௗమ

ௗ௥మ െ
௞ሺ௞ିଵሻ

௥మ െ ቀ𝑀 ൅ 𝐸௡௞
௣ ൅ 𝛥௤௛ሺ𝑟̂ሻቁ ሺ𝑀 െ 𝐸௡௞ ൅ 𝐶௣ሻ െ 𝛥௣௘௥௧

௤௛ ሺ𝑟ሻቇ 𝐺௡௞෨
௣ ሺ𝑟ሻ ൌ 0                                  (30) 

with 

𝛴௣௘௥௧
௤௛ ሺ𝑟ሻ ൌ ቂሺ𝑀 ൅ 𝐸௡௟ െ 𝐶௦ሻ𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቃ 𝐋
→

. 𝚯
→

 ൅𝑂ሺ𝛩ଶሻ for  spin symmetric case,                  (31.1) 

and 
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𝛥௣௘௥௧
௤௛ ሺ𝑟ሻ ൌ ቂ൫𝑀 െ 𝐸௡௞

௣ ൅ 𝐶௣൯𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝐋ሚ .
→

𝚯
→

൅𝑂ሺ𝛩ଶሻ for  pseudo-spin symmetric case.         (31.2)       

Here 𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ  is the induced potential that we have previously seen in Eq. (3).  By comparing (Eqs. (13) and (14)) 

and (Eqs. (29) and (30)), we observe two additive potentials (𝛴௣௘௥௧
௤௛ ሺ𝑟ሻ and 𝛥௣௘௥௧

௤௛ ሺ𝑟ሻ). Moreover, these terms are 

proportional to the infinitesimal non-commutativity couplings (𝐋
→

𝚯
→

 and 𝐋ሚ
→

𝚯
→

). From a physical point of view, this means 
that these two spontaneously generated terms (𝛴௣௘௥௧

௤௛ ሺ𝑟ሻ and 𝛥௣௘௥௧
௤௛ ሺ𝑟ሻ) as a result, the topological properties of the 

deformation space-space can be considered very small compared to the fundamental terms (𝛴௤௛ሺ𝑟ሻ and 𝛥௤௛ሺ𝑟ሻ), 
respectively. Furthermore, using the unit step function (also known as the Heaviside step function 𝜃ሺ𝑧ሻ or simply the 
theta function) to rewrite the two global induced two potentials (𝛴௣௘௥௧

௤௛ ሺ𝑟ሻ and  𝛥௣௘௥௧
௤௛ ሺ𝑟ሻ) for spin and pseudo-spin 

symmetries corresponding to upper and lower components (𝐹௡௞
௦ ሺ𝑠ሻ, 𝐺௡௞

௦ ሺ𝑠ሻ) and (𝐹௡௞
௣ ሺ𝑠ሻ, 𝐺௡௞

௣ ሺ𝑠ሻ), respectively as 
 

𝛴௤௛
௣௘௥௧ሺ𝑟ሻ ൌ 𝛴௤௛

௣௘௥௧ሺ𝑟ሻ𝜃൫𝐸௡௖
௤௛ି௦൯ െ 𝛴௤௛

௣௘௥௧ሺ𝑟ሻ𝜃൫െห𝐸௡௖
௤௛ି௦ห൯ ൌ ൝

𝛴௤௛
௣௘௥௧ሺ𝑟ሻ      for 𝐹௡௞

௦ ሺ𝑟ሻ

െ𝛴௤௛
௣௘௥௧ሺ𝑟ሻ   for 𝐺௡௞

௦ ሺ𝑟ሻ
                               (32) 

and 

𝛥௧೜೓

௣௘௥௧ሺ𝑟ሻ ൌ 𝛥௤௛
௣௘௥௧ሺ𝑟ሻ𝜃൫𝐸௡௖

௤௛ି௣௦൯ െ 𝛥௦௖
௣௘௥௧ሺ𝑟ሻ𝜃൫െห𝐸௡௖

௤௛ି௣ห൯ ൌ ൝
𝛥௤௛

௣௘௥௧ሺ𝑟ሻ     for 𝐹௡௞
௣ ሺ𝑟ሻ

െ𝛥௤௛
௣௘௥௧ሺ𝑟ሻ  for 𝐺௡௞

௣ ሺ𝑟ሻ
                               (33) 

Here, the step function 𝜃ሺ𝑧ሻ is given by, 

𝜃ሺ𝑧ሻ ൌ ቄ1 for 𝑧 ൒ 0
0 for 𝑧 ൏ 0

                                                                            (34) 

The quadratic Hellmann potential is extended by including new additive potentials (𝛴௣௘௥௧
௤௛ ሺ𝑟ሻ and 𝛥௣௘௥௧

௤ℎ ሺ𝑟ሻ) expressed to the 

radial terms (
௘௫௣ሺିఈ௥ሻ

௥య , 
௘௫௣ሺିఈ௥ሻ

௥ర , 
ଵ

௥య and 
ଵ

௥ర) which are coupled with two couplings (𝐋
→

𝚯
→

 and 𝐋ሚ
→

𝚯
→

) to become the improved quadratic 

Hellmann potential in 3D-RNCS  symmetries. The two global induced potentials (𝛴௧ೞ೎

௣௘௥௧ሺ𝑟ሻand 𝛥௧ି௦௖
௣௘௥௧ ሺ𝑟ሻ) represent the physical 

interaction between the system's physical properties that correspond to spin and pseudo-spin symmetries (L
→

 and  L෨
→

) and the 
distance between diatomic molecules r with topological deformations of space-space characterized by non-commutativity 

vector Θ
→

. The newly generated two effective potentials (𝛴௦௖
௣௘௥௧ሺ𝑟ሻ and 𝛥௦௖

௣௘௥௧ሺ𝑟ሻ) are also proportional to the two infinitesimal 

couplings (𝐋
→

𝚯
→

 and L෨
→

Θ
→

). This allows us to consider the new additive parts of the effective potentials (𝛴௦௖
௣௘௥௧ሺ𝑟ሻ and 𝛥௦௖

௣௘௥௧ሺ𝑟ሻ ) 
as perturbation potentials compared with the main potentials (𝛴௦௖ሺ𝑟ሻ and 𝛥௦௖ሺ𝑟ሻ) which are also known with the parent potential 
operator in the symmetries of MDT, that is, the two inequalities (𝛴௦௖

௣௘௥௧ሺ𝑟ሻ ൏൏ 𝛴௦௖ሺ𝑟ሻ and 𝛥௦௖
௣௘௥௧ሺ𝑟ሻ ൏൏ 𝛥௦௖ሺ𝑟ሻ) have been 

achieved. All physical justifications for applying the time-independent perturbation theory become satisfied when calculating 
the expectation values of previous radial terms. This allows us to give a complete prescription for determining the energy level 
of the generalized 𝑛𝑌௝ excited states. The aim is to derive the energy spectrum for a mirror nucleus ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ  with one 
additional nucleon (valence) in the 1𝑑ହ/ଶ level and other excited states, for example, the first excited state 2𝑆ଵ/ଶ, the second 
excited state 1𝑑ଷ/ଶand the generalized excited states 𝑛𝑌௝ which are characterized by discrete quantum numbers 

൫𝑛, 𝑗, 𝑙, 𝑙ሚ, 𝑠, 𝑠̃, 𝑚, 𝑚෥൯
௧௛

 in the presence of a potential given by (27) under spin (pseudo-spin) symmetry conditions. 

4. The perturbed relativistic spin-orbit Hamiltonian and the corresponding spectrum for the MQHP model for the 
ground state and other excited states for the mirror nucleus 𝑶𝟏𝟕  and 𝑭𝟏𝟕  under spin (pseudo-spin) symmetry 

conditions in 3D-RNCS symmetries 

4.1.     The perturbed relativistic spin-orbit Hamiltonian for mirror nuclei 𝑶𝟏𝟕  and 𝑭𝟏𝟕 under the MQHP in (RNC: 3D- 
RS) symmetries 

The results (26) can be rewritten in a more accessible physical form, and we replace both (L
→

Θ
→

 and L෨
→

Θ
→

 ) with (𝐋
→

𝐒
→

 and 𝐋ሚ
→

𝐒෨
→

), 
respectively, and then the two perturbative terms 𝛴௣௘௥௧

௤௛ ሺ𝑟ሻ and 𝛥௣௘௥௧
௤௛ ሺ𝑟ሻ for the spin (pseudo-spin) symmetry conditions, 

respectively, can be rewritten to the equivalent new form for MQHP as follows: 
 

൞
𝛴௣௘௥௧

௤௛ ሺ𝑟, 𝛩, 𝑎, 𝑏, 𝛼ሻ ൌ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅

௞ሺ௞ାଵሻ

௥ర ቃ 𝛩𝐋
→

. 𝐒
→

   for  spin symmetric case, 

𝛥௣௘௥௧
௤௛ ሺ𝑟, 𝛩, 𝑎, 𝑏, 𝛼ሻ ൌ ቂ൫𝑀 െ 𝐸௡௞

௣ ൅ 𝐶௣൯𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝛩𝐋ሚ
→

. 𝐒෩
→

    for  pseudo-spin symmetric case. 
      (35)
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Furthermore, the above perturbative terms  𝛴௣௘௥௧
௤௛ ሺ𝑟, 𝛩, 𝑎, 𝑏, 𝛼ሻ and 𝛥௣௘௥௧

௤௛ ሺ𝑟, 𝛩, 𝑎, 𝑏, 𝛼ሻ can be rewritten to the following new 
equivalent form: 

 

ቐ
𝛴௣௘௥௧

௤௛ ሺ𝑟, 𝛩, 𝑎, 𝑏, 𝛼ሻ ൌ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቃ 𝛩𝐺ଶ   for  spin symmetric case, 

𝛥௣௘௥௧
௤௛ ሺ𝑟, 𝛩, 𝑎, 𝑏, 𝛼ሻ ൌ ቂ൫𝑀 െ 𝐸௡௞

௣ ൅ 𝐶௣൯𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝛩𝐺෨ଶ    for  pseudo-spin symmetric case.
   (36)

 
with 

൞
Gଶ ൌ

ଵ

ଶ
ቀ J

→
ଶ െ L

→
ଶ െ S

→
ଶቁ

G෩ଶ ൌ ଵ

ଶ
൬ J

→
ଶ െ L෨

→
ଶ െ S෨

→
ଶ൰

                                                                          (37) 

 To the best of our knowledge, we just replaced the coupling spin-orbit (pseudo-spin-orbit) 𝐋
→

. 𝐒
→

 and 𝐋ሚ
→

. 𝐒෨
→

 with the two 

expressions 
ଵ

ଶ
ቀ J

→
ଶ െ L

→
ଶ െ S

→
ଶቁ and 

ଵ

ଶ
൬ J

→
ଶ െ L෨

→
ଶ െ S෨

→
ଶ൰, respectively. In relativistic quantum mechanics. The set 

(H୬ୡ
୯୦ሺpො୧, xො୧ሻ, J

→
ଶ, L

→
ଶ, L෨

→
ଶ, S

→
ଶ, S෨

→
ଶ and J୸ሻ forms a complete of conserved physics quantities, and the spin-orbit quantum 

number 𝑘 (𝑘෨) is related to the quantum numbers for spin symmetry 𝑙and pseudo-spin symmetry 𝑙ሚ as represented in Eqs. 

(11) and (12). In this case, we can form two diagonals ሺ3 ൈ 3ሻ matrixes 𝐻෡௦௢
௤௛ and 𝐻෩෡௦௢

௤௛, for MQHP, respectively, in 3D-
RNCS symmetries as: 

⎩
⎪⎪
⎨

⎪⎪
⎧൫𝐻෡௦௢

௤௛൯
ଵଵ

ሺ𝑘ଵሻ ൌ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቃ 𝑘ଵ𝛩  

for the states    ൫𝑠1/2, 𝑝ଷ/ଶ, 𝑒𝑡𝑐൯, 𝑗 ൌ 𝑙 ൅
ଵ

ଶ
, aligned spin ሺ𝑘⟨0ሻ

൫𝐻෡௦௢
௤௛൯

ଶଶ
ሺ𝑘ଶሻ ൌ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅
௞ሺ௞ାଵሻ

௥ర ቃ 𝑘ଶ𝛩 

for the states    ൫𝑝1/2, 𝑑ଷ/ଶ, 𝑒𝑡𝑐൯, 𝑗 ൌ 𝑙 െ ଵ

ଶ
, unaligned spin ሺ𝑘⟩0ሻ

                             (38) 

and 

⎩
⎪⎪
⎨

⎪⎪
⎧ቀ𝐻෩෡௦௢

௤௛ቁ
ଵଵ

൫𝑘෨ଵ൯ ൌ ቂ൫𝑀 െ 𝐸௡௞
௣ ൅ 𝐶௣൯𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝑘෨ଵ𝛩

for the states     ൫𝑠1/2, 𝑝ଷ/ଶ, 𝑒𝑡𝑐൯, 𝑗 ൌ 𝑙ሚ െ ଵ

ଶ
, aligned spin ሺ𝑘⟨0ሻ

ቀ𝐻෩෡௦௢
௤௛ቁ

ଶଶ
൫𝑘෨ଶ൯ ൌ ቂ൫𝑀 െ 𝐸௡௞

௣ ൅ 𝐶௣൯𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝑘෨ଶ𝛩 

for the states     ൫𝑝1/2, 𝑑ଷ/ଶ, 𝑒𝑡𝑐൯, 𝑗 ൌ 𝑙ሚ ൅ ଵ

ଶ
, unaligned spin ሺ𝑘⟩0ሻ

                            (39) 

while  ൫𝐻෡௦௢
௤௛൯

ଷଷ
ൌ ቀ𝐻෩෡௦௢

௤௛ቁ
ଷଷ

ൌ 0 in the two above cases. 

 
4.2.     The perturbed relativistic spin-orbit spectrum for mirror nucleus ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ  under MQHP in the presence 
of spin symmetry conditions in 3D-RNCS symmetries 

     In this subsection, we will study the modifications to the energy levels (𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ሻ ,𝐸௡௖

௣௘௥:ௗሺ𝛩, 𝑘ሻ 𝐸௡௖
௣௘௥:௨൫𝛩, 𝑘෨൯ and 

𝐸௡௖
௣௘௥:ௗ൫𝛩, 𝑘෨൯ for ( 𝑗 ൌ 𝑙 േ ଵ

ଶ
: spin-up/down for spin symmetry) and (𝑗 ൌ 𝑙ሚ േ ଵ

ଶ
: spin-up/down for pseudo-spin symmetry), 

at the first order of the infinitesimal parameter 𝛩, for ൫𝑛, 𝑗, 𝑙, 𝑙ሚ, 𝑠, 𝑠̃, 𝑚, 𝑚෥൯
௧௛

 excited states under the spin (pseudo-spin) 
symmetry conditions, created by the effect of the relativistic spin-orbit operator, obtained by applying the standard 
perturbation theory, using Eqs. (10) and (36) as: 

ቐ
𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵሻ ≡ 𝜃൫𝐸௡௖
௤௛൯𝑘ଵ𝛩 ׬ 𝐹௡௞

௦ ∗ሺ𝑟ሻ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቃ 𝐹௡௞
௦ ሺ𝑟ሻ𝑑𝑟

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶሻ ≡ 𝜃൫𝐸௡௖

௤௛൯𝑘ଶ𝛩 ׬ 𝐹௡௞
௦ ∗ሺ𝑟ሻ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅
௞ሺ௞ାଵሻ

௥ర ቃ 𝐹௡௞
௦ ሺ𝑟ሻ𝑑𝑟

          (40) 

and 

ቐ
𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵሻ ≡ 𝜃൫𝐸௡௖
௤௛൯𝑘෨ଵ𝛩 ׬ 𝐺௡௞

௦ ∗ሺ𝑟ሻ ቂ൫𝑀 ൅ 𝐸௡௞
௣ െ 𝐶௣൯𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝐹௡௞
௦ ሺ𝑟ሻ𝑑𝑟

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶሻ ≡ 𝜃൫𝐸௡௖

௤௛൯𝑘෨ଶ𝛩 ׬ 𝐺௡௞
௣ ∗

ሺ𝑟ሻ ቂ൫𝑀 ൅ 𝐸௡௞
௣ െ 𝐶௣൯𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝐺௡௞
௣ ሺ𝑟ሻ𝑑𝑟

        (41) 

 

It is necessary to apply the orthogonality property of spherical harmonics: 
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න 𝑌௟
௠ሺ𝜃, 𝜙ሻ𝑌௟ᇱ

௠ᇱሺ𝜃, 𝜙ሻ 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑𝜃𝑑𝜙 ൌ 𝛿௟௟ᇱ𝛿௠௠ᇱ 

To obtain the explicit expressions of modified energy eigenvalues (𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ଵሻ,𝐸௡௖

௣௘௥:ௗሺ𝛩, 𝑘ଶሻ) for the MDE with the 
MQHP model under spin symmetry conditions, we use Eqs. (15) and (40): 

𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ଵሻ ≡ 𝑁ଶ𝑘ଵ𝛩ሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ 

׬ 𝑟ሺଶඥఞబ೗ାଵ/ସାଵሻ 𝑒𝑥𝑝൫െ2ඥ𝜒ଶ௡𝑟൯ ൤𝐿௡
ଶඥఞబ೗ାଵ/ସ

ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ൨
ଶ

ቀ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቁ 𝑑𝑟
ାஶ

଴
           (42.1) 

and 

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶሻ ≡ 𝑁ଶ𝑘ଶ𝛩ሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ 

׬ 𝑟ሺଶඥఞబ೗ାଵ/ସାଵሻ 𝑒𝑥𝑝൫െ2ඥ𝜒ଶ௡𝑟൯ 𝐿௡
ଶඥఞబ೗ାଵ/ସ

ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ ቀ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅

௞ሺ௞ାଵሻ

௥ర ቁ 𝑑𝑟
ାஶ

଴
           (42.2) 

Now, we can rewrite the above equations to the simplified new form:  

𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ଵ, 𝑛, 𝑙, 𝑗ሻ ≡ 𝑘ଵ𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ ∑ 𝑅ఈሺ𝑛, 𝑙ሻସ

ఈୀଵ                                                (43.1) 

and 
                                         𝐸௡௖

௣௘௥:ௗሺ𝛩, 𝑘ଵ, 𝑛, 𝑙, 𝑗ሻ ≡ 𝑘ଶ𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ ∑ 𝑅ఈሺ𝑛, 𝑙ሻସ
ఈୀଵ                                               (43.2) 

The expressions of the 4-factors 𝑅௜൫𝑖 ൌ 1,4൯ are presented as follows: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝑅ଵሺ𝑛, 𝑙ሻ ൌ

ఈ௕

ଶ
׬ 𝑟ሺଶඥఞబ೗ାଵ/ସିଶሻ 𝑒𝑥𝑝൫െ൫2ඥ𝜒ଶ௡ ൅ 𝛼൯𝑟൯ ൤𝐿௡

ଶඥఞబ೗ାଵ/ସ
ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ൨

ଶ

𝑑𝑟
ାஶ

଴

𝑅ଶሺ𝑛, 𝑙ሻ ൌ 𝑏 ׬ 𝑟ሺଶඥఞబ೗ାଵ/ସିଷሻ 𝑒𝑥𝑝൫െ൫2ඥ𝜒ଶ௡ ൅ 𝛼൯𝑟൯ ൤𝐿௡
ଶඥఞబ೗ାଵ/ସ

ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ൨
ଶ

𝑑𝑟
ାஶ

଴

𝑅ଷሺ𝑛, 𝑙ሻ ൌ െ
௔

ଶ
׬ 𝑟ሺଶඥఞబ೗ାଵ/ସିଶሻ 𝑒𝑥𝑝൫െ2ඥ𝜒ଶ௡𝑟൯ ൤𝐿௡

ଶඥఞబ೗ାଵ/ସ
ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ൨

ଶ

𝑑𝑟
ାஶ

଴

𝑅ସሺ𝑛, 𝑙ሻ ൌ 𝑘ሺ𝑘 ൅ 1ሻ ׬ 𝑟ሺଶඥఞబ೗ାଵ/ସିଷሻ 𝑒𝑥𝑝൫െ2ඥ𝜒ଶ௡𝑟൯ ൤𝐿௡
ଶඥఞబ೗ାଵ/ସ

ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ൨
ଶ

𝑑𝑟
ାஶ

଴

               (44) 

It should be noted that the ground state of the nuclei ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ can be modeled as a doubly magic isotope ( 𝑂ଵ଻ ൌ
𝑛 ൅ ሺ𝑁 ൌ 𝑍 ൌ 8ሻ and 𝐹ଵ଻ ൌ 𝑝 ൅ ሺ𝑁 ൌ 𝑍 ൌ 8ሻ) with one additional nucleon (valence) in the 1𝑑ହ/ଶ level. If identified 
with the typical state 𝑛𝑌௝   [53], the  quantum numbers (𝑛 ൌ 1, 𝑌 ≡ 𝑑, 𝑗 ൌ 5/2 and 𝑙 ൌ 2). Besides 𝑘ሺ𝑘 െ 1ሻ ൌ 6, which 
gives 𝑘 ൌ 3.   We have : 

𝐿௡ୀଵ
ଶඥఞబమሺ,௞ୀଷሻାଵ/ସ

൬ቀ2 ൅ 2ඥ𝜒ଶଵሺ𝑘 ൌ 3ሻቁ𝑟൰ ൌ െ𝛺𝑟 ൅ 𝛬 

with  

𝜒ଶଵሺ𝑙 ൌ 2ሻ ൌ 𝑀ଶ െ 𝐸ଵଶ
ଶ

𝜒଴ଶሺ𝑘 ൌ 3ሻ ൌ 2𝑏𝛼 ൅ 12

𝛺 ൌ 2ቀ2 ൅ 2ඥ𝜒ଶଵሺ𝑘 ൌ 3ሻቁ

𝛬 ൌ 2ඥ𝜒଴ଶሺ𝑙 ൌ 2ሻ ൅ 1/4 ൅ 1⎭
⎪
⎬

⎪
⎫

, 

Which allows us to find the 4-factors 𝑅௜൫𝑖 ൌ 1,4൯ as follows: 

⎩
⎪
⎨

⎪
⎧𝑅ଵሺ1, 𝑙 ൌ 2ሻ ൌ ఈ௕

ଶ
׬ 𝑟ሺఋబమିଶሻ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଵ ൅ 𝛼ሻ𝑟ሻ ሾെ𝛺𝑟 ൅ 𝛬ሿଶ𝑑𝑟

ାஶ
଴

𝑅ଶሺ1, 𝑙 ൌ 2ሻ ൌ 𝑏 ׬ 𝑟ሺఋబమିଷሻ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଵ ൅ 𝛼ሻ𝑟ሻ ሾെ𝛺𝑟 ൅ 𝛬ሿଶ𝑑𝑟
ାஶ

଴

𝑅ଷሺ1, 𝑙 ൌ 2ሻ ൌ െ ௔

ଶ
׬ 𝑟ሺఋబమିଶሻ 𝑒𝑥𝑝ሺെ2√𝜒ଶଵ𝑟ሻ ሾെ𝛺𝑟 ൅ 𝛬ሿଶ𝑑𝑟

ାஶ
଴

𝑅ସሺ1, 𝑙 ൌ 2ሻ ൌ 12 ׬ 𝑟ሺఋబమିଷሻ 𝑒𝑥𝑝ሺെ2√𝜒ଶଵ𝑟ሻ ሾെ𝛺𝑟 ൅ 𝛬ሿଶ𝑑𝑟
ାஶ

଴

                                     (45)                    

Here 

𝛿଴ଶ ൌ 2ඥ𝜒଴ଶሺ𝑘 ൌ 3ሻ ൅ 1/4                                                                      (46) 
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 A direct simplification gives the 4-factors 𝑅௜ሺ1, 𝑙 ൌ 2ሻ ൫𝑖 ൌ 1,4൯ as follows: 

⎩
⎪
⎨

⎪
⎧𝑅ଵሺ1, 𝑙 ൌ 2ሻ ൌ ఈ௕

ଶ
׬ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଵ ൅ 𝛼ሻ𝑟ሻ ሺ𝛺ଶ𝑟ఋబమାଵିଵ ൅ 2𝛺𝛬𝑟ఋబమିଵ ൅ 𝛬ଶ𝑟ఋబమିଵିଵሻ𝑑𝑟

ାஶ
଴

𝑅ଶሺ1, 𝑙 ൌ 2ሻ ൌ 𝑏 ׬ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଵ ൅ 𝛼ሻ𝑟ሻ ሺ𝛺ଶ𝑟ఋబమିଵ ൅ 2𝛺𝛬𝑟ఋబమିଵିଵ ൅ 𝛬ଶ𝑟ఋబమିଶିଵሻ𝑑𝑟
ାஶ

଴

𝑅ଷሺ1, 𝑙 ൌ 2ሻ ൌ െ
௔

ଶ
׬ 𝑒𝑥𝑝ሺെ2√𝜒ଶଵ𝑟ሻ ሺ𝛺ଶ𝑟ఋబమାଵିଵ ൅ 2𝛺𝛬𝑟ఋబమିଵ ൅ 𝛬ଶ𝑟ఋబమିଵିଵሻ𝑑𝑟

ାஶ
଴

𝑅ସሺ1, 𝑙 ൌ 2ሻ ൌ 12 ׬ 𝑒𝑥𝑝ሺെ2√𝜒ଶଵ𝑟ሻ ሺ𝛺ଶ𝑟ఋబమିଵ ൅ 2𝛺𝛬𝑟ఋబమିଵିଵ ൅ 𝛬ଶ𝑟ఋబమିଶିଵሻ𝑑𝑟
ାஶ

଴

                (47) 

Utilizing the following particular integral is practical [54]: 

׬ 𝑧ఌିଵ 𝑒𝑥𝑝ሺെ𝛽𝑧ௗሻ 𝑑𝑧
ାஶ

଴
ൌ ఉషഄ/೏

ௗ
𝛤ሺ𝜀/𝑑ሻ                                                       (48)                    

Here 𝛤ሺ𝜀/𝑑ሻ is the Gamma function and (𝑅𝑒 𝛽⟩0 , 𝑅𝑒 𝜀⟩0, 𝑑⟩0).  Simple calculations can yield the following clear results:

⎩
⎪⎪
⎨

⎪⎪
⎧𝑅ଵሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻ ൌ ఈ௕

ଶ
ቀ𝛺ଶ𝛽ଵ

ିሺఋబమାଵሻ𝛤ሺ𝛿଴ଶ ൅ 1ሻ ൅ 2𝛺𝛬𝛽ଵ
ିఋబమ𝛤ሺ𝛿଴ଶሻ ൅ 𝛬ଶ𝛽ଵ

ିሺఋబమିଵሻ𝛤ሺ𝛿଴ଶ െ 1ሻቁ

𝑅ଶሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻ ൌ 𝑏 ቀ𝛺ଶ𝛽ଵ
ିఋబమ𝛤ሺ𝛿଴ଶሻ ൅ 2𝛺𝛬𝛽ଵ

ିሺఋబమିଵሻ𝛤ሺ𝛿଴ଶ െ 1ሻ ൅ 𝛬ଶ𝛽ଵ
ିሺఋబమିଶሻ𝛤ሺ𝛿଴ଶ െ 2ሻቁ

𝑅ଷሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻ ൌ െ ௔

ଶ
ቀ𝛺ଶ𝛽ଶ

ିሺఋబమାଵሻ𝛤ሺ𝛿଴ଶ ൅ 1ሻ ൅ 2𝛺𝛬𝛽ଶ
ିఋబమ𝛤ሺ𝛿଴ଶሻ ൅ 𝛬ଶ𝛽ଶ

ିሺఋబమିଵሻ𝛤ሺ𝛿଴ଶ െ 1ሻቁ

𝑅ସሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻ ൌ 12 ቀ𝛺ଶ𝛽ଶ
ିఋబమ𝛤ሺ𝛿଴ଶሻ ൅ 2𝛺𝛬𝛽ଶ

ିሺఋబమିଵሻ𝛤ሺ𝛿଴ଶ െ 1ሻ ൅ 𝛬ଶ𝛽ଶ
ିሺఋబమିଶሻ𝛤ሺ𝛿଴ଶ െ 2ሻቁ

             (49)

with 𝛽ଵ ൌ 2√𝜒ଶଵ ൅ 𝛼 and 𝛽ଶ ൌ 2√𝜒ଶଵ. This allows us to obtain the exact modifications 𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െ3,1, 𝑙 ൌ 2, 𝑗 ൌ

5/2ሻ  and 𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 2,1, 𝑙 ൌ 2, 𝑗 ൌ 5/2ሻ  of the ground state for the nuclei ሺ 𝑂ଵ଻  and 𝐹ଵ଻ ሻ with one additional 

nucleon (valence) in the 1𝑑ହ/ଶ level for spin symmetry conditions: 

ቊ
𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െ3,1, 𝑙 ൌ 2, 𝑗 ൌ 5/2ሻ ≡ െ3𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵଵሺ1, 𝑙 ൌ 2ሻ

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 2,1, 𝑙 ൌ 2, 𝑗 ൌ 5/2ሻ ≡ 2𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵଵሺ1, 𝑙 ൌ 2ሻ

                         (50) 

with 

𝑅ଵଵሺ1, 𝑙 ൌ 2ሻ ൌ ∑ 𝑅ఈሺ1, 𝑙 ൌ 2ሻସ
ఈୀଵ                                                     (51) 

The 2𝑆ଵ/ଶ level corresponds to the one additional nucleon (valence) containing the first excited state. Therefore, the 
additional nucleon or the single nucleon (neutron or proton) corresponds to the subatomic quantum numbers (𝑛 ൌ 2, 𝑌 ≡
𝑆, 𝑗 ൌ 1/2 and 𝑙 ൌ 0), then, to obtain the exact modifications 𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െ1,2, 𝑙 ൌ 0, 𝑗 ൌ 1/2ሻ  and 

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 0,2, 𝑙 ൌ 0, 𝑗 ൌ 1/2ሻ for the first excited state, we replace 𝐿௡

ଶඥఞబ೗ାଵ/ସ
ቀ൫2 ൅ 2ඥ𝜒ଶ௡൯𝑟ቁ in Eq. (44) by 

𝐿௡ୀଶ
ଶඥఞబబାଵ/ସ

൫ሺ2 ൅ 2√𝜒ଶଶሻ𝑟൯ ൌ ℎଵ𝑟ଶ ൅ ℎଶ𝑟 ൅ ℎଷ  with ℎଵ ൌ ଵ

ଶ
ሺ2 ൅ 2√𝜒ଶଶሻଶ, ℎଶ ൌ െ൫2ඥ𝜒଴଴ ൅ 1/4 ൅ 2൯ሺ2 ൅ 2√𝜒ଶଶሻ, 

ℎଷ ൌ
ଵ

ଶ
൫2ඥ𝜒଴଴ ൅ 1/4 ൅ 1൯൫2ඥ𝜒଴଴ ൅ 1/4 ൅ 2൯ while 𝜒଴଴ሺ𝑙 ൌ 0, 𝑘 ൌ 0ሻ ൌ 2𝑏𝛼  , or 𝜒଴଴ሺ𝑙 ൌ 0, 𝑘 ൌ 1ሻ ൌ 2𝑏𝛼 ൅ 2 and 

𝜒ଶଶሺ𝑙 ൌ 0ሻ ൌ 𝑀ଶ െ 𝐸ଶ଴
ଶ , we obtain the following results: 

ቊ
𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െ1,2, 𝑙 ൌ 0, 𝑗 ൌ 5/2ሻ ≡ െ𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵଶሺ2, 𝑙 ൌ 0ሻ

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 0,1, 𝑙 ൌ 2, 𝑗 ൌ 5/2ሻ ≡ 0

              (52) 

with 

𝑅ଵଶሺ2, 𝑙 ൌ 0ሻ ൌ ∑ 𝑅ఈሺ2, 𝑙 ൌ 0ሻସ
ఈୀଵ                                                         (53) 

We can express the 4-factors 𝑅ଵሺ2, 𝑙 ൌ 0ሻ, 𝑅ଶሺ2, 𝑙 ൌ 0ሻ, 𝑅ଷሺ2, 𝑙 ൌ 0ሻ and 𝑅ସሺ2, 𝑙 ൌ 0ሻ as follows: 

⎩
⎪
⎨

⎪
⎧𝑅ଵሺ2, 𝑙 ൌ 0ሻ ൌ ఈ௕

ଶ
׬ 𝑟ሺఋబబିଶሻ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଶ ൅ 𝛼ሻ𝑟ሻ ሺℎଵ𝑟ଶ ൅ ℎଶ𝑟 ൅ ℎଷሻଶ𝑑𝑟

ାஶ
଴

𝑅ଶሺ2, 𝑙 ൌ 0ሻ ൌ 𝑏 ׬ 𝑟ሺఋబబିଷሻ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଶ ൅ 𝛼ሻ𝑟ሻ ሺℎଵ𝑟ଶ ൅ ℎଶ𝑟 ൅ ℎଷሻଶ𝑑𝑟
ାஶ

଴

𝑅ଷሺ2, 𝑙 ൌ 0ሻ ൌ െ ௔

ଶ
׬ 𝑟ሺఋబబିଶሻ 𝑒𝑥𝑝ሺെ2√𝜒ଶଶ𝑟ሻ ሺℎଵ𝑟ଶ ൅ ℎଶ𝑟 ൅ ℎଷሻଶ𝑑𝑟

ାஶ
଴

𝑅ସሺ2, 𝑙 ൌ 0ሻ ൌ 2 ׬ 𝑟ሺఋబబିଶሻ 𝑒𝑥𝑝ሺെ2√𝜒ଶଶ𝑟ሻ ሺℎଵ𝑟ଶ ൅ ℎଶ𝑟 ൅ ℎଷሻଶ𝑑𝑟
ାஶ

଴

                         (54)

Here 𝛿଴଴ ൌ 2ට𝜒଴଴ ൅ ଵ

ସ
. A simple calculation gives the 4 െ factors 𝑅௜ሺ2, 𝑙 ൌ 0ሻ ൫𝑖 ൌ 1,4൯ as follows : 
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⎩
⎪
⎨

⎪
⎧𝑅ଵሺ2, 𝑙 ൌ 0ሻ ൌ ఈ௕

ଶ
׬ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଶ ൅ 𝛼ሻ𝑟ሻ ൫𝑧ଵ𝑟ఋబబାଷିଵ ൅ 𝑧ଶ𝑟ఋబబାଶିଵ ൅ 𝑧ଷ𝑟ఋబబାଵିଵ ൅ 𝑧ସ𝑟ఋబబିଵ ൅ 𝑧ହ𝑟ఋబబିଶ൯𝑑𝑟

ାஶ
଴

𝑅ଶሺ2, 𝑙 ൌ 0ሻ ൌ 𝑏 ׬ 𝑒𝑥𝑝ሺെሺ2√𝜒ଶଶ ൅ 𝛼ሻ𝑟ሻ ൫𝑧ଵ𝑟ఋబబାଶିଵ ൅ 𝑧ଶ𝑟ఋబబ ൅ 𝑧ଷ𝑟ఋబబିଵ ൅ 𝑧ସ𝑟ఋబబିଵିଵ ൅ 𝑧ହ𝑟ఋబబିଶିଵ൯𝑑𝑟
ାஶ

଴

𝑅ଷሺ2, 𝑙 ൌ 0ሻ ൌ െ
௔

ଶ
׬ 𝑒𝑥𝑝ሺെ2√𝜒ଶଶ𝑟ሻ ൫𝑧ଵ𝑟ఋబబାଷିଵ ൅ 𝑧ଶ𝑟ఋబబାଶିଵ ൅ 𝑧ଷ𝑟ఋబబାଵିଵ ൅ 𝑧ସ𝑟ఋబబିଵ ൅ 𝑧ହ𝑟ఋబబିଵିଵ൯𝑑𝑟

ାஶ
଴

𝑅ସሺ2, 𝑙 ൌ 0ሻ ൌ 2 ׬ 𝑒𝑥𝑝ሺെ2√𝜒ଶଶ𝑟ሻ ൫𝑧ଵ𝑟ఋబబାଷିଵ ൅ 𝑧ଶ𝑟ఋబబାଶିଵ ൅ 𝑧ଷ𝑟ఋబబାଵିଵ ൅ 𝑧ସ𝑟ఋబబିଵ ൅ 𝑧ହ𝑟ఋబబିଵିଵ൯𝑑𝑟
ାஶ

଴

 (55) 

with ሺ𝑔ଵ, 𝑔ଶ, 𝑔ଷ, 𝑔ସ, 𝑔ହሻ ൌ (ℎଵ
ଶ, 2ℎଵℎଶ, 2ℎଵℎଷ+ℎଶ

ଶ, 2ℎଷℎଶ, ℎଷ
ଶ). Applying the special integral from Eq. (48) allows it 

straightforward to obtain the four factors 𝑅ଵሺ2, 𝑙 ൌ 0ሻ, 𝑅ଶሺ2, 𝑙 ൌ 0ሻ, 𝑅ଷሺ2, 𝑙 ൌ 0ሻ and 𝑅ସሺ2, 𝑙 ൌ 0ሻ as follows:  

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝑅ଵሺ2, 𝑙 ൌ 0ሻ ൌ

ఈ௕

ଶ
ቊ

𝑔ଵ𝜆ଵ
ିሺఋబబାଷሻ𝛤ሺ𝛿଴଴ ൅ 3ሻ ൅ 𝑔ଶ𝜆ଵ

ିሺఋబబାଶሻ𝛤ሺ𝛿଴଴ ൅ 2ሻ ൅ 𝑔ଷ𝜆ଵ
ିሺఋబబାଵሻ𝛤ሺ𝛿଴଴ ൅ 1ሻ

൅𝑔ସ𝜆ଵ
ିఋబబ𝛤ሺ𝛿଴଴ሻ ൅ 𝑔ହ𝜆ଵ

ିሺఋబబାଷሻିଵ𝛤ሺ𝛿଴଴ െ 1ሻ
ቋ ,

𝑅ଶሺ2, 𝑙 ൌ 0ሻ ൌ 𝑏 ቊ
𝑔ଵ𝜆ଵ

ିሺఋబబାଶሻ𝛤ሺ𝛿଴଴ ൅ 2ሻ ൅ 𝑔ଶ𝜆ଵ
ିሺఋబబାଵሻ𝛤ሺ𝛿଴଴ ൅ 1ሻ ൅ 𝑔ଷ𝜆ଵ

ିఋబబ𝛤ሺ𝛿଴଴ሻ

൅𝑔ସ𝜆ଵ
ିሺఋబబିଵሻ𝛤ሺ𝛿଴଴ െ 1ሻ ൅ 𝑔ହ𝜆ଵ

ିሺఋబబିସሻ𝛤ሺ𝛿଴଴ െ 2ሻ
ቋ ,

𝑅ଷሺ2, 𝑙 ൌ 0ሻ ൌ െ ௔

ଶ
ቊ

𝑔ଵ𝜆ଶ
ିሺఋబబାଷሻ𝛤ሺ𝛿଴଴ ൅ 3ሻ ൅ 𝑔ଶ𝜆ଶ

ିሺఋబబାଶሻ𝛤ሺ𝛿଴଴ ൅ 2ሻ ൅ 𝑔ଷ𝜆ଶ
ିሺఋబబାଵሻ𝛤ሺ𝛿଴଴ ൅ 1ሻ

൅𝑔ସ𝜆ଶ
ିఋబబ𝛤ሺ𝛿଴଴ሻ ൅ 𝑔ହ𝜆ଶ

ିሺఋబబିଵሻ𝛤ሺ𝛿଴଴ െ 1ሻ
ቋ ,

𝑅ସሺ2, 𝑙 ൌ 0ሻ ൌ 2 ቊ
𝑔ଵ𝜆ଶ

ିሺఋబబାଷሻ𝛤ሺ𝛿଴଴ ൅ 3ሻ ൅ 𝑔ଶ𝜆ଶ
ିሺఋబబାଶሻ𝛤ሺ𝛿଴଴ ൅ 2ሻ ൅ 𝑔ଷ𝜆ଶ

ିሺఋబబାଵሻ𝛤ሺ𝛿଴଴ ൅ 1ሻ

൅𝑔ସ𝜆ଶ
ିఋబబ𝛤ሺ𝛿଴଴ሻ ൅ 𝑔ହ𝜆ଶ

ିሺఋబబିଵሻ𝛤ሺ𝛿଴଴ െ 1ሻ
ቋ .

          (56) 

with 𝜆ଵ ൌ 2√𝜒ଶଶ ൅ 𝛼 and 𝜆ଶ ൌ 2√𝜒ଶଶ. The second excited state corresponds to the nuclei 𝑂ଵ଻  and 𝐹ଵ଻ with an additional 
nucleon (valence) in the 1𝑑ଷ/ଶ level, thus, the additional nucleon or the single nucleon (neutron or proton) corresponds 

to subatomic quantum numbers (𝑛 ൌ 1, 𝑌 ≡ 𝑑, 𝑗 ൌ 3/2 and 𝑙 ൌ 1), we replace 𝐿௡
ଶඥఞబ೗ାଵ/ସ

ቀ൫2 ൅ 2ඥ𝜒ଶ௡ሺ𝑙ሻ൯𝑟ቁ in Eq. 

(44) by 𝐿௡ୀଵ
ଶඥఞబభሺ௞ୀଶሻାଵ/ସ

൬ቀ2 ൅ 2ඥ𝜒ଶଵሺ𝑙 ൌ 1ሻቁ𝑟൰ ൌ 𝛺ଶ𝑟 ൅ 𝛬ଶ, with  𝛺ଶ ൌ ቀ2 ൅ 2ඥ𝜒ଶଵሺ𝑙 ൌ 1ሻቁ,  𝛬ଶ ൌ

2ඥ𝜒଴ଵሺ𝑘 ൌ 2ሻ ൅ 1/4 ൅ 1, 𝜒଴ଵሺ𝑘 ൌ 2ሻ ൌ 2𝑏𝛼 ൅ 6 and 𝜒ଶଵሺ𝑙 ൌ 1ሻ ൌ 𝑀ଶ െ 𝐸ଵଵ
ଶ, then, the exact modifications of the 

energy levels  𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െ2, 𝑛 ൌ 1, 𝑙 ൌ 1, 𝑗 ൌ 3/2ሻ  and 𝐸௡௖

௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 1, 𝑛 ൌ 1, 𝑙 ൌ 1, 𝑗 ൌ 5/2ሻ are given by: 

ቊ
𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െ2,1, 𝑙 ൌ 1, 𝑗 ൌ 3/2ሻ ≡ െ2𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵଵሺ1, 𝑙 ൌ 1ሻ

𝐸௡௖
௣௘௥:௨ௗሺ𝛩, 𝑘ଶ ൌ 1,1, 𝑙 ൌ 1, 𝑗 ൌ 5/2ሻ ≡ 𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵଵሺ1, 𝑙 ൌ 1ሻ

                     (57) 

with 𝑅ଵଵሺ𝑛 ൌ 1, 𝑙 ൌ 1ሻ ൌ 𝑅ଵଵሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻሺ𝛺 → 𝛺ଶ  and  Λ → Λଶሻ. Now, the ሺ𝑛, 𝑘, 𝑗, 𝑙ሻ௧௛ excited states of the nuclei 
( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ with one additional nucleon (valence) in the 𝑛𝑌௝ level, under the MQHP model under spin symmetry 
conditions, in global quantum group symmetry 3D-RNCS is given by: 

ቊ
𝐸௡௖

௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െሺ𝑙 ൅ 1ሻ, 𝑛, 𝑙, 𝑗ሻ ≡ െሺ𝑙 ൅ 1ሻ𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵ௡ሺ𝑛, 𝑙ሻ

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 𝑙, 𝑛, 𝑙, 𝑗ሻ ≡ 𝑙𝛩𝑁ଶሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑅ଵ௡ሺ𝑛, 𝑙ሻ

                           (58) 

with 

𝑅ଵ௡ሺ𝑛, 𝑙ሻ ൌ ∑ 𝑅ఈሺ𝑛, 𝑙ሻସ
ఈୀଵ                                                                   (59) 

4.3 The perturbed relativistic spin-orbit spectrum for mirror nucleus ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻunder the MQHP model in the 
presence of the pseudo-spin symmetry conditions in 3D-RNCS symmetries 

 
     In this subsection, in the case of deformation Dirac theory symmetries, we find the energy levels  
𝐸௡௖

௣௘௥:ௗ𝑢൫𝛩, 𝑘෨ଵ ൌ െ𝑙ሚ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ ൅ 1/2൯ and 𝐸௡௖
௣௘௥:ௗ൫𝛩, 𝑘ଶ ൌ െሺ𝑙ሚ ൅ 1ሻ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ െ 1/2൯ which produced by the relativistic 

pseudo (spin-orbit) effect under the pseudo-spin symmetry conditions can be determined by applying the same procedures 
as before, and to avoid repetition, we make the following steps: 

൜𝑁෩ ↔ 𝑁, 𝑘ଵ → 𝑘෨ଵ, 𝑘ଶ → 𝑘෨ଶ 
𝑘ሺ𝑘 ൅ 1ሻ ↔ 𝑘ሺ𝑘 െ 1ሻ

                                                           (60)                    

Allow us to obtain (𝐸௡௖
௣௘௥:௨൫𝛩, 𝑘෨ଵ ൌ െ𝑙ሚ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ ൅ 1/2൯, 𝐸௡௖

௣௘௥:ௗ൫𝛩, 𝑘ଶ ൌ െሺ𝑙ሚ ൅ 1ሻ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ െ 1/2൯) as follows, 
respectively: 

ቊ
𝐸௡௖

௣௘௥:௨൫𝛩, 𝑘෨ଵ ൌ െ𝑙ሚ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ ൅ 1/2൯ ≡ െ𝑙ሚ𝛩𝑁௣ଶ൫𝑀 െ 𝐸௡௞
௣ ൅ 𝐶௣൯𝑅ଵ௡൫𝑛, 𝑙ሚ൯

𝐸௡௖
௣௘௥:ௗ൫𝛩, 𝑘ଶ ൌ െሺ𝑙ሚ ൅ 1ሻ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ െ 1/2൯ ≡ െሺ𝑙ሚ ൅ 1ሻ𝛩𝑁௣ଶ൫𝑀 െ 𝐸௡௞

௣ ൅ 𝐶௣൯𝑅ଵ௡൫𝑛, 𝑙ሚ൯
               (61) 

4.4 The perturbed relativistic magnetic spectrum for mirror nucleus ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ under the MQHP model in the 
presence of spin (pseudo-spin) symmetry conditions in 3D-RNCS symmetries 
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      Having obtained the exact modifications of the energy levels (𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘ଵ ൌ െሺ𝑙 ൅ 1ሻ, 𝑛, 𝑙, 𝑗 ൌ 𝑙 ൅ 1/

2ሻand𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘ଶ ൌ 𝑙, 𝑛, 𝑙, 𝑗 ൌ 𝑙 െ 1/2ሻ), (𝐸௡௖

௣௘௥:௨൫𝛩, 𝑘෨ଵ ൌ െ𝑙ሚ, 𝑛, 𝑙ሚ, 𝑗 ൌ 𝑙ሚ ൅ 1/2൯ and 𝐸௡௖
௣௘௥:ௗ൫𝛩, 𝑘ଶ ൌ െሺ𝑙ሚ ൅ 1ሻ, 𝑛, 𝑙ሚ, 𝑗 ൌ

𝑙ሚ െ 1/2൯)  under the spin /(pseudo) symmetry conditions, respectively, for the nuclei ሺ 𝑂ଵ଻  and 𝐹ଵ଻ ሻ with one additional 
nucleon (valence) in the 1𝑑ହ/ଶ level (the subatomic quantum numbers are 𝑛 ൌ 1, 𝑌 ≡ 𝑑, 𝑗 ൌ 5/2 and 𝑙 ൌ 2, 𝑚 ൌ

െ2, ൅2). The first excited state 2𝑆ଵ/ଶ (the subatomic quantum numbers are 𝑛 ൌ 2, 𝑌 ≡ 𝑆, 𝑗 ൌ 5/2 and 𝑙 ൌ 0, 𝑚 ൌ 0). 
The second excited state 1𝑑ଷ/ଶ (the subatomic quantum numbers are 𝑛 ൌ 1, 𝑌 ≡ 𝑑, 𝑗 ൌ 3/2 and 𝑙 ൌ 1, 𝑚 ൌ 0, േ1). In 

addition to the generalized ൫𝑛, 𝑗, 𝑙, 𝑙ሚ, 𝑠, 𝑠̃, 𝑚, 𝑚෥൯
௧௛

 excited states 𝑛𝑋௝ (the subatomic quantum numbers are 𝑛,𝑗, 𝑙 and 𝑚 ൌ

െ𝑙, ൅𝑙), which are produced by the effect of the NC spin-orbit Hamiltonian operator. We are now considering another 
interesting physically meaningful phenomenon, which is also produced from the perturbative terms of the MQHP model 
related to the influence of an external uniform magnetic field (𝛩 → 𝜒𝐵); it is sufficient to apply the following two 
replacements to describe these phenomena: 

൤ሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅

𝑘ሺ𝑘 ൅ 1ሻ
𝑟ସ ൨ 𝐋.

→
𝚯
→

→ 

𝜒 ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅

௞ሺ௞ାଵሻ

௥ర ቃ 𝐁.
→

𝐋
→

     for   spin symmetry                                    (62) 

 
and 

൤൫𝑀 െ 𝐸௡௞
௣ ൅ 𝐶௣൯𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅
𝑘ሺ𝑘 െ 1ሻ

𝑟ସ ൨ 𝐋ሚ
→

. 𝚯
→

→ 

𝜒 ቂ൫𝑀 െ 𝐸௡௞
௣ ൅ 𝐶௣൯𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ 𝐁.
→

𝐋ሚ
→

     for p- spin symmetry                          (63)

Here 𝜒 is an infinitesimal real proportional constant, and we choose the magnetic field 𝐵
→

ൌ 𝐵𝑘
→

, which allows us to 
introduce the modified new magnetic Hamiltonian 𝐻෡௠

௤௛ሺ𝑟, 𝑎, 𝑏, 𝛼, 𝜒ሻ in 3D-RNCS symmetries as:  
 

𝐻෡௠
௤௛ሺ𝑟, 𝑎, 𝑏, 𝛼, 𝜒ሻ ൌ 𝜒

⎩
⎪
⎨

⎪
⎧ ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቃ ቀ𝐵
→

𝐽
→

െ 𝐵
→

 Sሬ⃗ ቁ for spin symmetry  
  

ቂ൫𝑀 െ 𝐸௡௞
௣ ൅ 𝐶௣൯𝑉௤௛

௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ ൬𝐵
→

𝐽
→

െ 𝐵
→

𝑆ሚ
→

൰  for  pseudo-spin symmetry  
    

       (64)

Here ሺ𝐁.
→

𝐒
→

 and 𝐁.
→

𝐒෨
→

ሻ are present the new Zeeman effect and the pseudo-Zeeman effect in 3D-RNCS symmetries. To 

obtain exact contributions of the  magnetic modifications of energy levels  𝐸mag
qh ሺ𝜒, 𝑛, 𝑚, , 𝑎, 𝑏, 𝛼ሻ

 
 and  

𝐸mag
qh ሺ𝜒, 𝑛, 𝑚෥, 𝑎, 𝑏, 𝛼ሻ

 
for the MQHP model under the spin (pseudo-spin) symmetry conditions, respectively, which are 

produced automatically by the effect of  𝐻෡௠
௤௛ሺ𝑟, 𝑎, 𝑏, 𝛼, 𝜒ሻ, we make the following two simultaneous replacements: 

 
𝑘෨ଵ → 𝑚෥     , 𝑘ଵ → 𝑚    and       Θ → 𝜒 B                                                       (65) 

                                              

Thus, the relativistic magnetic modifications ሺ𝐸௠௔௚
௤௛ ൫𝜒, 𝑛 ൌ 1, 𝑙 ൌ 2, 𝑗 ൌ 5/2, ሺ𝑚 ൌ േ2,0, േ1ሻ൯ , 𝐸௠௔௚

௤௛ ቀ𝜒, 𝑛 ൌ 1, 𝑙ሚ ൌ

2, 𝑗 ൌ 5/2, ሺ𝑚෥ ൌ േ2,0, േ1ሻቁሻ, ሺ𝐸௠௔௚
௤௛ ሺ𝜒, 𝑛 ൌ 1, 𝑙 ൌ 0, 𝑗 ൌ 1/2, 𝑚 ൌ 0ሻ, 𝐸௠௔௚

௤௛ ൫𝜒, 𝑛 ൌ 1, 𝑙ሚ ൌ 0, 𝑗 ൌ 1/2, 𝑚෥ ൌ 0൯ሻ, 

ሺ𝐸௠௔௚
௤௛ ൬𝜒, 𝑛 ൌ 1, 𝑙 ൌ 1, 𝑗 ൌ ଷ

ଶ
, ሺ𝑚 ൌ 0, േ1ሻ൰,   𝐸௠௔௚

௤௛ ൬𝜒, 𝑛 ൌ 1, 𝑙ሚ ൌ 1, 𝑗 ൌ ଷ

ଶ
, ሺ𝑚෥ ൌ 0, േ1ሻ൰ሻ and 

ሺ𝐸mag
qh ሺ𝜒, 𝑛, 𝑗, 𝑙, 𝑚, 𝑎, 𝑏, 𝛼ሻ,   𝐸mag

qh ൫𝜒, 𝑛, 𝑗, 𝑙ሚ, 𝑚෥, 𝑎, 𝑏, 𝛼൯ሻ   corresponding ሺ1𝑑ହ/ଶ, 1𝑠ଵ/ଶ, 1𝑑ଵ/ଶ and 𝑛𝑌௝ሻ in 3D-RNCS 
symmetries, respectively,  can be determined from the following relations: 

1𝑑ହ/ଶ →

൝
𝐸௠௔௚

௤௛ ൫𝜒, 𝑛 ൌ 1, 𝑙 ൌ 2, 𝑗 ൌ 5/2, ሺ𝑚 ൌ േ2,0, േ1ሻ൯ ≡ 𝜒𝑁ଶ𝑅ଵଵሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻ𝐵𝑚  for spin  symmetry 

𝐸௠௔௚
௤௛ ቀ𝜒, 𝑛 ൌ 1, 𝑙ሚ ൌ 2, 𝑗 ൌ 5/2, ሺ𝑚෥ ൌ േ2,0, േ1ሻቁ ≡ 𝜒𝑁௣ଶ𝑅ଵଵሺ𝑛 ൌ 1, 𝑙 ൌ 2ሻ𝐵𝑚෥    for pseudo-spin  symmetry 

                 

(66)  

1𝑠ଵ/ଶ → ൝
𝐸௠௔௚

௤௛ ሺ𝜒, 𝑛 ൌ 1, 𝑙 ൌ 0, 𝑗 ൌ 1/2, 𝑚 ൌ 0ሻ ≡ 0    for spin  symmetry 

𝐸௠௔௚
௤௛ ൫𝜒, 𝑛 ൌ 1, 𝑙ሚ ൌ 0, 𝑗 ൌ 1/2, 𝑚෥ ൌ 0൯ ≡ 0    for pseudo-spin  symmetry 

                                     (67) 
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1𝑑ଵ/ଶ → ൝
𝐸௠௔௚

௤௛ ൫𝜒, 𝑛 ൌ 1, 𝑙 ൌ 1, 𝑗 ൌ 3/2, ሺ𝑚 ൌ 0, േ1ሻ൯ ≡ 𝜒𝑁ଶ𝑅ଵଵሺ𝑛 ൌ 1, 𝑙 ൌ 1ሻBm   for spin  symmetry 

𝐸௠௔௚
௤௛ ቀ𝜒, 𝑛 ൌ 1, 𝑙ሚ ൌ 1, 𝑗 ൌ 3/2, ሺ𝑚෥ ൌ 0, േ1ሻቁ ≡ 𝜒𝑁௣ଶ𝑅ଵଵሺ𝑛 ൌ 1, 𝑙 ൌ 1ሻBm෥    for pseudo-spin  symmetry 

     

(68) 
and 

𝑛𝑌௝ → ൝
𝐸mag

qh ሺ𝜒, 𝑛, 𝑗, 𝑙, 𝑚, 𝑎, 𝑏, 𝛼ሻ ൌ 𝜒𝑁ଶ𝑅ଵ௡ሺ𝑛, 𝑙ሻ𝐵𝑚   for spin  symmetry 

𝐸mag
qh ൫𝜒, 𝑛, 𝑗, 𝑙ሚ, 𝑚෥, 𝑎, 𝑏, 𝛼൯ ൌ 𝑁௣ଶ𝑅ଵ௡൫𝑛, 𝑙ሚ൯𝐵𝑚෥    for  pseudo-spin symmetry 

                                          (69) 

 
where  𝑚෥  and 𝑚 are the angular momentum quantum numbers ሺെ𝑙ሚ ൑ 𝑚෥ ൑ ൅𝑙ሚ and െ𝑙 ൑ 𝑚 ൑ ൅𝑙ሻ, which

 
allow us to fix 

(2𝑙ሚ ൅ 1) and ሺ2𝑙 ൅ 1ሻ values of  𝐸mag
qh ൫𝜒, 𝑛, 𝑗, 𝑙ሚ, 𝑚෥, 𝑎, 𝑏, 𝛼൯ and 𝐸mag

qh ሺ𝜒, 𝑛, 𝑗, 𝑙, 𝑚, 𝑎, 𝑏, 𝛼ሻ under pseudo-spin (spin) 
symmetry conditions, respectively.  

 
5.     The perturbed modified global spectrum for the mirror nucleus ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ under the MQHP model in 

the presence of spin and (pseudo-spin) symmetry conditions in 3D-RNCS symmetries 
 

  In the previous sub-sections, we have obtained the solutions of the MDE for the nuclei ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ  with one additional 
nucleon (valence) in the ground state 1𝑑ହ/ଶ, the first excited state 2𝑆ଵ/ଶ, the second excited state 1𝑑ଷ/ଶ, and the 

generalized ൫𝑛, 𝑙, 𝑙ሚ, 𝑚, 𝑚෥൯
௧௛

 excited states 𝑛𝑋௝ under the MQHP model using Bopp's shift method and standard 
perturbation theory. The energy eigenvalues were calculated in 3D-RNCS symmetries, under-spin (and pseudo-spin) 
symmetry conditions for two perturbed principal physics interesting phenomena corresponding to the perturbed spin-orbit 
interaction and modified Zeeman effect. Now, we will use the physical superposition principle to find the corrective total 
energy resulting from the topological effects of space, which correspond to the previously nominated excited states (the 
ground state 1𝑑ହ/ଶ, the first excited state 2𝑆ଵ/ଶ) based on our original results presented in Eqs. ((50), (52),  (57),  (58)) 
and Eqs. ((66), (67), (68), (69)), in addition to ordinary energies 𝐸௡௟ and 𝐸௡௟ሚ

௣  for quadratic Hellmann potential, which is 
presented in Eqs. (17) and (18) for spin and pseudo-spin symmetry in three-dimensional relativistic quantum mechanics 
symmetries.  

5.1 The corrective total energy resulting from the topological effects of space for spin symmetry: 

     For spin symmetry, the modified relativistic eigenenergies ൫𝐸nc 
௨௤௛, 𝐸nc 

ௗ௤௛൯ሺ𝑛 ൌ 1, ሺ𝑚 ൌ 0, േ1, േ2ሻ, 𝑗 ൌ 5/2, 𝑙 ൌ
2ሻ,൫𝐸nc 

௨௤௛, 𝐸nc 
ௗ௤௛൯ሺ𝑛 ൌ 2, ሺ𝑚 ൌ 0ሻ, 𝑗 ൌ 1/2, 𝑙 ൌ 0ሻ,  ൫𝐸nc 

௨௤௛, 𝐸nc 
ௗ௤௛൯ሺ𝑛 ൌ 1, ሺ𝑚 ൌ 0, േ1ሻ, 𝑗 ൌ 3/2, 𝑙 ൌ 1ሻ and 

൫𝐸nc 
௨௤௛, 𝐸nc 

ௗ௤௛൯൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ with spin-1/2 for single nucleon are obtained in this paper based on our original 
results presented in previously mentioned equations as follows: 

1𝑑ହ/ଶ → ቊ
𝐸nc 

௨௤௛൫1, ൫𝑚 ൌ െ2, ൅2൯, 𝑗 ൌ 5/2, 𝑙 ൌ 2൯ ൌ 𝐸ଵଶ ൅ 𝑁ଶሺെ3𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵଵሺ1, 𝑙 ൌ 2ሻ

𝐸nc 
ௗ௤௛൫1, ൫𝑚 ൌ െ2, ൅2൯, 𝑗 ൌ 5/2, 𝑙 ൌ 2൯ ൌ 𝐸ଵଶ ൅ 𝑁ଶሺ2𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵଵሺ1, 𝑙 ൌ 2ሻ

                            (70) 

1𝑠ଵ/ଶ → ቊ
𝐸nc 

௨௤௛ሺ2, ሺ𝑚 ൌ 0ሻ, 𝑗 ൌ 1/2, 𝑙 ൌ 0ሻ ൌ 𝐸ଶ଴ െ 𝛩𝑁ଶ𝑅ଵଶሺ2, 𝑙 ൌ 0ሻ

𝐸nc 
௨௤௛ሺ2, ሺ𝑚 ൌ 0ሻ, 𝑗 ൌ 1/2, 𝑙 ൌ 0ሻ ൌ 𝐸ଶ଴

                                                      (71) 

1𝑑ଵ/ଶ → ቊ
𝐸nc 

௨௤௛ሺ1, ሺ𝑚 ൌ 0, േ1ሻ, 𝑗 ൌ 3/2, 𝑙 ൌ 1ሻ ൌ 𝐸ଵଵ ൅ 𝑁ଶሺെ2𝜃𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵଵሺ1, 𝑙 ൌ 1ሻ

𝐸nc 
ௗ௤௛ሺ1, ሺ𝑚 ൌ 0, േ1ሻ, 𝑗 ൌ 3/2, 𝑙 ൌ 1ሻ ൌ 𝐸ଵଵ ൅ 𝑁ଶሺ𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵଵሺ1, 𝑙 ൌ 1ሻ

                        (72) 

 
and

𝑛𝑌௝ → ൝
𝐸௡௖

௨௤௛൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൌ 𝐸௡௟ ൅ 𝑁ଶሺെሺ𝑙 ൅ 1ሻ𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵ௡ሺ𝑛, 𝑙ሻ

𝐸௡௖
ௗ௤௛൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൌ 𝐸௡௟ ൅ 𝑁ଶሺ𝑙𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵ௡ሺ𝑛, 𝑙ሻ

                                     (73)

where 𝐸ଵଶሺ𝑘 ൌ 0ሻ, 𝐸ଶ଴ሺ𝑘 ൌ 2ሻ and 𝐸ଵଵሺ𝑘 ൌ 2ሻ are the energy of the ground state 1𝑑ହ/ଶ, the first excited state 2𝑆ଵ/ଶ, the 
second excited state 1𝑑ଷ/ଶ for mirror nuclei 𝑂ଵ଻  and 𝐹ଵ଻  in the symmetries of relativistic quantum mechanics under 
quadratic Hellmann potential, which are determined from the following equations: 

3ඥ𝑀ଶ െ 𝐸ଵଶ
ଶ െ 2ሺ𝐸ଵଶ ൅ 𝑀ሻሺ𝑎 ൅ 2𝑏𝛼ሻ ൅ 2ඥሺ𝑀ଶ െ 𝐸ଵଶ

ଶ ሻሺ2𝑏ሺ𝐸ଵଶ ൅ 𝑀ሻ ൅ 1/4ሻ ൌ 0                     (74) 

5ඥ𝑀ଶ െ 𝐸ଶ଴
ଶ െ 2ሺ𝐸ଶ଴ ൅ 𝑀ሻሺ𝑎 ൅ 2𝑏𝛼ሻ ൅ 2ඥሺ𝑀ଶ െ 𝐸௡௟

ଶ ሻሺ6 ൅ 2𝑏ሺ𝐸ଶ଴ ൅ 𝑀ሻ ൅ 1/4ሻ ൌ 0                     (75) 

5ඥ𝑀ଶ െ 𝐸ଵଵ
ଶ െ 2ሺ𝐸ଵଵ ൅ 𝑀ሻሺ𝑎 ൅ 2𝑏𝛼ሻ ൅ 2ඥሺ𝑀ଶ െ 𝐸ଵଵ

ଶ ሻሺ6 ൅ 2𝑏ሺ𝐸௡௟ ൅ 𝑀ሻ ൅ 1/4ሻ ൌ 0                     (76) 
 

5.1 The corrective total energy resulting from the topological effects of space for pseudo-spin symmetry: 
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For the case of pseudo-spin symmetry, the modified relativistic eigenenergies of the single nucleon (neutron or proton)  

𝐸nc 
௨௤௛ ቀ𝑛, ቀ𝑚෥ ൌ െ𝑙ሚ, ൅𝑙ሚቁ , 𝑗, 𝑙ሚቁ and 𝐸nc 

ௗ௤௛ ቀ𝑛, ቀ𝑚 ൌ െ𝑙ሚ, ൅𝑙ሚቁ , 𝑗, 𝑙ቁ which correspond to the up and down polarities for the 

generalized ൫𝑛, 𝑗, 𝑘, 𝑙ሚ, 𝑚෥൯
௧௛

 excited states 𝑛𝑋௝ under the MQHP model in 3D-RNCS symmetries: 

𝑛𝑌௝ → ቐ
𝐸nc 

௨௤௛ ቀ𝑛, ቀ𝑚෥ ൌ െ𝑙ሚ, ൅𝑙ሚቁ , 𝑗, 𝑙ሚቁ ൌ 𝐸௡௟ሚ
௣ ൅ 𝑁௣ଶ൫െ𝑙ሚ𝛩 ൅ 𝜒𝐵𝑚෥൯𝑅ଵ௡൫𝑛, 𝑙ሚ൯

𝐸nc 
ௗ௤௛ ቀ𝑛, ቀ𝑚 ൌ െ𝑙ሚ, ൅𝑙ሚቁ , 𝑗, 𝑙ቁ ൌ 𝐸௡௟ሚ

௣ ൅ 𝑁௣ଶ൫ሺ𝑙ሚ ൅ 1ሻ𝛩 ൅ 𝜒𝐵𝑚෥൯𝑅ଵ௡൫𝑛, 𝑙ሚ൯
                             (77) 

Now, it is crucial to construct the Hamiltonian operator 𝐻෡௡௖
௤௛ for the MQHP model based on previously obtained results. 

Naturally, the first term in the modified Hamiltonian operator represents the kinetic energy and the potential energy in 
the ordinary commutative space 𝐻෡௤ℎ of the nuclei ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ  which is presented by Eq. (19). The second term 

𝐻෡௦௢
௤௛ሺ𝑘ଵ, 𝑘ଶሻ or 𝐻෩෡௦௢

௤௛൫𝑘෨ଵ, 𝑘෨ଶ൯ represents, the induced spin-orbit parts for the pseudo-spin symmetry conditions and spin 

symmetry, and the last term is the modified new magnetic Hamiltonian 𝐻෡௠௔௚
௤௛ ሺ𝑟, 𝑎, 𝑏, 𝛼, 𝜒ሻ (see Eq. (64)). Thus, we have 

obtained the global new Hamiltonian operator 𝐻෡௡௖
௤௛ in 3D-RNCS symmetries as follows: 

 

𝐻෡௡௖
௤௛ ൌ 𝐻෡௤௛ ൅

⎩
⎪
⎨

⎪
⎧𝐻෡௦௢

௤௛ሺ𝑘ଵ, 𝑘ଶሻ ൅ 𝜒 ቂሺ𝑀 ൅ 𝐸௡௞ െ 𝐶௦ሻ𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ାଵሻ

௥ర ቃ ቀ𝐁
→

𝐉
→

െ 𝐁
→

𝐒
→

ቁ for  spin symmetry 
  

𝐻෩෡௦௢
௤௛൫𝑘෨ଵ, 𝑘෨ଶ൯ ൅ 𝜒 ቂ൫𝑀 െ 𝐸௡௞

௣ ൅ 𝐶௣൯𝑉௤௛
௜௡ௗሺ𝑟, 𝑎, 𝑏, 𝛼ሻ ൅ ௞ሺ௞ିଵሻ

௥ర ቃ ൬𝐁
→

𝐉
→

െ 𝐁
→

𝐒෨
→

൰ for  pseudo-spin symmetry 
   

                   

(78)                    

       This way, we can obtain the complete energy spectra for the MQHP model in 3D-RNCS  symmetries. Now, the 
following accompanying constraint relations are given: 

 The original spectrum contains only one value of energy in ordinary three-dimensional spaces, which Eqs. (17) and 
(18) present, 

 As mentioned in the previous subsection, the quantum numbers 𝑚 and 𝑚෥  satisfied the two intervals: െ𝑙 ൑ 𝑚 ൑ ൅𝑙 
and െ𝑙ሚ ൑ 𝑚෥ ൑ ൅𝑙ሚ, thus we have ሺ2𝑙 ൅ 1ሻ  and (2𝑙ሚ ൅ 1)  values, respectively,  

 We also have two polarities corresponding to the values  (𝑗 ൌ 𝑙 ൅ ଵ

ଶ
 and 𝑗 ൌ 𝑙 െ ଵ

ଶ
) and (𝑗 ൌ 𝑙ሚ ൅ ଵ

ଶ
 and 𝑗 ൌ 𝑙ሚ െ ଵ

ଶ
) for 

spin and (pseudo-spin) symmetry conditions. This allows us to deduce the important original results: Every state in usually 
3-dimensional spaces will be replaced by 2ሺ2𝑙 ൅ 1ሻ and 2൫2𝑙ሚ ൅ 1൯sub-states. Then, the degenerated states for mirror 
nuclei ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ  changed to the new values: 

⎩
⎨

⎧
∑ ሺ2𝑙 ൅ 1ሻ௡ିଵ

௟ୀ଴ ൌ 𝑛ଶᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
3D-RQM

→ 2 ∑ ሺ2𝑙 ൅ 1ሻ௡ିଵ
௟ୀ଴ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
3D-RNCS

≡ 2𝑛ଶ

∑ ൫2𝑙ሚ ൅ 1൯௡ିଵ
௟ሚୀ଴ ൌ 𝑛ଶᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

3D-RQM

→ 2 ∑ ൫2𝑙ሚ ൅ 1൯௡ିଵ
௟ሚୀ଴ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
3D-RNCS

≡ 2𝑛ଶ                                                  (79) 

in 3D-RNCS symmetries. Finally, we resume our original results in this article; the first is the induced spin (pseudo-spin)-

orbit Hamiltonian operators (𝐻෡௦௢
௤௛ሺ𝑘ଵ, 𝑘ଶሻand 𝐻෩෡௦௢

௤௛൫𝑘෨ଵ, 𝑘෨ଶ൯) and corresponding eigenvalues (𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሻ,  

𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሻ) and (𝐸௡௖

௣௘௥:ௗ൫𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሚ൯, 𝐸௡௖
௣௘௥:௨൫𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሚ൯), respectively as: 

 

𝐻෡௦௢
௤௛𝛹௡௞ሺ𝑟, 𝜃, 𝜙ሻ ≡

⎩
⎪
⎨

⎪
⎧൫𝐻෡௦௢

௤௛൯
ଵଵ

ሺ𝑘ଵሻ ൬
ி೙ೖሺ௥ሻ

௥
𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ൰ ൌ 𝐸௡௖
௣௘௥:ௗሺ𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሻ ൬

ி೙ೖሺ௥ሻ

௥
𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ൰ 

൫𝐻෡௦௢
௤௛൯

ଶଶ
ሺ𝑘ଶሻ ൬

ி೙ೖሺ௥ሻ

௥
𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ൰ ൌ 𝐸௡௖
௣௘௥:௨ሺ𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሻ ൬

ி೙ೖሺ௥ሻ

௥
𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ൰

ቀ𝐻෡௦௢
௤௛ሺ𝑘ଵ, 𝑘ଶሻቁ

ଷଷ
൬

ி೙ೖሺ௥ሻ

௥
𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ൰ ൌ 0

                 (80)                

and
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𝐻෩෡௦௢
௤௛𝛹ሺ𝑟, 𝜃, 𝜙ሻ ≡

⎩
⎪⎪
⎨

⎪⎪
⎧ቀ𝐻෩෡௦௢

௤௛ቁ
ଵଵ

ቆ𝑖
ீ೙ೖ෩ሺ௥ሻ

௥
𝑌௝௠෥

௟ሚ ሺ𝜃, 𝜙ሻቇ ൌ 𝐸௡௖
௣௘௥:ௗ൫𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሚ൯ ቆ𝑖

ீ೙ೖ෩ሺ௥ሻ

௥
𝑌௝௠෥

௟ሚ ሺ𝜃, 𝜙ሻቇ 

ቀ𝐻෩෡௦௢
௤௛ቁ

ଶଶ
ቆ𝑖

ீ೙ೖ෩ሺ௥ሻ

௥
𝑌௝௠෥

௟ሚ ሺ𝜃, 𝜙ሻቇ ൌ 𝐸௡௖
௣௘௥:௨൫𝛩, 𝑘, 𝑗, 𝑛, 𝑙ሚ൯ ቆ𝑖

ீ೙ೖ෩ሺ௥ሻ

௥
𝑌௝௠෥

௟ሚ ሺ𝜃, 𝜙ሻቇ

ቀ𝐻෩෡௦௢
௤௛ቁ

ଷଷ
ቆ𝑖

ீ೙ೖ෩ሺ௥ሻ

௥
𝑌௝௠෥

௟ሚ ሺ𝜃, 𝜙ሻቇ ൌ 0

                (81)

 
The second original result is the induced modified new magnetic Hamiltonian operator 𝐻෡௠௔௚

௤௛ ሺ𝑟, 𝑎, 𝑏, 𝛼, 𝜒ሻ and corresponding 

eigenvalues 𝐸௠௔௚
௤௛ ሺ𝜒, 𝑛, 𝑗, 𝑙, 𝑚ሻ and 𝐸௠௔௚

௤௛ ൫𝜒, 𝑛, 𝑗, 𝑙ሚ, 𝑚෥൯, respectively as: 

𝐻෡௠௔௚
௞௣ ሺ𝑟, 𝑎, 𝑏, 𝛼, 𝜒ሻ𝛹ሺ𝑟, 𝜃, 𝜙ሻ ≡ ቌ

𝐸௠௔௚
௤௛ ሺ𝜒, 𝑛, 𝑗, 𝑘, 𝑙, 𝑚ሻ ி೙ೖሺ௥ሻ

௥
𝑌௝௠

௟ ሺ𝜃, 𝜙ሻ

𝐸௠௔௚
௤௛ ൫𝜒, 𝑛, 𝑗, 𝑘, 𝑙ሚ, 𝑚෥൯𝑖

ீ೙ೖ෩ሺ௥ሻ

௥
𝑌௝௠෥

௟ሚ ሺ𝜃, 𝜙ሻ
ቍ                                         (82)            

 

Now, it is essential to return to the case of the nonrelativistic limit to obtain the nonrelativistic energy in 3-dimensional 
nonrelativistic non-commutative space (3D-NRNCS) symmetries; we apply the transformation known in the works of literature as 
follows: 

൝
𝐸nc 

௨௤௛൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑘, 𝑙൯ െ 𝑀 → 𝐸nc -u௤௛
ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯

𝐸nc 
௨௤௛൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൅ 𝑀 → 2𝜇

                                               (83) 

and    

 ൝
𝐸nc 

ௗ௤௛൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑘, 𝑙൯ െ 𝑀 → 𝐸nc -d௤௛
ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯

𝐸nc 
ௗ௤௛൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑘, 𝑙൯ ൅ 𝑀 → 2𝜇

                                               (84)            

where 𝐸nc -u௤௛
ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯  and 𝐸nc -d௤௛

ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ are the nonrelativistic energy in  the 3D-NRNCS 
symmetries, inserting the above transformation into Eq. (73) yields the following: 

൝
𝐸nc -u௤௛

ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൌ 2𝐸௡௟
௡௥ െ 2ሺ𝑙 ൅ 1ሻ𝛩𝑁ଶ𝑇𝑅ଵ௡ሺ𝑛, 𝑙ሻ ൅ 2𝜒𝑁ଶ𝑅ଵ௡ሺ𝑛, 𝑙ሻ𝐵𝑚

𝐸nc -d௤௛
ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൌ 2𝐸௡௟

௡௥ ൅ 2𝑙𝛩𝑁ଶ𝑅ଵ௡ሺ𝑛, 𝑙ሻ ൅ 2𝜒𝑁ଶ𝑅ଵ௡ሺ𝑛, 𝑙ሻ𝐵𝑚
                  (85) 

Here 𝐸௡௟
௡௥ denotes the nonrelativistic energy in 3D-RQM symmetries given by: 

𝐸௡௟
௡௥ ൌ-2𝜇

ሺ௔ା௕ఈሻమ

ଶ௡ାଵାඥଶఓ௕ା௟ሺ௟ାଵሻାଵ/ସ
                                                                         (86) 

In the case of the nonrelativistic limit, Eq. (85) becomes a Schrödinger equation with an interaction potential of 2𝑉௤௣ሺ𝑟ሻ. To aim 
for 𝑉௤௣ሺ𝑟ሻ, not 2𝑉௤௣ሺ𝑟ሻin the interaction potential under the nonrelativistic limit, we apply the same procedure as has been applied 
by Alhaidari et al. [55] and Xiang-Jun Xie et al. for the Morse potential [56] to rescale the vector potential 𝑉௠௣ሺ𝑟ሻand scalar potential 
𝑆௠௣ሺ𝑟ሻ and rewrite Eq. (85) in the form of: 

൝
𝐸nc -u௤௛

ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൌ 𝐸௡௟
௡௥ ൅ 𝑁ଶሺെሺ𝑙 ൅ 1ሻ𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵ௡ሺ𝑛, 𝑙ሻ for 𝑗 ൌ 𝑙 ൅ ଵ

ଶ
 

𝐸nc -d௤௛
ேோ ൫𝑛, ൫𝑚 ൌ െ𝑙, ൅𝑙൯, 𝑗, 𝑙൯ ൌ 𝐸௡௟

௡௥ ൅ 𝑁ଶሺ𝑙𝛩 ൅ 𝜒𝐵𝑚ሻ𝑅ଵ௡ሺ𝑛, 𝑙ሻ      for 𝑗 ൌ 𝑙 െ
ଵ

ଶ

                      (87)     

These results are in excellent agreement with our work's results in a nonrelativistic study [57]. The above equation represents the 
nonrelativistic energy spectrum for the extended nonrelativistic shell model in 3D-RNCS symmetries. It is worth mentioning that 
(in the limit ሺ𝛩, 𝜒ሻ → ሺ0,0), we obtain the commutative results obtained in [6] with the influence of quadratic Hellmann potential 
related to the relativistic and nonrelativistic energies eigenvalues in 3D-RQM and 3D-NRQM symmetries known in the works of 
literature. 

6. Conclusions 

In this paper, we have performed exact analytical bound state solutions: the energy spectra of mirror nuclei ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ  and the 
corresponding NC Hermitian Hamiltonian operator for MDE in 3-dimensional relativistic non-commutative space symmetries for 
the modified quadratic Hellmann potential model within Bopp's shift method and standard perturbation theory framework under the 
spin and pseudo-spin-symmetry conditions. It is found that the energy eigenvalues of the ground state 1𝑑ହ/ଶ (the first excited state 
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2𝑆ଵ/ଶ, the second excited state 1𝑑ଷ/ଶ and the 𝑛𝑌௝ 𝑡ℎ𝑒 excited state depends on the dimensionality of the problem ሺ𝑎, 𝑏, 𝛼ሻ, new 
subatomic quantum numbers (𝑗 ൌ 𝑙ሚ േ 1/2, 𝑗 ൌ 𝑙 േ 1/2, 𝑠̃ ൌ േ1/2, 𝑙, 𝑙ሚ,𝑚෥and 𝑚) in addition to the two infinitesimal parameters 
(𝛩,𝜒),  and we also showed that the obtained energy spectra degenerate and every old state will be replaced by 2൫2𝑙ሚ ൅ 1൯ and 

2ሺ2𝑙 ൅ 1ሻ sub-states under the pseudo spin symmetry and spin symmetry conditions, respectively, for ൫𝑛, 𝑗, 𝑙, 𝑙ሚ, 𝑠, 𝑠̃, 𝑚, 𝑚෥൯
௧௛

 excited 
states. Therefore, with the realization of this work, we have shown that the first term in the modified Hamiltonian operator represents 
a new Hamiltonian operator in 3D-RNCS symmetries composed of the main part in 3D-RQM symmetries and the perturbed two 
parts, which are induced with the deformation space-space effect; we call it the perturbed spin (pseudo-spin) orbit interaction, while 
the other is the perturbed modified Zeeman effect (Eq. (78)). For the MQHP, our computed nonrelativistic energy eigenvalues for 
mirror nuclei ( 𝑂ଵ଻  and 𝐹ଵ଻ ሻ are in excellent agreement with existing results in the literature. 
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