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Abstract

In the last few years the interest to complex systems, entanglement and their
behavior is gradually growing. From one hand side it is dictated by recent develop-
ment in revealing quantum properties of dynamical systems and quantum computing
and on the other side by the remarkable progress in holographic correspondence. In
this short note we will focus on some properties of the so-called Krylov complex-
ity. Krylov complexity is an efficient way to quantitatively describe the growth of
operators in a theory with respect to a special basis. The latter is generated by
the successively nested commutators between the Hamiltonian and the operator.
Finally, we consider links between Krylov complexity, Painlevé equations and Toda
equations.

1 Introduction
The emergence of qualitative change of behavior in quantum systems is an old issue. In
order to understand why and how it happens one must find the minimal amount of infor-
mation which completely characterizes the system. This issues are important especially in
the context of holographic correspondence. The notion of complexity, adapted to particu-
lar cases, attracted recently a lot of attention. Informally, the complexity Cf (x) measures
information content, degrees of redundancy, degrees of structures, of x, that is

Cf (x) = min
p
{|p| : f(p) = x},

for some “computer” or algorithm f .
Due to its universality there are many concepts and methods about how to precisely

define and measure complexity. One approach is by making use of geometry to try to

67

iu
Text Box
Physics AUC, vol. 33, 67-77 (2023)

iu
Text Box
PHYSICS AUC



metricize complexity: closeness arises from a metric on the space of unitaries and dis-
tance to a fixed reference serves as a complexity measure. Consider for instance, unitary
operators U arising from iterating generators G(s) taken from some elementary set of
Hermitian operators {G(s)}. Then, this approach reduces to geodesics on circuit space
(see for instance [1, 2]). As an example, one can define complexity for states C as the
minimal length between states driven by generators G(s)

C(|Ψ(si)〉, |Ψ(sf )〉) = min
G(s)

`(|Ψ(σ)〉).

Another approach is based on the optimization scheme frequently called Krylov chain.
In the last few years many papers on the subject appeared [3]- [11]. It has been proved as
efficient method for calculating complexity in holographic correspondence and studying
behavior of the systems on both sides of correspondence. It was shown that important
aspects of the time evolution of complex systems (states/operators) is encoded in the
so-called Lanczos coefficients bn. The latter can be used as indicators for an emerging
chaos in the system. For instance, for the asymptotic behavior of bn one has

bn ∼ nδ, δ ≥ 1 - chaotic, 0 < δ < 1 - integrable

If the system exhibits a tendency towards chaos, namely δ ≥ 1, one can proceed obtaining
the Lyapunov exponents and other characteristics of the system.

Various aspects of Krylov complexity applied to different (holographic) systems can be
found for instance in [4]- [9] and references therein, list of which being far from complete.

In this paper we are dealing with operator growth and so called Krylov complexity
establishing relations to integrable structures. To develop an effective way for calculations
one has first to construct the Krylov basis. Once it is constructed, a natural object
to consider is the operator growth, thus Krylov complexity. The next section provides
a concise overview of these issues. In the third section we present Schwarz-Christoffel
map and its relation to Heun and then to Painlevé equations. Here we suggest Schwarz-
Christoffel map as a weight under which the Krylov basis is orthogonalized. This suggests
a nontrivial relation to the theory of Painlvé equations. In a subsection we give a simple
relation of the Hankel determinant made of time/parameter-dependent moments to Toda
equations. To the best of our knowledge, our approach is different from those known in
the literature and offers new directions for development. In the Conclusions we provide
short comments on the results and discuss future directions.

2 Operator growth and Krylov basis
In the Schrödinger picture unitary evolution mixes the initial state |ψ〉 with other quantum
states as time evolves

|ψ(t)〉 = e−iHt|ψ(0)〉 =
∞∑
n=0

(−iHt)n

n!
|ψ〉 =

∞∑
n=0

(−it)n

n!
|ψn〉. (2.1)

Thus, solving for the time evolution amounts to understanding the states |ψn〉 ≡ Hn|ψ〉.
Using operator-state correspondence one can conclude that operators also evolve cor-

respondingly, see for instance [4]. Assume that we have a Heisenberg operator O(t) that
can be formally expanded in a series of nested commutators with the Hamiltonian

O(t) = eiHtO(0) e−iHt =
∞∑
n=0

(it)n

n!
Õn, (2.2)
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where
Õ0 = O, Õ1 = [H,O], Õ2 = [H, [H,O]] . . . (2.3)

As time progresses, a simple operator O(0) “grows” in the space of operators of the theory
becoming more and more “complex”.

In view of Eq. (2.3) it is convenient to introduce an operator called Liouvillian:

L := [H, ∗] =⇒ Õn = LnO(0) =⇒ O(t) = eiLtO(0). (2.4)

To proceed, we need to construct Krylov space and Krylov basis. To this end consider
the general picture of the action of an operator A as the map

Ax = b, A : V → V #, x ∈ V, b ∈ V #, (2.5)

into the equation in V

τAx = τb, τA : V → V, x ∈ V, τb ∈ V. (2.6)

We want to pick the “best” solution xk from the Krylov space Kk(A, b) defined as

Kk(A, b) := span{b, Ab,A2b, . . . , Akb}. (2.7)

“Best” means that the remainder is as small as possible over Kk(A, b), i.e., xk solves the
least squares problem

minz∈Kk(A,b) ||AZ − b||, (2.8)

in the Euclidean norm || · ||.
Let us adapt the above scheme to our problems where the operator A is taken to be

the Liouvillian, or super-operator L.
It is natural to expand O(t) over the states |On(0)) = On|0〉, however these states may

not be orthogonal (and the set {|On(0))} may not define a basis). Thus, one has first to
orthogonalize the set of states {|On(0))} and make them a basis for expansion of O(t).

The algorithm of orthogonalization (Arnoldi iteration) provides construction of Krylov
basis as follows:

1. Set b0 ≡ 0 and |O−1) ≡ 0.

2. Define |O)0 = 1√
(O|O)

|O).

3. For n = 1:
- |A1) = L|O0).
- b1 = ||A1||.
- If b1 6= 0 define|O1) = 1

b1
|A1).

4. For n > 1:
- |An) = L|On−1)− bn−1|On−2).
- bn = ||An|| ≡

√
(An|An).

- If bn = 0 stop the procedure; if not, define |On) = 1
bn
|An) and go for n+ 1 to step

4.
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Now, we can decompose O(t) in the Krylov basis elements

|O(t)) =
K−1∑
n=0

φn(t)|On). (2.9)

The Heisenberg equation for φn(t) reads

−iφ̇n =
K−1∑
m=1

Lnmφm(t) = bn+1φn+1(t) + bnφn−1(t), φn(0) = δn0.

Finally, we are in a position to define Krylov Complexity and K(rylov)-entropy (Shan-
non) as

K(t) =
∑

n|φn(t)|2, S(t) =
∑
|φn(t)|2 log |φn(t)|2. (2.10)

The Krylov subspace is a subspace spanned by {Ln|Ô)}. Let us formulate the problem
of operator growth or Krylov complexity in the Krylov subspace. The chain of states
obtained by acting repeatedly with Liouvillian L we denote as

|Ô0) := |Ô) , L|Ôn) =
n+1∑
i=0

hi,n|Ôi) (n ≥ 0). (2.11)

Using the scalar product we define the matrix

Lmn = (Ôm|L|Ôn) =


h0,0 h0,1 h0,2 h0,3 · · ·
h1,0 h1,1 h1,2 h1,3 · · ·
0 h2,1 h2,2 h2,3 · · ·
0 0 h3,2 h3,3 · · ·
...

...
...

... . . .

 . (2.12)

We have also chosen an appropriate normalization such that (Ô0|Ô0) = 1.
If (Ôm|L|Ôn) is a Hermitian matrix, then Eq. (2.11) significantly simplifies as

|Ô−1) := 0 , |Ô0) := |Ô),

L|Ôn) = an|Ôn) + bn|Ôn−1) + bn+1|Ôn+1) (n ≥ 0), (2.13)

while (2.12) becomes tri-diagonal

Lmn = (Ôm|L|Ôn) =


a0 b1 0 0 · · ·
b1 a1 b2 0 · · ·
0 b2 a2 b3 · · ·
0 0 b3 a3 · · ·
...

...
...

... . . .

 .. (2.14)

The quantity Lmn is called Jacobi operator and the entries are the Lanczos coefficients.
The orthogonalization procedure results in tri-diagonal relations known for orthogonal
polynomials.

The tridiagonal form of the Liouvillian L in Krylov basis can be written as

L =
K−1∑
n=0

bn+1 [ |On)(On+1|+ |On+1)(On| ] (2.15)
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The conclusion one can draw is that the Krylov elements consists of orthogonal poly-
nomials pn = knx

n + . . . satisfying recurrent relations:

xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x) (n > 0),

xp0(x) = a0p1(x) + b0p0(x),
(2.16)

with an, bn, cn real constants and ancn+1 > 0. Also an = kn
kn+1

, cn+1

hn+1
= an

hn
.

We conclude this overview section noting that to solve the operator growth and com-
plexity problems one has to determine the measure dµ under which the basis is orthogonal.
It’s worth also to note that equivalent information is contained in the moment matrix M
defined by

M =


∫
x0dµ

∫
xdµ · · ·

∫
xndµ∫

xdµ
∫
x2dµ · · ·

∫
xn+1dµ

· · · · ·∫
xndµ

∫
xn+1dµ · · ·

∫
x2ndµ

 =


µ0 µ1 · · · µn
µ1 µ2 · · · µn+1

· · · · ·
µn µn+1 · · · µ2n

 . (2.17)

3 Schwarz-Christoffel map and Painlevé
In this section we will suggest the interpretation of Schwarz-Christoffel map as an orthog-
onality measure mentioned above.

3.1 Shcwarz-Christoffel map

Let us remind first what is Schwarz-Christoffel map. Consider a polygonal curve Γ having
a simply connected interior P . Thus, the Riemann Mapping Theorem states that the
upper half plane is conformally equivalent to the interior domain determined by any
polygon. In other words, there exists a function S that conformally maps the upper half
plane H onto P . The Schwarz-Christoffel theorem actually realizes such a maps providing
explicit formulas.

In order to make Christoffel-Schwarz mapping concrete, take a polygon Γ with vertices
w1, . . . , wn and interior angles θ1, . . . , θn in counterclockwise order. Then Christoffel-
Schwarz map in differential form is defined as

df(w)

dw
= γ

n∏
i=1

(w − wi)θi−1, (3.1)

where wi are called pre-vertices (on the line), and zi - the pre-images of the vertices
(vertices of the polygon, zi = f(wi)). The Schwarzian differential equation can be easily
obtained

{f(w), w} :=

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
n∑
i=1

[
1− θ2i

2(w − wi)2
+

2βi
w − wi

]
,

where n is the number of vertices and θi are the interior angles at each vertex zi. It is well
known that the solution of the Schwarzian differential equation is given by z = f(w) =
ỹ1/ỹ2, where ỹi are the two independent solutions of

ỹ′′(w) +
n∑
i=1

[
1− θ2i

4(w − wi)2
+

βi
w − wi

]
ỹ(w) = 0. (3.2)
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There are also some algebraic constraints on the accessory parameters:∑
i

βi =
∑
i

(wiβi + 1− θ2i ) =
∑
i

(2wiβ
2
i + wi(1− θ2i )) = 0. (3.3)

Applying change of variables ỹ(w) = w−θ0/2(w − 1)−θ1/2(w − t)−θt/2y(w) one finds the
Heun equation in canonical form

y′′(w) +

(
1− θ0
w

+
1− θt
w − t

+
1− θ1
w − 1

)
y′(w)

+

(
κ−κ+

w(w − 1)
− t(t− 1)K0

w(w − 1)(w − t)

)
y(w) = 0. (3.4)

At this point one can follow Slavyanov [12] to make a link from the Heun class differ-
ential equation and Painlevé one. To this end one has to make a Legendre transformation
to obtain the Lagrangian

L(q, q̇, t) =
f(t)

4P0(q, t)

(
q̇ − P1(q, t)

f(t)

)2

− P2(q, t)

f(t)
. (3.5)

Then the equation of motion for the Lagrangian (3.5) is

q̈ =
1

2

∂

∂q

(
ln P0(q, t)

)
q̇2 −

(
∂

∂t
(ln f(t))− ∂

∂t
(lnP0(q, t))

)
q̇

+
P0(q, t)

f 2(t)

(
∂

∂q

P 2
1 (q, t)

2P0(q, t)
+ f(t)

∂

∂t

P1(q, t)

P0(q, t)
− 2

∂P2(q, t)

∂q

)
. (3.6)

The conclusion drawn in [12] is that any Painlevé equation can be obtained as classical
equation of motion of Heun class !

On the other hand, our interpretation of Schwarz-Christoffel map as measure is based
on the following arguments. Without loss of generality, one can assume that the measure
dµ is given by

dµ(x) = w0(x) = e−v(x)dx,

∫
pn(x)pm(x)w0(x)dx = knδnm.

As an example, let us use the recurrent relations (2.16) to obtain ordinary differential
equation (ODE) for the polynomials forming the basis. To this end let us go back to
tridiagonal recurrence (2.16) and differentiate with respect to x

P ′n(x) = −Bn(x)Pn(x) + An(x)Pn−1(x),

where (the measure is ω(x) = e−v(x)):

An(x) := an

∫ ∞
−∞

v′(x)− v′(y)

x− y
P 2
n(y)ω(y)dy,

Bn(x) := an

∫ ∞
−∞

v′(x)− v′(y)

x− y
Pn(y)Pn−1(y)ω(y)dy. (3.7)

From here it is easy to define a ladder operator corresponding to “annihilation”(
d

dx
+Bn(x)

)
Pn(x) = An(x)Pn−1(x), (3.8)
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and the congugate operator (creation operator)(
− d

dx
+Bn(x) + v′(x)

)
Pn−1(x) = An−1(x)

an
an−1

Pn(x).

Putting all these together we end up with a second order ODE(
− d

dx
+Bn + v′

)[
1

An

(
d

dx
+Bn

)
Pn

]
= An−1

an
an−1

Pn(x)

The obtained ODE can be brought to the form

P ′′n (x) + S(x)P ′n(x) +Q(x)Pn(x) = 0. (3.9)

which is Schrödinger type equation

P ′′n (x) + V (x)Pn(x) = 0. (3.10)

Comparing with (3.4) we conclude that Schwarz-Christoffel map can serve as a legitimate
measure for orthogonal polynomials.

Now consider a polygon with two finite vertices w1 and w2 and interior angles θ1 and
θ2 respectively. Without loss of generality, take z1 < z2 and consider (conformal function)

f0(z) = (z − z1)θ1−1(z − z2)θ2−1.

For the argument of f ′(z) we have

arg f ′(z) =


0 if z1 < z2 < z,

(θ2 − 1)π if z1 < z < z2,

(θ2 − 1)π + (θ1 − 1)π if z1 < z2 < z.

It is well known that the weight under which Jacobi polynomials are orthogonal is exactly
(1− x)α(1 + x)β! Thus, the measure defined by Schwarz-Christoffel map with n = 2
defines the measure for the Jacobi polynomials

dµ0(x) = (1− x)α(1 + x)β (3.11)

However, the ODE for Jacobi polynomials is also of (degenerate) Heun class and therefore
can be mapped to a certain Painlevé equation.

3.2 Moments, Schur and relation to Toda

Let us consider a generalization of the measure, which, in the case of Jacobi polynomials,
is w0(x) = exp(−v(x)) with v(x) = −α ln(1−x)−β ln(1+x). Instead of weight w0(x) we
can consider associate measure dµ(x) = w(x)dx where w(x) = w0(x)e−f(x) (f(x) univalent
in general) characterized by

• chosen for fixed vector space V and fixed operator acting on it,

• changes in parameters of f(x) produces a new basis
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In the case of Jacobi polynomials the simplest deformation is chosing function f(x)
to be just a linear term −xλ. Thus, we consider the measure w(x, λ) = w0(x)e−λx which
has associate moments

µk(λ) =

∫
xkw(x, λ)dx. (3.12)

Thus, the moment matrix can be written as

M =
(
(−1)i+j∂i+jλ M

)
ij

=


µ0(λ) µ1(λ) · · · µn(λ)
µ1(λ) µ2(λ) · · · µn+1(λ)
· · · · ·

µn(λ) µn+1(λ) · · · µ2n(λ)

 . (3.13)

From (3.12) it is clear that differentiating wrt λ one can obtain other moments

−∂λµn = µn+1, (−1)k∂kλµn = µn+k

However, insted of using ∂kλ to produce µn → µn+k we define another weight

w(x, λ)→ w(x, λi) = w0(x) e
∑

i λix
i

, (3.14)

so that
∂λkµn = µn+k, [∂λk , ∂λl ] = 0.

This deformation of the weight defines a link to representation theory. Indeed, we can
expand the exponent in Schur polynomials as

e
∑

i λix
i

=
∑
k

Sk[λi]x
k.

Thus, we arrived at a new relation between the moments in terms of Schur polynomials

µn(λi) =
∑
k

Sk[λi]µn+k(0). (3.15)

This is the second main result in this paper.
It is well known that time-dependent Hankel determinants satisfy Toda equation. Here

we suggest another simple derivation based on determinant of moment matrix, which is
in fact Hankel determinant. Let us introduce the following notation for (sub)determinant
of the moment matrix (3.13)

Dm = det(M)m×m. (3.16)

Then, we can use Jacobi identity for determinant (D ≡ Dn+1)

D

(
n

n

)
D

(
n+ 1

n+ 1

)
−D

(
n

n+ 1

)
D

(
n+ 1

n

)
= D

(
n n+ 1

n n+ 1

)
D,

where D
(
n
m

)
denotes the determinant with removed n-th row and m-th column. Let us

denote by τn+1 = D, τn = D
(
n+1
n+1

)
. Having that Dn is Hankel determinant, differentiating

wrt λ will produce rearranging of the rows and columns due to vanishing determinants of
matrices with equal rows. Then, denoting τ̇n = D

(
n
n+1

)
= D

(
n+1
n

)
(the second equality is

obvious), we arrive at the equation

τnτ̈n − τ̇ 2n = τn+1τn−1. (3.17)

This is nothing but Toda (molecule) equation!
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4 Conclusions
In this paper we establish some relations between Krylov complexity/operator growth and
Painlevé equations as well as Toda equations. Before making comments on our results let
us mention that some particular relations have been considered in the literature in different
context. For instance, the relation between Jacobi orthogonal polynomials and Painlevé
equations (in the so called sigma form) have been considered in [13]. Their analysis is
based on the ladder operators and differential equations for orthogonal polynomials. Here
we provide a short summary of their result. The starting point are generalized Jacobi
polynomials Pn [13] which are orthogonal with respect to the measure

w(x, t) = (1− x)α(1 + x)βe−tx = e−tx+α ln(1−x)+β ln(1+x) = e−v(x,t). (4.1)

Using ladder operators it is straightforward to obtain the differential equation for Pn
which reads

P ′′n (x)−
(
A′(x)

A(x)
+ v′(x)

)
P ′n(x) +

(
B′n(x)−Bn(x)

A′n
An

+
n−1∑
l=1

Al

)
Pn = 0.

Here the quatities An(x), Bn(x) are obtaned as in (3.7)

An(x) = −Rn(t)

z − 1
+
t+Rn(t)

z + 1
, Bn(x) = − rn(t)

z − 1
+
rn(t)− n
z + 1

,

while for Rn(x) and rn(x) one obtains

Rn(t) = α

∫
P 2
n(x)

1− x
w(x, t)dx, rn(t) = α

∫
Pn(x)Pn−1(x)

1− x
w(x, t)dx.

The authors introduce the function

σ(t) =
t

2

Ḋn(t)

Dn(t)
− t

2
n+ n(n+ β),

where β is a constant and Dn(t) to be the Hankel determinant of moments

Dn(t) = det(µi+j(t))
n−1
i,j=0.

Then, after long calculations it was shown that σ(t) satisfies σ-form of Painlevé V equation

(tσ′′(t))2 = [σ − tσ′ + (2n+ α + β)σ′]2 + 4[σ − n(n+ β)− tσ′][(σ′)2 − ασ′].

In another paper [14] using the same approach it was shown that generalizing the
measure as

w(x, t) = (1− x)α(1 + h)β[a+Bθ(x− t)]

one finds another Painlevé equation. In this case σ(t) defined as

σ(t) = Hn(t) + d1t+ d0, Hn(t) = t(t− 1)
d

dt
ln Dn(t),

whereDn(t) is again Hankel determinant of moments matrix. Then, after long calculations
one finds that σ(t) satisfies σ-form of Painleve VI.
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In this paper we define Schwarz-Christoffel mapping function as a weight of the mea-
sure under which our Krylov basis is orthogonal. Utilizing the relation between Schwarz-
Christoffel map, Heun class equations and Painlevé equations we established a link be-
tween Krylov complexity/operator growth and Painlevé equations. The relations look
much easier than known ones and provides further options for investigations. For in-
stance, it would be interesting to make our approach more detailed and apply to concrete
systems. Another issue to what relations lead confluent Heun class equations which could
be accompanied with Painlevé correspondence.

In the last Section we have shown that Schur polynomials appeared as a link between
moments at given time t and the initial ones at t = 0. Another line of developments is to
investigate the role of Schur polynomials in the type of problems we sketched above.

All these issues are currently under investigation and we hope to report on them in
the near future.
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