
Mass-generation effects in a field theory comprising

spins ranging from zero to one
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Abstract

The analysis of the consistent couplings that can be introduced between a mass-

less real scalar field, a massless Majorana spinor, and a single massless Abelian

1-form is performed. This is done within the framework of the antifield-antibracket

formalism by deformation of the solution to the classical master equation combined

with specific techniques of BRST cohomology.

1 Introduction

Once the last piece of the Standard Model has shown its objective reality through the

experimental evidence of the Higgs boson, the scientific community has known a renewed

interest in mass-generation schemes in field theory, displayed by devising new methods

[1, 2] that encompass the outputs of the standard Higgs mechanism [3, 4, 5, 6]. In all these

procedures, the gauge fields acquire mass in the context of their interactions with some

scalar matter fields. Whereas the standard Higgs mechanism [3, 4, 5, 6] requires a scalar

field potential that displays a degenerate global minimum, the new methods [1, 2] do not

assume such an ingredient from the outset, but only use the interaction as the sufficient

condition for giving masses to gauge fields. When fermions are taken into account (e.g.,

spinor fields describing electrons in Weinberg-Salam electroweak theory), the Higgs mech-

anism requires, besides the scalar field potential, also a Yukawa-type potential necessary

for the masses of spinors. At this point, the natural question arises: Can new procedures

[1, 2] be adapted by incorporating fermionic fields to produce a mass-generation mech-

anism that does not consider extra information concerning various potentials? In this

paper, by exploiting the idea [1], we show how a single Abelian 1-form gains mass in the

context of its interactions with one scalar field and one Majorana spinor field.

In this paper, we analyse the consistent couplings that can be added to a massless free

field theory comprising one real scalar field, one real spinor field, and one Abelian 1-form,

by means of the deformation of the solution to the classical master equation [12, 13],

supplemented with specific techniques of local BRST cohomology [14, 15, 16]. The pro-

cedure, supplemented with some reasonable hypotheses, standard in field theory, leads to

some quadratic, derivative-free interaction vertices naturally interpreted as mass terms
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for various field spectrum components. Vis-a-vis this perspective, the obtained interact-

ing models are parameterized by some real constants, which verify a set of consistency

equations with a twofold ‘dichotomy’ in the behaviour of its solutions: i) the 1-form and

the scalar field cannot be simultaneously massive, and ii) the 1-form and the spinor field

are simultaneously massive unless there are cross-couplings between them.

The paper is organized into six sections as follows. In Section 2, employing the rules

of antifield-antibracket BRST formalism, one derives the BRST symmetry corresponding

to a massless free field theory, with field spectrum comprising one real scalar field, one

Majorana spinor, and a single Abelian 1-form. Section 3 briefly points out how can be

reformulated the problem of constructing consistent couplings mediated by gauge fields as

a deformation problem for the solution to the classical master equation associated with a

given (free) theory. In Section 4, one solves the equations that govern the deformation of

the solution to the classical master equation corresponding to the considered free model.

At this point, one proves that the most general interacting gauge theory, consistently

constructed out of the considered starting model and subject to some standard hypotheses

in field theory, depends on a degree four polynomial function in the scalar field and

seven real constants, which are subject to some purely algebraic (consistency) equations.

Section 5 exhibits the previously mentioned twofold ‘dichotomy’ by solving the consistency

equations in terms of two complementary solutions. Section 6 ends the paper with the

main conclusions.

2 Free model: the antifield-antibracket BRST sym-

metry

The starting free model evolves on a flat four-dimensional Minkowski spacetime of a

mostly minus signature, R1|3, and consists of three non-interacting real massless fields:
a scalar, a Majorana spinor, and a single Abelian 1-form. The Lagrangian dynamics is

generated, via the variational principle, by the functional

L0 [ ] =

Z
4
h
− 1

4


 + 1
2


+ i
2
̄ 

i
 (1)

where  is the usual field-strength,  = [] and {} are the generators of the
Majorana representation of the Clifford algebra C(1 3). Remember that in this represen-
tation, all the -matrices are purely imaginary, 0 is Hermitian, and  are anti-Hermitian.

In the same context, the Dirac conjugation of the real (Majorana) spinors coincides with

the charge conjugation,

C ≡ (C)> = ̄ ≡ †0

The action (1) is found to be gauge-invariant under the generating set of gauge transfor-

mations


 =   = 0  = 0 (2)

which is manifestly irreducible and Abelian.

Implementing the general rules of the antifield-antibracket BRST formalism [7, 8, 9,

10, 11] to our situation, first, we introduce the BRST generators

{  }  {∗ ∗ ∗ ∗} (3)
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whose degrees and Grassmann parities read

agh() = agh() = 0 agh() = 0 agh() = 0 (4)

agh(∗) = agh(
∗) = 1 agh(∗) = 1 agh(∗) = 2 (5)

pgh() = pgh() = 0 pgh() = 0 pgh() = 1 (6)

pgh(∗) = pgh(
∗) = 0 pgh(∗) = 0 pgh(∗) = 0 (7)

() = () = 0 () = 1 () = 1 (8)

(∗) = (∗) = 0 (∗) = 0 (∗) = 0 (9)

The BRST complex is also equipped with a natural involution according to which the

fields are real and the antifields are purely imaginary, i.e.,

()
 =  () =  () =  () = 

(∗)
 = −∗ (∗) = −∗ (∗) = −∗ (∗) = −∗

Second, we construct the BRST differential associated with the theory (1)—(2). As the

gauge generators from (2) are field-independent, it results that the BRST differential 

simply reduces to

 =  +  (10)

where  signifies the Koszul—Tate differential, graded by the antighost number agh [agh() =

−1] and  stands for the longitudinal exterior derivative [in this case a true differential],

whose degree is named pure ghost number pgh [pgh() = 1]. These two degrees do not

interfere [agh() = 0, pgh() = 0]. The overall degree that grades the BRST algebra

is known as the ghost number [gh] and is defined like the difference between the pure

ghost number and the antifield number, such that gh() = gh() = gh() = 1. The two

differentials act on the BRST generators like

 = 0  = 0  = 0  = 0 (11)

∗ =   ∗ = ¤ ∗ = −ī
←
  ∗ = −∗ (12)

 =   = 0  = 0  = 0 (13)

∗ = 0 ∗ = 0 ∗ = 0 ∗ = 0 (14)

Third, we equip the BRST complex with a Gerstenhaber-like structure, the well-known

antibracket, (· ·), defined by decreeing the fields/ghosts conjugated with the corresponding
antifields. Within this structure, the BRST differential  admits a canonical · = (· ),
with  the canonical generator. It is a real [i.e., invariant under the natural involution on

the BRST algebra] bosonic functional of ghost number zero, involving both field/ghost

and antifield spectra, that encodes the entire gauge structure of the associated theory and

obeys the classical master equation

( ) = 0 (15)

which is equivalent to the nilpotency of the BRST differential, 2 = 0. For the model

under study (1)—(2), the canonical generator of the BRST symmetry takes the simple

form

 = L0 +

Z
d4

¡
∗


¢
 (16)
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3 Consistent interactions: the BRST perspective

This section is dedicated to a brief review of the BRST approach to the problem of in-

teracting vertices that can be added to a given gauge field theory so that the number

of independent gauge symmetries is preserved. As the solution to the classical master

equation completely captures the gauge structure of a given theory, it results that the

problem can be reformulated as a deformation problem for the solution to the master

equation corresponding to a given “free” theory [12, 13] in the framework of the local

BRST cohomology [14, 15, 16]. This means that if an interacting theory can be consis-

tently constructed, then the solution  to the master equation associated with the “free”

theory can be deformed into a solution ̄

 → ̄ =  + 1 + 22 + 33 + 44 + · · ·  (̄) = 0 gh(̄) = 0 (17)

of the master equation for the deformed theory that pertains to the original “free” BRST

algebra, namely,

(̄ ̄) = 0 (18)

By projecting the equation (18) on various powers in the deformation parameter , one

obtains the equivalent tower of equations:

0 : ( ) = 0 (19)

1 : 1 = 0 (20)

2 :
1

2
(1 1) + 2 = 0 (21)

3 : (1 2) + 3 = 0 (22)

4 :
1

2
(2 2) + (1 3) + 4 = 0 (23)

...

As  is nothing but the solution to the classical master equation corresponding to the

“free” theory, it results that (19) is satisfied by construction. The remaining equations are

to be solved recursively, from lower to higher orders, such that each equation correspond-

ing to a given order of perturbation theory, say  ( ≥ 1), contains a single unknown

functional, namely, the deformation of order , . Once the deformation equations

(20)—(23), etc., have been solved by means of specific cohomological techniques, from the

consistent nontrivial deformed solution to the master equation (17) one can identify the

entire gauge structure of the resulting interacting theory.

4 Consistent interactions between a collection of mass-

less real fields of spins ranging from zero to one

In this section, we determine the consistent interactions that can be added to a massless

“free” theory consisting of a real scalar field, a real (Majorana) spinor and a single Abelian

1-from. Precisely, we solve the tower of equations (19)—(23) with (16) as the initial term.

Analysis is done within the framework delimited by specific hypotheses from field theory as

analyticity in the coupling constant, Lorentz covariance, space-time locality, and Poincaré

invariance. Moreover, the free parameters of strictly negative mass-dimension are not

allowed. In this manner, there are avoided, at least, power-counting non-renormalizable

[17] interacting field theories and also higher-derivative interaction vertices.
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4.1 The deformed solution to the classical master equation

With the functional (16) as initial term at hand, we solve the tower of equations (20)—

(23). As we are interested only in the local solutions, the first-order deformation 1 can

be expressed as

1 =

Z
d4  (24)

where  is a local function. Inserting this realization into (20), one obtains the equivalent

equation

 = 
 gh() = 0 () = 0 (25)

with  a local current. As we are looking only for true interacting vertices, i.e., those

that do not come from some field redefinitions, we discard the solutions of the type

 = ̄+ ̄
 as being trivial [14, 15, 16].

Using the structure of the considered field spectrum, it results that the firs-order

deformation naturally decomposes into seven components

 = () + () + () + (−) + (−) + (−) + (int) (26)

where (), (), and () govern the self-interactions of the scalar field , the spinor

field , and the vector field , respectively, (−), (−), and (−) describe the
cross-couplings scalar-spinor, scalar-vector, and vector-spinor, respectively, whereas int

effectively mixes all the three sectors. The seven terms in decomposition (26) display

different contents of BRST generators, such that equation (20) becomes equivalent to

seven independent equations, one for each piece,

(sector) = 


(sector)
(27)

A simple analysis of the mass-dimension corresponding to field content reveals

[] = = []  [] =32 (28)

which, further, exhibits the general real solutions to (27) that comply with our working

hypotheses

() = −V() () = ̄ + ĩ̄5 () = 
2
 (29)

(−) = (̄ + ĩ̄5) (−) = (∗ −
) (30)

(−) = ̃(i∗5 +
1
2
̄5) (int) = 0 (31)

Previously, V is an arbitrary polynomial function in the scalar field, which is of degree at
most equal to four, while , , , ̃,  and ̃ are some real parameters.

As it has been synthesized in the previous section, the next step consists of finding

the solution to (21). Direct computations based on (24) display

(1 1) =

Z
d4

∙
(−2

)− 
V

+ 4̃(ī5 − ̃̄)

+2(− 2̃̃)̄ + 2i(̃+ 2̃)̄5
¤


which further exhibit the second-order deformation

2 =
1
2

Z
d4(2

) (32)
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as well as the consistency equations


V


= 0 ̃ = 0 ̃̃ = 0 − 2̃̃ = 0 ̃+ 2̃ = 0 (33)

Inspecting the remaining equations, i.e., (22), (23), etc., direct computations based on

the results (24) and (32) yield

(1 2) = 0 = (2 2)

which allow to conclude that higher-order deformations can be made trivial

 = 0  ≥ 2 (34)

At this point we have determined the full deformed solution to the classical master

equation

̄ =  + 1 + 22 (35)

where the various order deformations , 1, and 2 are given in (16), (24), and (32)

respectively. This functional captures the whole Lagrangian gauge structure of an inter-

acting field theories family parameterized by an arbitrary polynomial function of degree

at most four in the undifferentiated scalar field and seven arbitrary real numbers subject

to the consistency equations (33).

4.2 The Lagrangian gauge structure of the interacting field the-

ories family

According to the general rules of the BRST formalism, the information about the gauge

structure reads off by projecting (35) on various antighost numbers. Concretely, the

antighost number zero component of (35)

L [ ] =

Z
4

£−1
4


 + 1
2
(− )(

− ) + i
2
̄ 

−V + 

2
 + (̄ + ĩ̄5) + (̄ + ĩ̄5)

¤
 (36)

is nothing but the Lagrangian action of the interacting field theories family, while the

antighost number one component of (35) displays

̄
 =  ̄ =  ̄ = ĩ5 (37)

which is a generating set of gauge transformations for (36). As the functional (35) pos-

sesses a trivial antighost number two component, it results that the generating set of

gauge transformation (37) is Abelian and irreducible. In (36) we employed the covariant

derivatives of the spinor field

 = ( − ĩ)

5 Interacting models: Completion of the landscape

Now we are in the position to solve the consistency equations (33) and then to complete

the Lagrangian gauge structure of the obtained interacting field models.
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We solve the consistency conditions (33) starting with the first equation, which exhibits

a dichotomy expressed by two main classes of solutions

 = 0 V() = 2
2
2 + 3

3!
3 + 4

4!
4 2 3 4 ∈ R (38)

and

 6= 0 V = 0 (39)

It should be noted that in (38) we could have added a linear term in the real scalar field,

but this brings nothing new as it can always be removed by a shift redefinition of the

scalar field.

Replacing (38) into the last four consistency conditions in (33), the following comple-

mentary solutions emerge:

̃ = 0  ̃  ̃ ∈ R (40)

or

̃ 6= 0  =  = 0 = ̃ = ̃ (41)

According to the last three equations in (33), the second class of solutions (39) splits

into two complementary types, namely

̃ = 0 =  = ̃  ̃ ∈ R (42)

or

̃ 6= 0  =  = 0 = ̃ = ̃ (43)

We conclude this section with the Lagrangian gauge structure of the obtained interact-

ing field theories. The first class of models is associated with the solutions (38) and (40)/

(41). This displays one massless 1-form  which does not interact with the possible

massive (whenever 2  0) scalar field  and also this is coupled with the spinor field 

if and only if the last remains massless. Concretely, the interacting models pertaining to

the first class correspond to the complementary solutions (40)—(41) and are described by

the Lagrangian actions

Ia [ ] =

Z
4

£−1
4


 + 1
2


+ i
2
̄  − (2

2
2 + 3

3!
3 + 4

4!
4)

+

2
 + (̄ + ĩ̄5) + (̄ + ĩ̄5)

¤
 (44)

and

Ib [ ] =

Z
4

£−1
4


 + 1
2


+ i
2
̄ 

+

2
 − (2

2
2 + 3

3!
3 + 4

4!
4)
¤
 (45)

Performing the same replacements in generating set of gauge transformations (37) show

that the Lagrangian action (44) remains invariant under the original generating set of

gauge transformations (2). It is worth noticing that the matter fields in this context

become massive whenever 2  0 and   0. Also, by inserting the solution (41) into

(37), one obtains the infinitesimal gauge transformations

Ib 
 =  Ib  = 0 Ib  = ĩ5

which leave (45) invariant.
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It is worth noticing that the models in the first class of interacting theories exhibit

five physical degrees of freedom, distributed as in the starting model, i.e., two associated

with the 1-form , one corresponding to the scalar field , and two fermionic degrees of

freedom coming from the spinor field .

The second class of interacting models corresponds to the solutions (39) and (42)/

(43) to the consistency equations (33). In this context, the 1-form becomes massive while

the scalar field remains massless. Also, solutions (42) and (43) allow concluding that the

fermionic modes are massive only in the absence (̃ = 0) of electromagnetic interaction.

Inserting the solutions (39) and (42)/ (43) into (36), one gets the Lagrangian actions for

the last two types of theories constituting the second class of interacting models

IIa [ ] =

Z
4

£−1
4


 + 1
2
(− )(

− ) + i
2
̄ 

+

2
 + (̄ + ĩ̄5)

¤
 (46)

and

IIb [ ] =

Z
4

£−1
4


 + 1
2
(− )(

− ) + i
2
̄ 

+

2


¤
 (47)

which are found to be invariant under the Abelian generating set of gauge transformations

  =    =    = ĩ5 (48)

and respectively

  =    =    = ĩ5 (49)

It is worth noticing that the Stuekelberg coupling between the scalar field and the

Abelian 1-form present in the last two actions (46) and (47), combined with the shift gauge

transformation of the scalar field in (48) and (49) respectively, show that the distribution

of the physical modes is no longer as in the free model. Here, the five physical degrees of

freedom come from the three of the now massive 1-form  and the two of the Majorana

spinor field . At the same time, the scalar field is a purely gauge one as it can be seen,

at the classical level, from the reparametrization

 → ̄ ≡  − 1

 → ̄ ≡   → ̄ ≡ 

of the jet bundle corresponding to the considered field theory.

6 Conclusions

In this paper, we analysed the consistent couplings that can be added to a massless free

field theory comprising one real scalar field, one real spinor field, and one Abelian 1-form,

using the deformation of the solution to the classical master equation [12, 13], supple-

mented with specific techniques of local BRST cohomology [14, 15, 16]. The procedure,

supplemented with some reasonable hypotheses, standard in field theory, led to two classes

of interacting theories, each of them containing some quadratic, derivative-free interaction

vertices naturally interpreted as mass terms for various field spectrum components. The

first class exhibits a massless Abelian 1-form, a massive scalar field, and a spinor field
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that is massive unless this involves electromagnetic interaction. The five physical degrees

of freedom labeling the models in the first class are distributed as in the starting model,

i.e., two associated with the 1-form , one corresponding to the scalar field , and two

fermionic degrees of freedom coming from the spinor field . The second class displays

a massive 1-form, a massless scalar field, and a spinor field that is massive unless this

involves cross-couplings with the massive 1-form. The scalar field becomes purely gauge

in this context, while the 1-form gets an extra physical degree of freedom.
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