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Abstract

Here, we address the construction of a special class of D = 8 self-interactions for
a collection of topological BF models via the antifield-BRST deformation method
based on the computation of the local BRST cohomology corresponding to the
free limit under some standard “selection rules” from Quantum Field Theory. The
interaction vertices provide a generalization of the famous BF self-couplings present
in the D = 2 gravity formulation via topological BF theories.

PACS: 11.10.Ef

1 Introduction

One of the striking features of topological field theories [1] is the relationship of certain,
interacting, non-Abelian versions to the Poisson algebra [2] present in various versions
of Poisson sigma models [3]-[9], which are essential in the correct description of two-
dimensional gravity [10]-[20]. Moreover, pure three-dimensional gravity is just a topo-
logical BF theory and, concerning the higher dimensional case, it is known that General
Relativity and supergravity in Ashtekar formalism may also be formulated as topological
BF models with some extra constraints [21]-[24]. This is why the construction of self-
interacting BF' theories may be crucial in understanding higher-dimensional gravity and
possible supergravity theories.

This paper is devoted to the construction of consistent, non-trivial D = 8 self-
interactions that can be added to a finite collection of free, topological BF models with
a non-standard field spectrum, consisting in four sets of form fields with the form degree
equal to 0, 1, 3, and 4, in the presence of several selection rules typical to gauge field
theories, namely, analyticity in the coupling constant, space-time locality, Lorentz covari-
ance, Poincaré invariance, and preservation of the differential order of each field equation
with respect to its free limit. This is done by means of the antifield-BRST symmetry
[25]-[28] and, more precisely, on the deformation of its canonical generator [29]-[31] by
means of cohomological techniques adapted to the computation of specific sectors of the
local BRST cohomology [32]-[34]. The results exposed here add to the previous ones ob-
tained by the authors and related to various self-couplings in single or several topological
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BF models in various dimensions emerging from a Lagrangian or Hamiltonian approach
based on the BRST symmetry [35]-[46].

Our paper is divided into introduction, three main sections, and conclusions. Section 2
analyzes both the Lagrangian formulation and BRST symmetry for the considered, finite
collection of A free topological BF models evolving on a Minkowski D = 8 space-time of
‘mostly positive’ signature. Section 3 synthesizes the construction of the deformed, non-
trivial solution to the master equation that complies with all the imposed selection rules
via the detailed computation of the necessary cohomological ingredients. Finally, section
4 reveals the Lagrangian formulation of the resulting D = 8 self-interacting BF theory
and a key interaction vertex that is quadratic in the BF 4-form fields and generalizes the
BF self-couplings present in the D = 2 gravity formulation via topological BF theories.
Succinctly, we only mention that all the components of the deformed gauge theory are
modified through the deformation procedure with respect to their free limit and disclose a
generating set of gauge symmetries for the D = 8 self-coupled model with an open gauge
algebra and some on-shell reducibility relations.

2 Lagrangian formulation and BRST symmetry for
a collection of D =8 free topological BF models

The starting point is given by the Lagrangian action for a non-standard (finite) collection
of Abelian topological BF models in D = 8

Ol AZPT]) (1)

L [0] DL 13 ML 8 a a
S* ., B Ay, B*| = /d x(Buﬁl‘cpa—l—BWpT
defined on a 8-dimensional Minkowski space-time manifold endowed with a metric of
‘mostly positive’ signature, o = (— + ---+). We assume a finite collection of BF fields

o [
in D = 8, namely the scalar—vector pairs {[go}a, Ba} and the three-form—four-form pairs

B8] [4] -
Ag, B* b, witha =1, A (A > 2), whose coefficients are to be denoted without reference to

their form degree simply by ¢,, B, A,”?, and B}, ,, respectively. This BF field spectrum

ppt
is non—standafc]l ir[l]the sense Flalat[ }Ve discarded the vector—two-form and two-form—three-
1 2 2] 3

form pairs < A,, B* » and < A,, B* ¢ due to our aim of exhibiting just a special class of
self-interactions that generalize those from D = 2 BF-based gravity and therefore depend
only on the four-form coefficients By, ,. in a background of the undifferentiated scalar
fields {p,}. Everywhere in this paper the notation [, --- ;] signifies the operation of
fully antisymmetrization with respect to the (Lorentz) indices between brackets, defined
via the next conventions: only the independent terms are taken once without further
normalization factors, the expression f, .., is identified with a scalar (f,,...,, = f), the
quantity f,,..,, with a 6-vector (f,,..,, = fu,), and any negative label of a Lorentz index
defines a vanishing term, f, .., , = 0. For further computations, it is useful to denote
the BF field spectrum in a collective manner by

o0 = {goa,A’“’p,B“ BZ} (2)

a QvpT?
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The stationary surface of this free, non-interacting BF theory is defined via some linear
field equations of derivative order equal to one

fff = —8AB§

b2 §Po - 5g§L = 8[MAVPT] ~ 0, (3)
i
555 = 0"a

7))
~~

where is the symbol of weak equality.
We work with a generating set of (non-trivial) gauge symmetries of action (1) like

59041 (pa = O
vp __ vp
5Qa1 @ao = 69&1 AZ P fry a[:LE(;O)a (4)
590‘1 B;wpv— = —50 51(14,0))\/wp7—

5QC¥1 Ba . —28>\f((1170))\‘u

where the gauge parameters were collectively denoted by

a1 A a a
QM = {E(éfo)m 5(4,0))@1//)7’7 g(l,o)ku} (5)

and represent the coefficients of some arbitrary form-fields of degrees 2, 5, and 2, respec-
tively, defined on the chosen D = 8 Minkowski space-time manifold. The supplementary
two-index pair (m, 0) marks the form degree of the BF field whose gauge transformations
depend on the corresponding gauge parameters (for instance, m = 3 in ef‘?f‘ 0)a signifies that

2
these are precisely the coefficients of the two-forms [61(3’0)(1 involved in the gauge trans-
(3]
formations of the components of the three-forms A,) and the fixed (second) label “0”
refers to the reducibility level (the gauge parameters are also known as the zeroth order

reducibility parameters). The above generating set of gauge transformations is Abelian
[(59 Moy s 0g@ay | P =0 (6)

for any two arbitrary sets of gauge parameters of the type (5) denoted by QM1 and
O@)ar

It is important to observe that the considered generating set of gauge transforma-
tions is also reducible (the gauge generators are not all independent), with the mazimum
reducibility order equal to 6. With this observation at hand, it can be shown that the
non-trivial gauge variations from (4) vanish iff we perform the following transformations
on the gauge parameters (5)

(3 0)a ( ) ap\ ”
Qaz) = _68 54 DApvpor (7)
Q02 ) _38 5 (1,1)Auv

S B0 = 0= QM - QM (Q%) =

nontriv

40 uupm‘(
10w/(

where we used the compact notation

O = {5?371),17 5((14,1),uupcr7'9’ f?LUWP} ’ (8)
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The variables (8) are called the reducibility parameters of order one, symbolized by the
lower 2-index pair (m, 1), where m has the same meaning like in the case of notation (2)
and the index “1” marks the reducibility order. Next, we notice that the transformed
gauge parameters from (7) vanish (strongly) iff we realize the next transformations on the
first-order reducibility parameters (8)

Q01 (Q02) = 0 = Q92 — Q02 (0%) =
€310 (7)) = 0"€32)a
f?4,1),ul/po7’9 (Qag) = _78)\5((14,2))\;111;)0'70 ) (9)
g((ll,l);wp (Qa3) = _48>\£?1,2))\qu

where
O = {6(3,2)(17 5?4,2)/1,1/p0’7’9777 f?l,Z),ul/pJ} (10)

are named the reducibility parameters of order two and are labeled by the lower index
pair (m,2). Now, we observe that the first-order reducibility parameters from (9) are
(strongly) annihilated iff we enforce the next transformations on the second-order re-
ducibility parameters (10)

Q2 (Qa3)|nontriv =0 Q* — {6(372)a = 0’
a ag\ A¢ca
O3 (Qa4)|n0ntriv = { 5(4,2)/wp076’7] (Q 4) = —80 5(473))\;1,1/;)07'977 }} ’ (11)

5((11,2),uupa' (Qa4) = _58)\5((11,3))\;”/,00

where
Q™ = {5?4,3)/\qu07077’5?1,3)/“4’”} (12)

represent the reducibility parameters of order three, labeled by the two-index pair (m, 3).
Next, we notice that the non-trivially transformed second-order reducibility parameters
from (11), Qs (%) vanish strongly iff we transform the third-order reducibility

nontriv’
parameters (12) into
Qe (Qa4)|nontriv =00 — {5?4,3))\pr07'077 = 07
Qe (Qas)’nontriv = 5?1’3)/“/,00'7'(9015) = _68)\5?1,4))\/“/&77} ’ (13)
with
Q% = {51(11,4);11/;)07'0} (14)

the reducibility parameters of order four. Similarly, the non-trivially transformed third-
order reducibility parameters from (13), Q% (Q5)| oo = &1 5)p0- (27, vanish strongly
iff we transform the fourth-order reducibility parameters (14) into

Qe (Qa5>|nontriv = 5?1,3)uup07(ﬂa5) =0+
Q% — {Qa5 (QQG) = ga (QQG) - _78)\5?1,5))\/wp07'9} ) (15)

(1,4)pvpotd
with
0% = {5((11,5),uupa'7'077} (16)

the reducibility parameters of order five. Finally, the transformed fourth-order reducibility
parameters from (15), Q% (Q%) = £} 4),p070(£2%°), vanish strongly iff we transform the
fifth-order reducibility parameters (16) into

Q% (Q°) = ¢f (Q%) =0 <=

(1,4)pvporo
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Q% — {Qaﬁ (Qa7) = 5?1,5)#1/;)0’7‘977(9&7) = _88)\5?1,6))\uup07977} ) (17)

with
Q7 = {5?1,6))\#1/;)07'077} (18)

the reducibility parameters of order siz. The reducibility of (4) stops in order 6 since
EL5)uporon(2°7) in (17) vanish iff all the reducibility parameters of order six from (18)
also vanish.

In conclusion, the considered collection of free topological BF models in D = 8 is de-
scribed at the Lagrangian level by a set of linear field equations and an Abelian generating
set of gauge transformations that is reducible of order six or, in other words, by a normal
gauge theory of Cauchy order equal to 8.

In the final part of this section we construct the antifield-BRST symmetry for this
model, which can be shown to decompose into

s=0+7, (19)

where s signifies the BRST differential, 6 the Koszul-Tate (co)differential, and ~ the
exterior longitudinal differential (which may be just a differential modulo delta in more
general cases)

=0 {6°=0, 6y+75=0, ¥ =0}, (20)

In what follows, ¢ denotes the Grassmann parity, ant and pgh stand for the two different
N-graduations of the BRST algebra on which the operators ¢, 7, and s act (ant, known as
the antifield number, is specific to the Koszul-Tate differential and pgh — the pure ghost
number — to the exterior longitudinal differential), while their difference, pgh —ant = gh,
is named the ghost number and provides a Z-graduation of the BRST algebra.

In order to construct the differential BRST algebra (A, s), we initially introduce the
BRST generators, which are of two kinds: fields/ghosts and their antifields. Related to

the first kind, we associate ghost fields with all the gauge and reducibility parameters of
various orders, (5), (8), (10), (12), (14), (16), and (18)

— a a

o A a a a1 A
QM = {6(3/:0)aa6(4,0)/\;11//)0'75(170))\;1,} =Nt = {n(?ifo)wc(&o)/\uvpm0(170)/\/1} ’

(21)
0" = {6?3,1)(175((14,1);1,l/p0'797£?1,1)u1/p} — = {77?3,1)11’ Clavyporos C&J)W’P} ’ (22)
Q% = {6(3,2)a75?4,2)Auupare7f?I,Q)uvpo} — = {77(372)117 ST — 0?1,2),”,;0} (2
Q™ = {5?4,3),\Wpafom’5((11,3)Wpaf} — = {0214,3»#%007977’ C(al:S)MVPUT} ’ (24)

O = {5?1,4)A/4Vp07’} — = {0?1,4)>\qu07} ’ (25)

Q% = {5?1,5)>\qu079} — "= {C(alﬁ))\w/pdfé’} ’ ( )

(27)

QY = {5?176))\;11//)07'977} - na7 = {061176))\;;1//)07—977} ;
such that the generators of the BRST algebra are precisely
D4 = {00, 7™, 02, e, 0o, e, T} (28)

where ®?° are the original BF fields (2). The second type of BRST generators are the
antifields respectively corresponding to the field and ghost spectra

O = O e e Mg T Mg een | » (29)
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with
oF = { *a A*a Brhveo B*u} R *q C*)\/u/po' C*)\,u (30
ap = ¥ uvpr Pa BPo gy Nay = 77(3,0))\u7 (4,0)a ' (1,0)a [ °
* *a *uvpoTh * UV, * *a *A\uvpoTo * UV PO
Nay = {77(3,1);u O(zfl)p ’O(lﬂl)f’ } o Mag = {77(3 2)» C’(4 g)ap 70(5230,1 } ) (31
* * AV poTh * UV POT * *AUVPOT
Nay, = {0(4 g)p ! Clugfa }7 Nas = {C(l,Z)ap }> (32
* *AuvpoTl * * AV po Tl
Nag = {C(l,g)ap } v Moy = {C(l,g)ap 77} : (
Meanwhile, according to the antifield-BRST method, we endow the field /ghost spectrum
with the following properties

)
)
)
33)

e(n™) =k mod 2, pgh(®*) =0, pgh(n™)=*k, (34)
e(®y) = (c(®*) +1)mod 2, ant (®;)=1, ant(n,)==Fk+]1, (35)
ant (@) =0, pgh(®%) =0, (36)

with k =1,7.
The actions of the operators § and 7 on the BRST generators (28) and (29) that
implement the required properties are defined by

604 =0, 494 =0 (37)
together with
*Q 5SL A Ra *Q — 5SL A Ra
0p™ = _w = 0°By, 577(37*1),“1#2#3 = _W =40 B)\Nlﬂ2ﬂ3’ (38)
*a . 1(3)+1 A xa Y
577(3,l(3)),u1~~,u2_l(3) - (_) (3 o Z(B))a 77(3’1(3)*1»\#1'“#2_1(3)’l(3) - 727 (39)
5SE 6SE
Kfyopy _ Al Aransiig) *H =__" _ _HH
50(41 l)a4 - 5Ba s 9 1Aa2 i 50(1,1—1)(1 = 6321 =—0 YD (40)
OC gy " = (D) DG Hm) =0T =m, m =14 (41)
and respectively
Ho— Ho e fla_i(3)] —
=0, (31( )a = 5[“177(3,1(3)+i()2 , 1(3)=-1,1, @32 = 0, (42)
— A
fyOml(m)).u’l Pmi(m)y+1 —(m +1(m) +2)0 le (M) F DAL a1 (m) 17 (43)
l(m) =—1,6—m, m=1,4, ¥4, 7_pyp py =0, m =14, (44)
where we employed the notations
AMVP = n/(i?)Vp 1a’ yypo‘ - C(4 —1uvpo> Ba = (1,-1)p> (45)
Az(rl/p = 77(3,71);1,l/p7 B* = C(qu(;aa B:“ = C:llf—l)a' (46)

Obviously, the actions of the BRST differential on the BRST generators follow from
(37)—(44) via expansion (19). We mention that all the operators ((co)-differentials) from
(19) are assumed to act like right derivations.

A major feature of the antifield-BRST formalism is given by its canonical action in
a structure named antibracket, which is denoted by (,) and is defined by decreeing the
fields/ghosts respectively conjugated with the corresponding antifields

(@4, @) = 5. (47)
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The canonical generator of the antifield-BRST symmetry, S, is a bosonic functional de-
pending on the fields/ghosts and antifields, of ghost number 0, in terms of which the (right
derivation) action of the BRST operator s is recovered precisely via the antibracket

VE € A, sF=(F,S), £(S)=0, gh(S)=0 (48)

and the second-order nilpotency of s is equivalent to the famous classical master equation
satisfied by S
s> =0%(S5,9)=0. (49)

In view of this, S is usually referred to as the solution to the classical master equation.
In the case of the model under study, the solution to the classical master equation can be
taken as

S = /dsl’ (Bzau@a + Bzypga MAW)U] + Al 6[“77(3 0)a 5Bzuypaa)\0g4,0))\,uupa

pvp

—QB* O (1,0)Ap + 77(3 0)p 8 77 3 1a GOTSPUTaAOi (4,1)Auvpor
30(*% G 1,0\ T 77 3 Dy o N(3,2)a 7C§flfpweyc (4,2) A\uvpor6

—AC 1, N — 80*;‘;’)”:79“8AC (a3nuwporon — D05y NCH syaupo
—6C{ 57 O Cli s — TCH " O C sy vpore

_802‘1!“5’PU7'9“8>\C 1,6 Apupm‘@n) . (50)

(1,2)Auvp

We organized S according to the increasing values of the antifield number of its compo-
nents and thus it contains pieces of ant ranging from 0 to 7. The component of antifield
number zero always reduces to the Lagrangian action of the considered gauge theory (the
first two terms from (50) provide precisely (1)). The elements of antifield number one
are always written as the antifields of the original fields times the gauge transformations
of the corresponding fields where the gauge parameters are replaced with the associated
ghosts of pure ghost number 1. The components of antifield numbers strictly greater
than 1 from the solution to the classical master equation (if any) are present only if the
chosen generating set of gauge transformations for the theory under study is reducible
and/or generates a non-Abelian gauge algebra. The terms related to the reducibility func-
tions and relations of various orders specific to the generating set are always linear in the
ghosts of pure ghost numbers strictly greater than 1. In the case of our D = 8 BF model,
this type of components covers the remaining, last eleven elements from (50), of antifield
number ranging between 2 and 7.

3 Antifield-BRST deformation method and its appli-
cation to a collection of D = 6 BF models

3.1 Brief review to the antifield-BRST deformation method

It is possible to reformulate the long standing problem of generating consistent interactions
in gauge field theories via the antifield-BRST deformation method [29]-[31] based on the
observation that, if consistent couplings can be added, then the solution to the classical
master equation of the original gauge theory, S, may be deformed into a solution to the
classical master equation for the coupled gauge theory, S,

S=S5+AS1+ NS+, £(58)=0, (51)
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with A the coupling constant or deformation parameter. The projection of the key equa-
tion 5 (S S) = 0 on the various, increasing powers in the coupling constant \ is equivalent
to the chain of equations

A L(89) =0, (52)
A (S, 8) =0, (53)
Ao (S, ‘$+§wh&y_o (54)
N (85,8) +(S1,9) = (55)

known as the equations of the antifield-BRST deformation method. The functionals S;,
1 > 1, are known as the deformations of order i of the solution to the classical master
equation. The first equation is fulfilled by assumption, while the remaining ones may be
expressed (via the canonical action s- = (-,.5)) like

A sS=0, (56)
/\2 . SSQ + 3 (Sl, Sl> = 0 (57)
58)

/\3 . SS3 (Sl,SQ) — O, (

The solutions to (56) always exist as long as they pertain to the cohomology of the BRST
differential s in ghost number 0 computed in the space of all functionals (local and non-
local) of fields, ghosts, and antifields, H%(s), which is generically non-empty. All trivial
first-order deformations, defined via s-exact elements of H°(s), must be discarded since
they produce trivial interactions. The existence of solutions to the remaining deformation
equations, (57), (58), etc., has been proved to exist [29] if we enforce no restrictions on
the interactions (such as the space-time locality).

On the other hand, if we impose some restrictions on the deformations, like for instance
that S should be a local functional, then the construction of consistent interactions via the
antifield-BRST method must be approached differently. Assuming the space-time locality
of deformations, if we make the notations

S1 = /dsx a, Sp= /de b, S3= /de c, (59)
%(51,51) = /dgl' A, (Sl,SQ) = /dgl' P, (60)

then equations (56)—(58), etc. take the local form

sa = 0"j,, (61)
sb+A = 0k, (62)
sc+I' = 0/l (63)

Thus, equation (61), which is now responsible for the non-integrated density of the
first-order deformation, is equivalent to the fact that a should be a (non-trivial) element
of the local cohomology of the BRST differential at ghost number 0, a € H° (s|d). In
the next subsection we will construct the general, non-trivial solution to the first-order
deformation equation, (61), but in an even more restricted BRST algebra than A4),c. such
that to comply with all the standard “selection rules” imposed on field theories.
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3.2 Deformed solution to the master equation

The goal of the present paper is to generate all non-trivial, consistent self-interactions that
can be added to the free model exposed in Section 2 with the help of the antifield-BRST
deformation method briefly reviewed in the previous subsection. We adopt the standard
selection rules from field theory on the deformed solution to the classical master equation,
(51), namely, analyticity in the coupling constant, space-time locality, Lorentz covariance,
Poincaré invariance, and conservation of the differential order of the interacting field
equations with respect to their free limit (A — 0). Due to the space-time locality hypothesis
and based on the first notation from (59) and on equation (61), it follows that the non-
integrated density of the first-order deformation, a, should be a non-trivial element of the
local BRST cohomology H°(s|d). The last cohomology space will be computed in the
BRST algebra of local “functions”, which, in addition, must comply with all the other
selection rules.

Due to the fact that the starting D = 8 collection of Abelian BF models is a normal
linear gauge theory of Cauchy order equal to 8, some standard results from the literature
[32] adapted to this case stipulates that one can take the first-order deformation to stop
at antifield number 8. Moreover, it can be shown (see, for instance [44]) that the last
component, ag, can be taken as a non-trivial element of the cohomology of the longitudinal
exterior differential H(7), such that we can write

8
a = Z ag, (64)
k=0

so equation (61) becomes equivalent to the tower of equations

asg = 07 (65)
6ak +yap_1 = aﬂjkfl,/u k= 17 87 (66)

where the components of a satisfy the properties
e(ax) =0, gh(ax) =0, ant(ar) =k, pghla;)=~Fk. (67)

If we manipulate the previous equations, we reach the conclusion that the non-trivial
solution to the equation (65) satisfied by the component of maximum antifield number
from (64) can be generated, without loss of non-trivial terms, by ‘gluing’ the ghost basis
of pure ghost number equal to 8 from H§(7y) to the non-trivial elements of H(d|d)

as : ¢* € Hy(y) «— ag" € Hy™(d]d), (68)

where Hi™(0|d) signifies the local homology space of the Koszul-Tate differential at an-
tifield number 8 and pure ghost number 0 computed in the space of gauge-invariant
functions. It i easy to see that the ghost basis of pure ghost number equal to 8 from
H3(v) is generated only by the monomials

a b
{C<4,3>u1~--us 0(473)”...,,8} : (69)
On the other hand, it can be shown [43] that H(d|d) is generated by the elements

inv Alpg-pg _ 8fA TR
ag” — Iy (f) = Dy 08
1
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82fA N| *1ig) * * * ]
—awd 8(,0 (C(llgl)dllwc Hg 1)da 0(1/11 dlﬂscr 1#(7)?;2 +C 1#;1)dlﬂ5cv 111%22#8
17 dy

[ 1 *f2 i
Lol iz ) I <C’ el C*M
(1,2)d (1,2)d2 awdl adeasp 1 4)d1

(1115 rxpig 7 *us * [y oy rEs fg HT *us] *[fg By s e YR ]
+C13c11 010(120 +Cl2d1 Clldz C 1)ds +Cl2d1 ClO)dgclo)dg
| O lHakans remabs g C*M7M8]> 1 o fe <C’ s oyt

1 l)dl (1 1 d2 1,0 d3 aSOd .. as& 1 3)d1 1 —1

+C 1;121) dlm C:fgufg C(*lui D, C’( ] D, + C*[uluzua (rFHabis e oy

Cr*#g]

)dz (1,—1)d3

* * g
.00 04,1 1,

C*Ms]

(1,0)d;  “(A,1de ~(1,—1)dz "~ (1,—1)da

(11 Hoths YRRty YRHG Iy *Ms (1 b rrpig iy sG]
+ONE O e, CiaadCa e, T Caom CaomCaangCa 0)d4>

a5fA [ * * ] [ * * * *[1g]
P 0o, (Cul;l)dlhc Pona Cina T O CiomCa 1aCuna Ca 1,
1 5

6 £A
0(1%1/sz0 1“8“32C(fgufgc(fz1)d4c(f8—1 ) + —agod 97 (C’ 1“11)’;?“30 f‘il)d : C(ffil)ds
A
+C*[#1N20*#3N4 C*#5 . O*#S] + 87f C*[#1N20*#3 . O*#S]
(1,0)d1 ~(1,0)d2 ' (1,—1)d3 * (1,—1)d D, - O, (1,0)d1 ~ (1,—1)ds © (1,-1)dy
anA " -
(9%1 - Oy C(lal—l)dl o C(lﬂs—l)dS’ (70)
1 8

where f& = f2 () stand for some arbitrary, smooth functions allowed to depend only on
the undifferentiated scalar fields {¢,}. Inserting results (69) and (70) into (68), it follows
that ag reduces to

as (7) = §€M1 Mspg,}lb ps(2)0(473)01~-~psC€4,3)u1-~us’ (71)
where elements P, read as in (70), with

fA (SO) — ZLab (80) ) Zab = Zba- (72)

The remaining pieces from (64) as solutions to equations (66) follow by direct compu-
tation and will be given below. We observe that (71), so actually the entire first-order
deformation (64), is parameterized in terms of a single set of symmetric, smooth functions
depending on the undifferentiated scalar fields, {Zu (0)}, 77

Once we have completed the construction of the first-order deformation, it can be
shown by direct computation that (Si,S1) = 0, so we can take all the higher-order defor-
mations, as solutions to equations (57), (58), etc., to vanish

Sy =83 =" =0. (73)

Putting together the results deduced until now via (51), we conclude that the non-trivial
deformation of the solution to the master equation, which is consistent, complies with all
the working hypotheses, and provides all D = 8 self-interactions among a non-standard
collection of topological BF models ends at order one in the deformation parameter

where S is the solution to the master equation for the starting free model, (50). Assembling
(74) according to its components organized along the increasing values of the antifield
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number, we can write that
8
S = Z (/ d*x EJ) y € (EJ) =0, gh (LJ) =0, ant (ﬁj) =J (75)
=0

The pieces of antifield number 0 and respectively 1 read

Eo Ba 8“14,0a + BZ hiy

A
(8[“11452#3#4} + §5M1"'M8Zab (90) BZ4"'M8> , (76)

El —  Are (a[lh 2y Ag“lu.ﬂgzab( )C€4,0)u4~~u8) — 532’“”'“48PC€4,0)pp1-~u4

H1kots (3 0)a
8 be

% a b c
—B" (Zapc(l,o)pm +BAST A, B p4C(470)u1p5~~ps> : (77)

The terms of antifield number 2 are structured as follows

Ly = U?g,O)uluz (a[uln/(?,]l)a — A Zap (i) C& 1)us-~us> 66Pkf(l))étusapc

4,1)ppig - pis
0z,
* g a C b c
+3C (1 é)); (_apC(Ll)pulm + AT dp, 55 Bo- 040(471)u1u205~~'ps>
*p ab 4xa a *p. b
+3)\€M1 MSBd11 (890d P1I Mo + agpd agﬁd Bd22 P1P2M1M2> 0(4,1)M3‘“M8
1 1 2

aZab *01pP a Zab *P *p. b
aSOd (1,0) B czil D 330d Bd11 d22 0214,0)91%#1#2#3 0(470).“4"'/‘8
1 2

The non-integrated density with the antifield number equal to 3 is given by

Ly =150 (amn(w)a AT 7 () CE’4’2)H2,,,%> 702‘1 M689042 Yoty

(1,2)pp1popis prps " (4,2) o3 ps e ps

* Z C
~Ca” (4apca 3 depy o )
’ 04

0?7, PZ,
0 Py 0 Pds &Pdl &PdQ &Pdg
aZab

aZab *p1p 82Zab *p *p. *a *0  xq b
-3 (@CuéfzﬁdellB ") At — 25 B0 | Ca
1 2

dy

C*P1P2 +

gt [4 (3 e B:lle*”2> BB

P1P2P3H1

O Zub P Zay .
— 10Xt s ( agodb Clitya, +3 e B
1

agpdl agde ®, O)dl

a Zab

B B*PzB*f’3> e
a@dla%ga@ds BT (

Ob
4,0)p1pap3piy o~ (4,1) g pg

Related to the piece of antifield number 4, we have that

aZb
*[L m a C b c
+50(1é)a ) (_apc(lﬁ)pulmﬁu + 1A —— A, Bp1 p4C(4,3)u1~~u4p5“~ps)

a2Zab * * * *
1 2
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O3 Z 4 O Z g
+ 6 a *P1P2 + a B*Pl B*Pz B*Pg B*P4 B¢
( 004,004,004, ON T Dy - 0oy, " d2 s | e
0Zap 0?7 P Zaw
a C*Plpzﬂ:s + (3 a O*P1Pz + a B*P1B*Pz *P3
|:890d1 (L 0¢q, 04, (L0 0pq, 004,04, @
0Zap

aZab *01 P a2Z0Lb *p1 %P *a *P1  xq b
_(890(11 (1,6)31 agodla@@BdllezQ 77(3,0)p1p2_agpdlelln(&l)pl 0(473)//‘1'“//‘8

A*a

P1P2P3

1,1)dq

_|_5)\€M1"'M8 aZab C*Pl ‘Pa 822‘117 (40*P1P2P3B*P4 + 30*:01[’2 C*P394 )
890d1 (1,2)dq 3%1 a(p (1,0)d1 ~(1,0)d2

P Zap O*Zap
a 0*0102 B*PaB*P4 + a B*Pl .. B*P4:| X
P, 89%28%13 (L0 Opg, -+ 0pq, ™ .
3

+
a b a b
X (0(4,0)p1~~p4u10(4,2)uz~~us + 50(471)121“%4#1#20(4,1)u3~~us) :

(80)

Along the same line, we can organize the terms of antifield number 5 and respectively 6

like
8Zab 0*Z b
_ *q o (L= Lb *P a *P p. *P
£ 601;’ 58p014)p 1 Ag 1 8 { E 10(113) I 5 [9 19 y X (Ola)dlllB ’
37 b
*01 Po P *kPypP al *01 PP *0, * 01 P *03 P, *0
20 1 2 30(14[1) 52) —d B - (20(111 2 3B 4 3016)2 01%)42> B 35

0° Zav B1... B } X
1 Ps

N7
+2 a C«*P1P2 B*PsB*P4B*P51 +
agpdl v agpd‘l (1 0) da agpdl Ce. 8g0d5 d5(3,1)p1
X <_Cg470)pl~~p5 057473)“1"'“8 + 6061471)91”/)5#10?4 2 > (81)

OZap 0P Zy,
Ln = _70*#1 #eapca 4 AehaHs a *P1 ‘P6 a (60*P1 PsB*Pes
P Za
150*,01 P40*P5P6 100*91[’2:030*[’4%96) 15 a |:<C*P1 P4B*P5
+1oC 054 Cane T 1900 ha Cang ) T 04,004,004, (1,2)d; Py
4
9 ?ag <4C(*1p11pc2lf3B*p4
Py Py

* * * * a Z b * * *
_|_90 fBPZ C 1%%?32) BdgsBdfﬁ 4+ 158g0d aago C lpbpcgllB P3 ... Bd§6
1 5

0°Zap P *p b b
B 11 o ’ 0(4 1)p pGC(473)/'L1"':U‘8 + 50?4,2)p1-~pau1 0(4,2)u2~-~us . (82)

8%1 -0
Finally, the terms of antifield number 7 and respectively 8 present in (75) display the

HACTECLLs, ) Bile + Ol Cla.Cila,] + 5

expressions
0Zap P Za
£ __80*M1 M7apc — \etahs a 0*01 Pr 7 a ( *P1 P6B*P7
(1,6)ppay -y {&Odl (1,5)d1 + &pdla@@ (1,4)d1 ~d2

P Z
+30*Pl Ps 0*0607 + 50*/’1 Py C*Psﬂa/’7> + a {30*/’1 P B*Pe‘ B*P?
(1,3)d; ~(1,0)dz (1,2)d; ~(1,1)dy asodla%bagﬁdg (1,3)dy
[(30*1[’12 940*556:)02 + 202‘1911%:030*[’4%196) B*P7 + 30*1:01192P30E"194(1)P220E’<1P%P23i| }
8 Za * * * * * * * * *
v {0 (e + SO, ) B + SCI Cits, it | B
P, Pdy
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PZu
—a O*p1PZPSB*P4 30*P1f’2 C*Psp4 ) B*P5B*pGB*p7
a0, (citsir iz + .0ydz ) Bas” Ba," Ba

7,

Gl B B+

a Zab
&Pdl T 890d7
a b
X Cla2)py 0 Cl63pay (83)

*P1 *p7
BB }><

* 82Za * * * *
C P1 8 | b [80 P1 P7B Ps +7 (40 fil)dpﬁc 11761722

»CS — _5M1 Hg
o P, (1,6) d1 agodl agocb (1,5)d1

2

A {azab

8 Z, b
k01 P, *PgP7P k01 P, *Pg P, a 2 %01 P, * P
—1-801% 50161)7l 8+ 50112 40 5 8):| + 7 {29 dla dﬂ ) [ (C(l }L)d1GB '

*P1Ps (Y*¥P6PT *P1Pa (1*¥P5P6PT *Ps *P1Pa (1*P5P6
+6Ol3 C’10)d2+10(712 Clld2>Bd (3012)d1010d2
47
0*Z ab

Bpg, -+ Oy,

FIOCA COLAre ) Bay 4+ 30C 0 CLlgs, Cilagn, | Bite + 1500 Cll, Clafa it |
a Zab * * * * * * * * * *

#1050 [ (Cith Bl + SCUACilifs,) i +6CH i, Citigi Cllas,| B Bil

1 5

+40*P1P2P30*P405P6> C*P7P8 i| +

and Cand ) ©a,0)ds { [(20*1,;5 i By + 15Cy 1O,

7, (

_|_ -
a‘Pdl -0 Pdg

*P1P2P3 *P4 *P1P2 *P3P4 *05 . R*Ps
4C 0 e, Bay' +15C 1 gya, ClOd2> By,” -+ By,

" Zy,
4 a C*P1Pz B*Pa . B*Ps
+ 8 a(pd ]. O)dl d7 } +

B Zy,

g, -+ Oy, Bay™ -+ 8} Cla3)0105 C43)y s

(84)

With all the above results at hand, in the sequel we address the defining properties of
the Lagrangian formulation of the self-interacting D = 8 BF model behind the deformed
solution to the master equation expressed by (74), whose various components introduced
in expansion (75) are listed in formulas (76)—(84).

4 Lagrangian formulation of the self-interacting model

Once the deformed solution to the master equation has been completed, (74), from its sec-
tors of fixed antifield number j = 0, 8, provided by (76)—(84), we read all the information
regarding the gauge structure of the associated self-interacting D = 8 BF theory.

The piece of antifield number 0 from (75), namely (76), is both antifield- and ghost-
independent, so it involves only the BF field spectrum and its space-time derivatives.
Moreover, it defines a crucial ingredient of the D = 8 BF self-coupled model, namely, its
Lagrangian action

= | 10] [1]a E] [411 S a Ay a [11 Am2ishal
(‘Ofl’B ) a’B - d”x [Bma Pa + BM1M2H3M4 (8 a

A
+§€u1 " Zap () stuemwﬂ : (85)

We notice that the only vertices due to the self-interactions couple the two components
of the BF 4-forms from each term via the elements of some symmetric functions Z,, ()

A
Zetmis 70 () B B Zob = Zpa (86)

2 1o Hg g Mg e 7 g )
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and provides the D = 8 generalization of the well-known BF self-couplings present in the
D = 2 gravity formulation via topological BF theories [17]

A
D=2: ngzzab (0)Bg Bl Zab = —Zpa, (87)
07y, 074 07, —

Lgd—— + Zpa +Zg——=0, abc=1,A. 88
dpy g g 53)

We mention that the starting free Lagrangian action in D = 2 has the simplest field spec-

1]
trum, consisting only in two kinds of BF forms, namely, [ga and B, while its Lagrangian

density is similar to the first term from (85). Relations (88), obtained as the consistency
conditions specific to the two-dimensional case, together with the antisymmetry of the
Z’s, allow for an interpretation of the functions Z,;, () as the components of the (Poisson)
two-tensor corresponding to a Poisson manifold, [p,, ¢,] = Zu (¢), where (88) play the
role of the associated Jacobi identities. Here, the vertices (86) still generalize those from
the D = 2 case, (87), but the Z’s are symmetric by contrast, so Z () no longer have
a definite geometric interpretation. The above vertices in D = 8 can be interpreted as a
mass-term for the generalized tensor field B%1#2H3ka,

The stationary surface of the self-interacting BF model (85) is defined by the equations

St _gppa o A pypg 0Zbe b c
Sp, 9 BP —J_LZg dp, BM1M2M3M4BM5M6M7M8
= S a
L TS A—— 4
S 05 _ SARIH2P3 ]48 BPM1M2M3 ~0 (89)
. - 35L [ AP2H3Ha R b ~ Y
ey N - [~ — 1 17 Mg
0de 6Bﬁ1u2u3u4 g Aa - e ZabBME,MeM?Ms
§8L _ sSE

iy, ~ong, — "%

Comparing (89) with (3), we observe that the self-interacting BF theory possesses some
non-linear field equations with respect to some of the fields, by contrast to their free limit,
meanwhile preserving their differential order being equal to one.

From the elements of antifield number 1 in (75), given by (77), we read the deformed
set of generating gauge transformations corresponding to the self-coupled action (85) by
detaching the antifields and replacing the ghosts with the corresponding gauge parameters
from (5)

(_SQOq Lo = 0
g ) B A = o] Do (0) o)
« pu— s a _ a
00 Bu1u2u3u4 - _58%(470 P Mo i3 fiy

69”1le = _261)5((11,0);)//,1 - 5>\€plmp8%—QLZB21"'P4€((:410)M195"'08

We observe that all the BF scalar fields remain gauge-invariant, like in the free limit, while
the gauge transformations of the 4-forms are not deformed by the added self-interactions.

The components of antifield number strictly greater that 1 from (75), collected in
formulas (78)—(84), provide all the information on the deformed gauge algebra and re-
ducibility of the generating set (90) of gauge transformations.

Regarding the deformed guge algebra, the concrete expressions of the (non-trivial)
commutators among the gauge transformations (90), [(_59(1)01 , (_59(2)%] 0 where & are
introduced in (2) and QM1 and Q@ are two different sets of gauge parameters as in

(5), read

[0a1, Og2rar | | =

nontriv
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J:(SQ(l)al LéQ(Z)al} Aglﬂw?’ = 0

= [59(1)“1 ’ 59(2)‘*1] B piapang = 0, ) (91)
[Sﬂ(l)f"l ) 351(2)&1] Bﬂl = _2ap’§(11,0)py + )‘Malp 5Bb _2apgl(ll,0)pu1
where
Qo = {E/(A?,lgza’ 5?470)u1~--u5’ g((llﬂo)uluz} ) (92)
€a0a =00 oy =0, (93)
€L oy = —200A 1 pavsvavavsve ZZ’” R (94)

@ 822 d z(D)evivovs z(2)dvavsve a
M,ufpl = 4008#1[’11’11/21/31/41/51/6 8—861)5(4 0) 5(4 0) = _Mﬁlul (95)

()avivavs

The notations {5 (4,0) } from (94) and (95) respectively denote the Hodge duals of
’ i=1,2

the gauge parameters {5 54)3)u1 u5} from the two different sets QM1 and Q)1 taken
1=1,2
at the evaluation of the commutators among the deformed gauge transformations
s(@avivavs 1 ()
5(4,0) = 55 ' 8§(Z,g)u4~--us‘ (96)

Thus, we conclude that the deformed gauge algebra corresponding to the self-interacting
BF model in D = 8 is now open, in contrast to the initial, Abelian one, since the com-

1
mutators among the gauge transformations of the 1-forms [B]a only close on-shell.

Next, we analyze the main ingredients connected to the reducibility of the deformed
gauge transformations (90) via the terms linear in the ghosts of pure ghost number greater
or equal to 2 present in (78)—(84). Consequently, the deformed non-vanishing reducibility
functions of orders between 1 and 6 follow from the transformations

1(131!52 (QOQ) 8[# ’(‘321 — et NsZab ((P) 5?471)113.““8
k3! (Qaz) — 5(4 0)ptq s (Q ) = —60° 64 1)ppq - 7 (97)
E0pmus (172) = =30°€1 1) 0,1

2.py Psazbc b
+ACge B f(4 Dy props--pg

€(a 10 (%) = DM1€(3.90 + A8 Zopy (0) E(4 ),
Q2 (Q%s) = f(4 D pig (Q }) =108 5 4,2)ppiy g (98)

5(1 1)pg bt (2%2) = —40° 5 1,2) ppy piafis
_ )\035/)1 s Zbc Bb £

“Hg

p1P4S(4,2) 11 Ho s Ps Py
€(3,2)a (%) = AetHe Zy (o )5?4 3y
Oos (Qa4) = 5(472)#1"'#7 (Q ) = —80° 543 R (99)

S(1 2) gy (Q ) = —50° g 1,3)ppy - ’

4 _pypg Obe
+)\C € dp BP1 045(43 i1 HaPs Py

Qe (Qa5)|nontriv = f(l,3)u1~--u5 (Qas) = —60” g (1,4) ppaq -+-ps? (100)
Q% (Q%) = 5?174»1” Q%) = —70” 515)pu1 (101)
Qaﬁ(ﬂw) = g?1,5)m~~u7<9a7) = —80" 5 (1,6)ppy -7 (102)
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Inspecting the previous relations, we notice that the reducibility functions corresponding
[4]

to the gauge transformations of the 4-forms B are not affected by the deformation proce-

dure, while the others are modified only at the first three stages by terms of order one in

the coupling constant. It is also interesting to observe that the partial reducibility order of

3
the gauge transformations of the 3-forms /[ll is lifted by one unit, from two to three, while
the overall reducibility order of the self-interacting D = 8 BF model is of course preserved
with respect to the free limit. Moreover, some of the associated reducibility relations of
order ranging between one and three hold on-shell, by contrast to what happens in the
free limit
5Qa1(9a2)A51u2u3 )\M“l/"Q“Sbg%i ~0
Ogor (o) @] = Ogen @) B} =0 ,  (103)

nontriv _ b 550 H1 Mz#alh% s5L
a __ a apy1P2P3 ~
5Qal(Qa2)BN - )\M 5Bb + )\M# Msl—p2p3 ~ O

a0 (272 (Q%)) = Mip""$35 ~ 0~ 0
5(4 0) (Qaz (€292)) = 0
0 (02 (Q9)) = paks sk 104
( (%)) 5(10 Vb1 o (Q (Q *)) _L/\MubﬂzpéBb (104
lapypap. 8S
\ +)\MM1M2 3514’31—"2’]3 ~0
( 1 « o lb SL
?3 1)a (Q ? (Q 4)) Mgp g%b ~0
€8s g (275 (200)) = 0
Q%2 (Q% (Q) ={ .4 s O o 8SL (105)
S(171)111112113 (Q ’ (Q 4>) /\MﬂlﬂzuapéBb
L +>\ :];Zl;:ffg) 6A§’§/’2P3 ~ 0

The various coefficients implied in the previous formulas and their antisymmetry proper-
ties are

M“lﬂwab —Cletpansinaiis azacg 1)
) 027 (4,.1)ppog--pg M/buluzug, o _Mﬂluzﬂ3b
ab _ 2 pypg 97°%cd e pa — ap
M 20 € (ol 8<Pb Bpl p4€(4 1 p5 Pg P ) Mab _ —Mba 5 (106)
M/aplpng C’l aZbc eP1P2P3P 4 Psé‘ Hp P
b (4,1)ppy-pg
b
Mélpﬂlz 01€H1M291 e %ZM 5(4 2)p1-pep
ab _ 3 -p1Pg 8 9°Z4 pec
Mm;,t p =3C7e az 0aOPy Bm 045(42 )Ps - Pgliipop (107)
ap1pP2pP3 __ 1204y p P2P3P4 P
M.U'IUQI) C Eg Hreiee 85 4,2) 11 o pa e pg
M'U‘l — Olgﬂlpl'"p7 acgc
ap Oy, (4,:3)p1-++prp
ab — 4-p1-pg 0? 0°Zea Re d
Mﬂll‘%fpspp ) 40 63 dZ Op, ¢y, BPl P4§(43 )P5 Pkl Kotz P (108)
1P2F3 bc P1P2P3P4" P8
Hypopzb T O 6 5 (4,3)p1 o3Py Py

All the higher-order reducibility relatlons hold off-shell and actually coincide with the
initial ones due to the fact that transformations (100), (101), and (102) are nothing but
(13), (15), and (17) respectively, so all the reducibility functions of order four and higher
are not affected by the deformation procedure.
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5 Conclusions

The main conclusion of this work is that there exist consistent, non-trivial self-interactions
that can be added to a special collection of free topological BF models in D = 8 space-
time dimensions, whose field spectrum comprises four sets of form fields, of form degrees
0, 1, 3, and 4. The couplings are deduced within the cohomological framework of the
antifield-BRST deformation method and in the presence of several usual selection rules
employed in gauge field theory, namely, analyticity in the coupling constant, space-time
locality, Lorentz covariance, Poincaré invariance, and conservation of the differential order
of each interacting field equation with respect to its free limit.

The deformed solution to the classical master equation stops at order one in the
coupling constant, comprises components of antifield number valued between 0 and 8, and
is parameterized by a set of symmetric functions depending on the undifferentiated BF
0-forms, {Z, (p)}. The self-coupled Lagrangian density adds to the free Lagrangian some

4

vertices quadratic in the 4-forms [B}“ and having Z,, () as background, which generalize
the well-known vertices present in the BF formulation of D = 2 gravity. Still, the similar,
generalized vertices are different and less restricted here, since the Z’s are now symmetric
and otherwise arbitrary, while the similar functions in D = 2 are antisymmetric and,
in addition, satisfy D = 2 Jacobi identities corresponding to a Poisson two-tensor of a
certain Poisson manifold. The structure of the deformed solution to the classical master
equation emphasizes a self-coupled D = 8 topological BF theory with several, new features
compared to the starting, free limit: some of the gauge transformations of the BF-forms of
strictly positive form degrees are modified, the associated gauge algebra becomes open, in
contrast to the original, Abelian one, and some of the reducibility functions and relations
are deformed, some of the latter holding on-shell, in opposition to the original ones, which
take place only off-shell.
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