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Abstract

In this paper we have calculated some coordinates and velocities of a charged

fluid moving through a rectangular hole in a time dependent magnetic field.

Different expression for the magnetic field and initial conditions are used.

1 Introduction

In this paper we study a particular case of a charged fluid that moves in a specific region

under the action of the Lorentz force (without taking into consideration of the electric

field). We calculate the time-dependence of the spatial coordinates and the correspond-

ing velocities. The magnetic field is considered to depend only on time and is oriented

along the  axis. The fluid is incompressible i.e. with a divergenceless velocity. The

gravitational effects are neglected and this study is based on [1] and other papers related

to the study of the mahnetorheological fluids, e.g. [2]-[4].

2 Model equation

The equation of Navier Stokes used here is [1]:

v


+ (v ·∇)v = −∇


+ ∆v + f (1)

where

f =  (v×B) (2)

is the volumetric Lorentz force. We neglect the spatial dependence of the velocity compo-

nents, the viscosity  and we also consider a mass equal to unity. Because the magnetic

field is oriented along the  axis, the components of the Lorentz force are:

 = 0  = 0  = −0 (3)

where the general expression of magnetic field considered in this paper is

B = 0 () i (4)
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where 0 () = 0
, with  a variable exponent. We consider a quadratic spatial

dependence of the pressure  of the following form

 ( ) = 0
¡
2 + 2

¢
(5)

In this case, from equation (1) in the direction  the velocity is constant and we will no

longer refer to. We also consider that the velocities depend only on time. The remaining

two equations are



= −∇


+ ≡ −∇


+ 0 () 

and



= −∇


+ ≡ −∇


− 0 ()  (6)

The system (6) is the main ingredient of our analysis and the solutions are the time-

dependent velocities,  =  () and  =  ().

We introduce the following dimensionless variables,  , ,   as:

 =


0
 =



0
  =



0
 =



0
  =



0
(7)

where 0 0 0 are typical values specific to the fluid. Introducing these variables we

obtain the system



= −1+2 (8)




= −1+2 (9)

where the following parameters are defined

1 =
2000

0

and

2 ( ) = 00 (0 ) ≡ +10 0
 ≡ 20



If we choose 0 () = 0
the dimensionless magnetic field is 0 (0 ) = 0 (0 )

 ≡
0


0

.

3 Comments

In this section we used some solutions of the system (8-9) in order to represent the

time dependence of the coordinates and of the velocities. These pictures are obtained for

different values of the power  in the relation for the magnetic field and also different initial

conditions for the spatial coordinates. In figure (1), where the parameters are 1 = 005

and 20 = 01 it is obviously that the coordinates increases in time more rapidly if the

exponent  also increases. The same behaviour for the velocities is observed. The initial

conditions used here are:

0 = 001 0 = 0001 0 = 001 0 = 0001

In figure (2) we only changed the initial conditions for the spatial coordinates, i.e. 0 =

001 0 = 001. Only small chaanges in the behaviour of the coordinates and the velocities
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Figure 1: The solution of the system 8-9 for the following numerical parameters: 1 =

005, 20 = 01
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Figure 2: Idem like in figure 1, with other initial conditions (0 = 001 0 = 001)
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Figure 3: Idem like in figure 1, with 1 = 015
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Figure 4: Idem like in figure 1, with 1 = 05
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are observed. In figure (3) we only changed the parameter 1 = 015 and the behaviour

becomes different with a sort of maxima for  = 1 and  = 15 and increases for  = 2 In

figure (4) for 1 = 05 the behaviour is practically the same with the former one except

for a rapid decrease for  = 2. The initial conditions are chosen considering a rectangular

hole. In all figures (1) and (4) we represented the same quantities for different values of

the initial conditions.
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