Some aspects of the solutions of a Navier Stokes equation for a charged particle in a magnetic field

Ionel Cristian VLADU ${ }^{1}$, Cristina Floriana PANA ${ }^{2}$, Marian NEGREA ${ }^{3}$, Iulian PETRISOR ${ }^{3}$
${ }^{1}$ University of Craiova, Faculty of Electric Engineering, Craiova, Romania
${ }^{2}$ University of Craiova, Faculty of Automation, Computers and Electronics, Craiova, Romania
${ }^{3}$ University of Craiova, Department of Physics, Craiova, Romania

Abstract

In this paper we have calculated some coordinates and velocities of a charged fluid moving through a rectangular hole in a time dependent magnetic field.

Different expression for the magnetic field and initial conditions are used.

1 Introduction

In this paper we study a particular case of a charged fluid that moves in a specific region under the action of the Lorentz force (without taking into consideration of the electric field). We calculate the time-dependence of the spatial coordinates and the corresponding velocities. The magnetic field is considered to depend only on time and is oriented along the $O x$ axis. The fluid is incompressible i.e. with a divergenceless velocity. The gravitational effects are neglected and this study is based on [1] and other papers related to the study of the mahnetorheological fluids, e.g. [2]-[4].

2 Model equation

The equation of Navier Stokes used here is [1]:

$$
\begin{equation*}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v}=-\frac{\boldsymbol{\nabla} p}{\rho}+\nu \Delta \mathbf{v}+\mathbf{f} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{f}=q / m(\mathbf{v} \times \mathbf{B}) \tag{2}
\end{equation*}
$$

is the volumetric Lorentz force. We neglect the spatial dependence of the velocity components, the viscosity ν and we also consider a mass equal to unity. Because the magnetic field is oriented along the $O x$ axis, the components of the Lorentz force are:

$$
\begin{equation*}
f_{x}=0, \quad f_{y}=q B_{0} v_{z}, \quad f_{z}=-q B_{0} v_{y} \tag{3}
\end{equation*}
$$

where the general expression of magnetic field considered in this paper is

$$
\begin{equation*}
\mathbf{B}=B_{0}(t) \mathbf{i} \tag{4}
\end{equation*}
$$

where $B_{0}(t)=B_{0} t^{\alpha}$, with α a variable exponent. We consider a quadratic spatial dependence of the pressure p of the following form

$$
\begin{equation*}
p(y, z)=p_{0}\left(y^{2}+z^{2}\right) \tag{5}
\end{equation*}
$$

In this case, from equation (1) in the direction $O x$ the velocity is constant and we will no longer refer to. We also consider that the velocities depend only on time. The remaining two equations are

$$
\frac{d v_{y}}{d t}=-\frac{\boldsymbol{\nabla}_{y} p}{\rho}+f_{x} \equiv-\frac{\boldsymbol{\nabla}_{y} p}{\rho}+q B_{0}(t) v_{z}
$$

and

$$
\begin{equation*}
\frac{d v_{z}}{d t}=-\frac{\boldsymbol{\nabla}_{z} p}{\rho}+f_{z} \equiv-\frac{\boldsymbol{\nabla}_{z} p}{\rho}-q B_{0}(t) v_{y} \tag{6}
\end{equation*}
$$

The system (6) is the main ingredient of our analysis and the solutions are the timedependent velocities, $v_{z}=v_{z}(t)$ and $v_{y}=v_{y}(t)$.

We introduce the following dimensionless variables, T, Y, Z, V_{y}, V_{z} as:

$$
\begin{equation*}
T=\frac{t}{t_{0}}, Y=\frac{y}{l_{0}}, \quad Z=\frac{z}{l_{0}}, \quad V_{y}=\frac{v_{y}}{v_{0}}, \quad V_{z}=\frac{v_{z}}{v_{0}} \tag{7}
\end{equation*}
$$

where t_{0}, l_{0}, v_{0} are typical values specific to the fluid. Introducing these variables we obtain the system

$$
\begin{align*}
& \frac{d V_{y}}{d T}=-K_{1} Y+K_{2} V_{z} \tag{8}\\
& \frac{d V_{z}}{d T}=-K_{1} Z+K_{2} V_{y} \tag{9}
\end{align*}
$$

where the following parameters are defined

$$
K_{1}=\frac{2 t_{0} l_{0} p_{0}}{\rho v_{0}}
$$

and

$$
K_{2}(T)=q t_{0} B_{0}\left(t_{0} T\right) \equiv q t_{0}^{\alpha+1} B_{0} T^{\alpha} \equiv K_{20} T^{\alpha}
$$

If we choose $B_{0}(t)=B_{0} t^{\alpha}$, the dimensionless magnetic field is $B_{0}\left(t_{0} T\right)=B_{0}\left(t_{0} T\right)^{\alpha} \equiv$ $B_{0} t_{0}^{\alpha} T^{\alpha}$.

3 Comments

In this section we used some solutions of the system (8-9) in order to represent the time dependence of the coordinates and of the velocities. These pictures are obtained for different values of the power α in the relation for the magnetic field and also different initial conditions for the spatial coordinates. In figure (1), where the parameters are $K_{1}=0.05$ and $K_{20}=0.1$ it is obviously that the coordinates increases in time more rapidly if the exponent α also increases. The same behaviour for the velocities is observed. The initial conditions used here are:

$$
y_{0}=0.01, z_{0}=0.001, v_{y 0}=0.01, v_{z 0}=0.001
$$

In figure (2) we only changed the initial conditions for the spatial coordinates, i.e. $y_{0}=$ $0.01, z_{0}=0.01$. Only small chaanges in the behaviour of the coordinates and the velocities

Figure 1: The solution of the system 8-9 for the following numerical parameters: $K_{1}=$ $0.05, K_{20}=0.1$

Figure 2: Idem like in figure 1, with other initial conditions $\left(y_{0}=0.01, z_{0}=0.01\right)$

Figure 3: Idem like in figure 1, with $K_{1}=0.15$.

Figure 4: Idem like in figure 1, with $K_{1}=0.5$.
are observed. In figure (3) we only changed the parameter $K_{1}=0.15$ and the behaviour becomes different with a sort of maxima for $\alpha=1$ and $\alpha=1.5$ and increases for $\alpha=2$. In figure (4) for $K_{1}=0.5$ the behaviour is practically the same with the former one except for a rapid decrease for $\alpha=2$. The initial conditions are chosen considering a rectangular hole. In all figures (1) and (4) we represented the same quantities for different values of the initial conditions.

Acknowledgment

This work was supported by a grant of the Romanian Ministry of Education and Research, CCCDI - UEFISCDI, project number PN-III-P2-2.1-PED-2019-0937, within PNCDI III.

References

[1] L.D. Landau and E.M.Lifschitz - Vol. 6 - Fluid Mechanics, Second Edition, Pergamon Press, 1987.
[2] I. Vladu, D. Strîmbeanu, M, Ivanescu, I.C. Vladu, E.N. Bîzdoaca, Experimental results for magnetorheological stop valve, 2012 16th International Conference on System Theory, Control and Computing, ICSTCC 2012, 12-14 oct - Joint Conference Proceedings 6379199, ISBN: 978-606834848-3.
[3] I. Vladu, I.C. Vladu, Experimental determination of parameters descriptive of magneto-rheological valve, Craiova, Romania, Octomber 11-15, 2011, 8th International Conference on Electromechanical and Power Systems (SIELMEN), Annals of the University of Craiova, Electrical Engineering series, No. 35, 2011.
[4] I.C. Vladu, C.F. Pana, M. Negrea, I. Petrisor, On the flow model of a rheological fluid, Physics AUC, vol. 30 (Part II), 230-235 (2020).

