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Abstract

Linear stochastic differential evolution equation are studied. An important result
concerning the specific form of generalized central limit theorem on random walk
on one dimensional affine group is generalized to arbitrary fininte dimensional affine
group: under general assumption the exponent of algebraic decay of the probability
distribution function is indepenent on the statistical properties of the random
translation subgroup. The heavy tail exponent is related to thre critical index of
a family of Lebesgue spaces, related to the asymptotic behavior for large times of
the Banach space norm of the solution of the random evolurion equation. We prove
that the heavy tail exponent of the inhomogenous stochastic linear equation can be
related to the large time behavior of the solution of the homogenous part.
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1 Introduction

The simplest random affine linear model of the one dimensional multiplicative processes
[10] [11][12] predicts large fluctuations in the propagation of epidemics exactly in the
critical case, when the mean value of the epidemic R factor is slightly less then unity.

Affine stochastic evolution equations were studied both in mathematical literature [2],
[1, 3, 4, 5, 6], [11] as well as in physical literature [7, 8, 9, 10], [12]. This interest in affine
stochastic evolution equations (ASEE) comes partly because they represents the simplest
reduced models of large class of the natural or social processes they are the simplest,
partially soluble, versions of the instability growth under the effect of external noise and
must important, their relation with the occurence of heavy tail (HT) of the probability
distribution function of the stationary solution. They are also related to models of the
self-organized criticality [10], and to the renewal processes (see .[1, 3, 4]).

Despite their apparent formal simplicity, even in the classical examples of the discrete
time ASEE, the affine iterated function systems, the stationary cumulative probability
function in one or two-dimensional case, has complicated fractal structure [13, 14, 15].me

The apparently simple continuous time, one-dimensional [10] explains the simultaneous
occurrence of the very small value of the heavy tail exponent and the large correlation time,
approximate self-similarity, of the driving multiplicative noise in tokamak experiments.
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Exact analytic results on the heavy tail exponent for one dimensional process was
obtained in [8], [9], [10], [11], [12]. In this work we study higher N dimensional stochastic
linear evolution equation, in finite dimensional space. We establish a relation between
large time evolution of the solution of the homogenous linear stochastic equation and the
heavy tail exponent of the stationary solution of the inhomogenous equation, in the case
when the heavy tail index is greater than 1.

The occurrence of the HT in the stationary PDF is related to the following dynamical
effect [6, 10], [11] . When the stationary PDF of the solution Xt(ω) of the ASEE has HT
with exponent βc, then for t→∞ the fractional order moments, or the related Lp norms,
E[|Xt|p] remains bounded for 0 < p < βc, respectively diverges for p > βc. This is related
to the ”variance explosion” phenomena studied recently in the mathematical finance [6].
The objective of this article is to extend these results to higher dimensional random affine
systems.

Previously explicit algebraic methods for computing βc were elaborated in some spe-
cial cases: in the framework of the discrete time models in [1, 8], with i.i.d. additive
and multiplicative noise, and in the case of i.i.d. additive noise and multiplicative noise
modelled by a finite state Markov process in [4] .

In the continuos time case, with the multiplicative noise modelled by a finite state
Markov process [3], rigorous foundation of the computation of βc was obtained. In Ref.[10]
the multiplicative and additive noise were modelled by a superposition of Ornstein-
Uhlenbeck processes and explicit formula for βc was derived by asymptotic methods.
In all of the cases the exponent βc is independent of the additive term.

The ASEE model equation that is considered here is a class of n-dimensional random
differential equation (RDE), which extends previous results [10]), by using new topological
vector space methods. The additive and the multiplicative random terms in our model
are stationary processes.

Recently there is an increasing interest in the study of the affine random processes
due to the application in the epidemiogy. The simplest random affine linear model of
the one dimensional multiplicative processes [10] [11][12] predicts large fluctuations in the
propagation of epidemics exactly in the critical case, when the mean value of the epidemic
R factor is slightly less then unity.

2 The linear stochastic model and the results.

2.1 The framework

The driving stochastic processes are defined in a probability space {Ω,F , P} with ex-
pectation value Eω[f(ω)] = E[f ] =

∫
Ω
f(ω)dP (ω). By ω will be denoted a generic ele-

ment of the measure space Ω. Two driving F−measurable stochastic, the finite dimen-
sional vector space V valued process{bt(ω) : R × Ω → V ≈ Rn and operator valued
process{At(ω) : R × Ω → V ∗ ⊗ V ≈ Rn2

defines formally the linear random differential
equation (RDE) :

dXt(ω)

dt
= At(ω)Xt(ω) + bt(ω) (1)

X0(ω) = x0 (2)

We consider the case when the driving processes bt(ω) and At(ω) are stationary and
independent, consequently the operator Eω[At(ω)] is constant, From previous study

60



of the one dimensional systems, the problem 1-2has nontrivial stationary solution (or
at least bounded solutions in the large time limit) if the eigenvalues of the operator
Eω[At(ω)] has strictly negative real parts.

The notations Xt(ω) or Xt, for the solutions of RDE will be reserved. Without loss of
generality we consider deterministic initial condition X0(ω) ≡ x0. The argument ω will
be omitted when no confusion arises.

Associated to the random affine system 1 we will study the linear system for matrix
valued random function G(t0, t, ω)

dG(t0, t, ω)

dt
= At(ω)G(t0, t, ω)) (3)

G(t0, t0, ω) = 1 = identity operator (4)

The operator satisfies the following cocicle conditions [22]

G(t1, t2, ω)G(t2, t3,, ω) = G(t1, t3, ω) (5)

[G(t1, t2, ω)]−1 = G(t2, t1, ω) (6)

Formally, from equations 1, ...,6 result the following solution

Xt(ω) = G(0, t, ω)x0 +

t∫
0

G(t1, t, ω)bt1(ω) dt1 (7)

Xt(ω) ∈ V, bt1(ω) ∈ V, G(t1, t, ω) : V −→ V (8)

For more clarity, the previous equation 7 will be rewritten as follows [18]

Xt,k(ω) =
n∑

m=1

Gk,m(0, t, ω)x0,m +

t∫
0

n∑
m=1

Gk,m(t1, t, ω)bt1,m(ω) dt1 (9)

2.1.1 Generalized Lp spaces [18], [19] , [20].

Consider the direct product of measure spaces, that give rise to anisotropic Banach space
structure.

Let the measure space (Ω,A,m) has the following product structure. The phase space
Ω is split in two subspaces

Ωpr = Ω1 × Ω2 (10)

That means that the argument x of a measurable function can be represented as
x = {x1, x2} , so

f(x) = f(x1, x2) (11)

with xk ∈ Ωk . We mention also that in general the component spaces Ωk has the
structure of Rn or more general infinite dimensional measure space. Each of the spaces
Ωk has their σ−algebra Ak. The σ−algebra A , that contains subsets of Ωpr = Ω1 × Ω2

is defined as a tensor product: it is the largest σ−algebra on Ω such that all of the
projections Ω

pk→ Ωk are measurable.
The measure m is also factorizable:

dm(x) =dm(x1, x2) =dm1(x1)dm2(x2) (12)
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where the measures mk are defined on the σ−algebras Ak .
In other words, the measure space (Ωpr,A,m) is the tensor product

(Ωpr,A,m) =
2⊗
j=1

(Ωj,Aj,mj) (13)

The elementary probability dP (x) is given by

dP (x) = ρ(x1, x2)dm(x) (14)

where is some singular probability density function.
Consider a vector p = {p1, p2} of real numbers with pk ≥ 1 . According to Ref.[18] ,

in close analogy to Ref.[19] , we define recursively the norm (depending on the measure
m) ‖ρ‖p,m as follows

f1 (x1) :=

∫
Ω2

[f(x1, x2)]p2 dm2(x2)

1/p2

= ‖f(x1, .)‖p2 (15)

‖f‖p,m :=

∫
Ω1

[f1 (x1)]p1 dm1(x1)

1/p1

= ‖f1(.)‖p2 (16)

The corresponding anizotropic Banach spaces are defined according to the previ-
ous norms 15 and 16 . In the case of our physical problems, both of the measures
m1(x1), m2(x2) are finite. The space (Ω1,A1,m1) is the probability space Ω = Ω1 and

m1(Ω) = 1 (17)

m2(Ω2) = n <∞ (18)

In our case (Ω2,A2,m2) is the discrete, finite probability space on the finite set
Ω2 = {1, ..., n} with the counting measure on {1, ..., n} . It is known [18] that the previous
norm ‖f‖p,m has all the properties of norm on functional spaces [18] . According to the
norm defined by the finite dimensional vector space V , we define a norm related to the
matrix valued random function G from equation 9 , that we denote by Np,q(.) We associate
to the (finite dimensional) random linear operator Gk,m(t1, t, ω) , a linear operator Γ(t1, t),
acting as a multiplication operator in the space o random measurable functions, and acting
as a matrix in the space V. So we have for all vector valued measurable function φk(ω)

[Γ(t1, t)φ]k =
n∑

m=1

Gk,m(t1, t, ω)φm(ω) (19)

We denote by Lp the set of measurable functions on Ωpr : f ∈ Lp ⇐⇒ ‖f‖p,m <∞
. In general the operator Γ acts from the space Lq to Lp and define the corresponding
norm by

Np,q(Γ(t1, t)) = sup
φ 6=0

‖Γ(t1, t)φ‖p
‖φ‖q

(20)

So we have for all φ ∈ Lq the following inequality

‖Γ(t1, t)φ‖p ≤ ‖φ‖qNp,q(Γ(t1, t)) (21)
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Because Np,p(Γ(t1, t)) is an operator norm, and from the stationarity of the stochastic
process At(ω) results that Np,p(Γ(t1, t)) = Np,p(Γ(0, t1 − t)) we have

Np,p(Γ(t1, t)) = Np,p(Γ(0, t1 − t, )) ≤ [Np,p(Γ(0, (t1 − t, )/m))]m (22)

We have the generalized Hölder inequality. Let p = {p1, p2} and p′ = {p′1, p′2} with

1/p1 + 1/p′1 = 1 (23)

1/p2 + 1/p′2 = 1 (24)

Then we have, for all f ∈ Lp and g ∈ Lp′
the following inequality∫

Ωpr

|f(x)g(x)| dm(x) ≤ ‖f‖p,m ‖g‖p′,m (25)

Proposition 1 In the case when p = {p1, p1}, q = {q1, q1}, r = {r1, r1} and

1/p1 + 1/q1 = 1/r1

then
‖fg‖r,m ≤ ‖f‖p,m ‖g‖q,m

Because the norms ‖.‖r,m , ‖.‖p,m ‖.‖q,m are equivalent for fixed p1, q1, r1, there exists con-
stant C depending only on p, q, r such that in general case

‖fg‖r,m ≤ C ‖f‖p,m ‖g‖q,m (26)

In the our case where the measures m1,m2 are all finite, and m1 is a probability
measure, then from 25 it follows∫

Ωpr

|f(x)| dm(x) ≤ n1/p1 ‖f‖p,m (27)

Similar to the norm ‖f‖p,m and corresponding Lp, it is useful to define another norm

‖.‖∗p,m too . We define

g1 (x2) :=

∫
Ω1

[f(x1, x2)]p2 dm1(x1)

1/p1

= ‖f(., x2‖p1

‖g‖∗p,m :=

∫
Ω2

[g1 (x2)]p2 dm2(x2)

1/p2

= ‖g1 (.)‖p2

Remark 2 In the following the index m will be omited, if no confusion appears. Let
p = {p1,p2} , p′ = {p1,p

′
2} Because the vector space V is finite dimensional, for fixed

p = 1 all of the norms are equivalent topologically, consequently there exists constants
c1, c2 or c′1, c

′
2 such that

c1 ‖f‖p′ ≤ ‖f‖p ≤ c2 ‖f‖p′ (28)

c1 ‖g‖p′ ≤ ‖g‖p ≤ c2 ‖g‖p′ (29)
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Remark 3 In the case when p = p1 = p2 , the anizotropic norms are equal to the classical
norms.

‖f‖p = ‖f‖∗p =


∫

Ω1×Ω2

[f(x1, x2)]p dm1(x1)dm2(x2


1/p

(30)
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These class of norms will be usefull in the future works relates to the extensions of the
our results.

In the following we introduce some conventions related to the conditions on validity of
the our results, that are the consequence of the stationarity. We call that the stochastic
process associated to the affine random process that results from condition1 is regular,
if for all p with p1 > 0 , for all φ ∈ Lq all with q1 =∞ , there exists 0 < β <∞ and a
monotone increasing function γ(p) such that for fixed p2 and p1 < β we have γ(p) < 0
and for p1 > β we have γ(p) > 0 and the following bounds

Np,p(Γ(t1, t)) < d1 exp [γ(p)(t2 − t1)] (31)

‖Γ(t1, t)φ‖p ≤ d2 ‖φ‖qNp,p(Γ(t1, t)) (32)

here d1, d2 are some constants. Observe that in equation 32, compared with equation
21 there is a new constant and the indices Np,q are modified on Np,p . It is easy to prove
that there exists a large class of stochastic processes with this property

2.2 The main theorem.

Theorem 4 Suppose first that the stochastic process bt(.) is stationary and bt(.) ∈ Lq

with q1 = ∞. In addition suppose that the process G(t1, t2, .) is regular. Then for suffi-
ciently large t2 − t1 the solution of the equation 7 9 is bounded by

‖Xt(ω)‖ ≤ d1 exp [γ(p)t] ‖x0‖+ A/γ [exp(γt)− 1] (33)

where γ = γ(p) and A > 0 .

Proof. We use the regularity conditions 31, 32 , as well as the equations 7 9 and we

obtain

‖Xt(ω)‖p ≤ ‖G(0, t, .)x0‖p +

t∫
0

‖G(t1, t, .)bt1(.)‖p dt1 (34)

= X + Y (35)

by using equation 21 we obtain the first term in inequality 33 X = d1 exp [γ(p)t] ‖x0‖.
In the second term, by using the Hölder inequality 21 we obtain

Y ≤
t∫

0

N [G(t1, t2, .)]p ‖bt1(.)‖q dt1 (36)

. By using the stationarity of bt1(.) and regularity condition 32 we obtain

Y ≤ ‖bt1(.)‖qCd2d1

t∫
0

exp [γ(p)(t2 − t1)] dt1

which proves the theorem.
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3 Conclusions.

In a class of general finite dimensional random affine differential equations the large time
behavior of the solution was studied. Under general assumptions we proved that the
computation of the heavy tail properties of the stationary solution can be reduced to the
study of the large time behavior of the generalized Lp1,2 norm [18] of the solution of the
homogenous random linear equation. A critical exponent βc was defined such that the
norm of the solution, of order p1 remains bounded if p1 < βc and diverges, on a massive
set of initial conditions, when p1 > βc. When heavy tail exists then βc is the heavy tail
exponent. The speed of convergence/divergence, for large time, of the norm of order p1

of the solution is exponential, depending on p− βc. The generalization to the case when
the vector space V is a more general Banach space with infinite dimension remains a
challenging open problem.

References

[1] Goldie C. M. Implicit renewal theory and tails of solutions of random equations. Ann.
Appl. Probab. 1991, 1, 12.

[2] Buraczewski D, Damek E. , Mikosch T. Stochastic Models with Power-Law Tail.
Springer, 2016.

[3] de Saporta, B.; Jian-Feng Yao. Tail of a linear diffusion with Markov switching. Ann.
Appl. Probab. 2005, 15(1B), 992-1018.

[4] de Saporta B. Tail of the stationary solution of the stochastic equation Yn+1 =
anYn + bn with Markovian coefficients. Stochastic. Process. Appl. 2005, 115, 1954-
1978.

[5] Steinbrecher, G.; Shaw, W. T. Quantile mechanics. Eur. J. Appl. Math. 2008, 19,
87-112.

[6] Shaw, W. T. Model of returns for the post-credit-crunch reality: Hybrid Brownian
motion with price feedback. arXiv: math/PR 0811.0182, 2008.

[7] Takayasu, H. Steady-state distribution of generalized aggregation system with injec-
tion. Phys. Rev. Lett. 1989, 63, 2563-2565.

[8] Takayasu, H.; Sato, A-H.; Takayasu, M. Stable infinite variance fluctuations in ran-
domly amplified Langevin systems. Phys. Rev. Lett. 1997, 79, 966-969.

[9] Sato, A.-H. Explanation of power law behavior of autoregresive conditional duration
processes based on the random multiplicative process. Phys. Rev. E 2004, 69, 047101-
1 - 047101-4.

[10] Steinbrecher, G.; Weyssow, B. Generalized randomly amplified linear system driven
by Gaussian noises: extreme heavy tail and algebraic correlation decay in plasma
turbulence. Phys. Rev. Lett. 2004, 92, 125003-1 - 125003-4.

[11] Large time behavior in random multiplicative processes. arXiv:1007.0952[math.Pr]

65



[12] Steinbrecher G. , Garbet X., Linear stochastic stability analysis of nonlinear systems.
Parametric destabilization of wave propagation. arXiv:1212.1365[math-ph]

[13] Hui Rao; Zhi-Ying Wen. A class of self-similar fractals with overlapping structure.,
Adv. Appl. Math. 1998, 20, 50-72.

[14] Tian-You Hu; Ka-Sing Lau. Multifractal structure of the convolution of the Cantor
measure. Adv. Appl. Math., 2001,27, 1-16.

[15] Barnsley M Fractals everywhere 2nd edition; Academic Press, Boston,1993.

[16] Robertson A.; Robertson W. Topological vector spaces ; Cambridge University Press,
1964.

[17] Rudin, W. Real and Complex Analysis;. McGraw Hill Inc. 3rd Ed. 1987.

[18] Besov O. V., Ilyin V. P., Nikolski C. M., Integral representations of functions and
embedding theorems, In Russian, ”Nauka”, 1975.

[19] Sonnino G, Steinbrecher G. Generalized extensive entropies for studying dynamical
systems in highly anizotropic phase spaces Phys. Rev .E. 2014, 89, 062106

[20] Steinbrecher G., Sonnino G. Numerical stability of generalized entropies. arXiv
1103.06240v3

[21] Balescu, R. Aspects of Anomalous Transport in Plasmas ; Institute of Physics Pub-
lishing, Bristol, 2005.

[22] Arnold, L. Random Dynamical Systems; Springer, Berlin, 1998.

66


