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Abstract

In this paper we are dealing with solving methods for finding solutions of various
type of nonlinear PDEs. The focus will be put on two methods, both proposed by
our group. The first one considers the use of an auxiliary equation, with well known
solutions, in terms of which will be expressed the solutions of more complicated
PDEs. More precisely, we will use the procedure called ”functional expansion”. The
second procedure we are using here allows to reduce the order of differentiability by
using a so called ”attached flow”. The two methods will be exemplified on few well
known models of NPDEs.
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1 Introduction

There is not a general approach allowing to solve Nonlinear Partial Derivative Equations
(NPDE), despite of their huge importance in Physics and in other fields of Sciences and
Engineering. Finding as many as possible NPDEs solutions offers us a better under-
standing of the phenomena. Classes of solutions are given by specific techniques and
approaches as for example: the symmetry method and similarity reduction, the inverse
scattering method, Hirota bilinear approach, Lax pair operators, etc [1], [2], [3], [4].

In this paper we will discuss how to solve NPDEs by reducing them to NODEs (Non-
linear Ordinary Differential Equations). This reduction can be achieved with the help of
the so-called ”wave variable” [5], [6]. Let us consider a NPDE a NPDE of the form:

∆(u(t, x, y, ...), ut, ux,uy, ...) = 0. (1)

We apply the wave transformation that is in fact a change of variables for the independent
variables of the form::

ξ = f(t, x, y, ...) (2)

It leads to a transformation of the dependent variable u(t, x, y, ...) → U(ξ) and to a
transformation of (1) into the NODE:

∆(u) = 0→ F (U,U ′, U”, ...) = 0. (3)

Solving (3) allows us to find a specific class of NPDEs solutions, the ”traveling waves”.
If, supplementary, these solutions are very stable during the propagation, they becomes
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”solitary waves” or ”solitons” [7]. There is a large literature related to the theory of
solitons and, despite that, at the first glance, getting them seems to be simpler because it
supposes not to solve a NPDE but a NODE, in reality there is not a general algorithm on
how to do it. Numerous solving methods, not always easily to be applied, have been devel-
oped for solving NODEs. We will focus here on two approaches asking for supplementary
reductions.

The first approach is based on the use of an ”auxiliary equation”. This equation is a
linear or even nonlinear ODE that can be solved:

Θ[G(ξ), G′(ξ), ...] = 0 (4)

The method supposes to look for solutions of (3) that can be expressed as expansions of
the solutions G(ξ) of (4). It means that we will be able to find only a specific class of
solutions accepted by the investigated equation, namely those that can be expressed as
combinations of the known solutions of the auxiliary equation: U(ξ) = U [G(ξ)].

The second approach consists in trying to solve (3) by means of a reduction of its
differentiability order. This reduction is achieved by imposing a supplementary constraint.
More precisely, we will attach to (3) a ”flow equation” given by:

U ′(ξ) = V (U) (5)

From (3) and (5) we will get a new ODE in the ”flow” variable V . It has a reduced
order of differentiability, so it should be simpler to solve. After the flow is determined,
we can come back to (5) for finding U(ξ), and then, by pull back, to the initial variable
U(ξ)→ u(t, x, y, ...), solution for (1).

We will exemplify these two approaches on few important models of nonlinear equa-
tions from Mathematical Physics, KdV and BBM equations. It is well known that the
KdV equation is a basic model in nonlinear wave theory and has been regarded as the
classical model for studying soliton phenomena. The BBM equation is quite similar with
the Korteweg-de-Vries equation. The KdV and BBM are two typical examples associ-
ated to effects of dissipation and disspersion. The similarity between the two equations
becomes more obvious when we implement the change of variables, looking for traveling
wave solutions.

2 Solving NPDEs with the auxiliary equation tech-

nique

As we mentioned, we will be interested in this paper to discuss the technique of solving
a NPDE with the help of an auxiliary equation of the type (4), with known solutions
G = G(ξ). To be specific, we will consider the equation (3) and we will look for its
solutions as expansions of the form:

U(ξ) = H(G(ξ), G′(ξ), ...G(n)(ξ)) (6)

Usualy, (6) is taken as a power expansion and its specific form depends on the chosen
auxiliary equation. In the simple case, when the auxiliary equation is a first order ODE,
the first derivative G′ is extracted from the auxiliary equation and (6) simply becomes:

U(ξ) = H(G(ξ)) (7)
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When the auxiliary equation is of second order, the second order derivative, G′′ , can be
expressed in terms of G and G′, and, a general form of (6) is:

U(ξ) =
m∑

i=−m

Pi(G) (G′)
i
. (8)

Here Pi(G) are unknown functionals that have to be determined. After that, we can write
down the solutions u(ξ) in a final form. It is therefore essential to establish what auxiliary
equations can be chosen and how the solutions (6) depend on this choice.

2.1 What auxiliary equations can be considered?

The specific form of the functionals Pi(G) strongly depends on the choice of the auxiliary
equation (2). The most frequent auxiliary equation that has been considered in literature
was Riccati equation, a first order ODE. The tanh method [8], for example, can be seen
as a method using Riccati as auxiliary equation. Other first order ODEs which were
considered as auxiliary equations, as for example:

G′ =
A

G
+BG+ CG3 (9)

G′ = 1 +G+ ....+Gn

G′ = c2G
2 + c4G

4 + c6G
6 (10)

Sometimes, it is convenient to look for the solutions (6) in terms of higher order
auxiliary equations, with a more complex class of solutions. The authors working in this
topic considered various types of second order auxiliary equations. The simplest example
is the linear second order auxiliary equations used in [9]:

G′′ + AG′ +BG = 0 (11)

More generaly, we could consider an auxiliary equation of the form:

G′′ + AG′ +BG+ C = 0 (12)

A more complex auxiliary equation, richer in the accepted classes of solutions, that has
been considered as auxiliary equation is:

AGG′′ −B(G′)2 − CGG′ − EG2 = 0 (13)

If we look for solutions of differential equations with order higher than two, auxiliary
equations of higher order, could be considered. If, for example, we are dealing with
equations of third order, the third order derivative can be in principle expressed in terms
of the second and first orders, so it can be eliminated, and (6) stops at terms at maximum
second order, G′′.
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2.2 Details on the balancing procedure

Let us consider now a second order auxiliary equation of the form:

A(U)U ′′ +B(U)(U ′)2 + C(U)U ′E(U) = 0 (14)

As we mentioned before, it accepts solutions of the form (8). Defining Ni ≡ |N(Pi)|, we
can choose the functionals Pi as a sum of monomials:

Pi(G) =

Ni∑
κ=0

πiκG
−κ, (15)

An important step in geting their effective form is related to determining the maximum
value m to be considered in the expansion. In almost all the solving methods this problem
is solved following one balancing procedure between the highest order derivative and the
highest nonlinear term. In our approach, with the functionals Pi given by (15), we have
in fact to find the two summation limits, that is the values for the parameters m and Ni

appearing in (8), respectively in (15). These tasks can be achieved following a combined
balancing procedure, after G′ and, respectivelly, after G.

2.3 The example of Korteweg-de Vries Equation

To see exactly as this method is functioning, we will apply it to a specific case of the
equation (14), namely to the Korteweg-de Vries (KdV) equation. It is a nonlinear third
order equation that in the (2 + 1)-space has the mathematical form:

ut + uux + δuxxx = 0 (16)

By passing to the wave variable ξ = x−V tZhang ZY, Zhong J, Dou SS, Liu J, Peng D, Gao
T. Abundant exact travelling wave solutions for the Klein-Gordon-Zakharov equations via
the tanh-coth expansion method and Jacobi elliptic function expansion method. Rom J
Phys. 2013;58(7-8):749–765. and by integrating once, we get the attached ODE:

δu′′(ξ) +
1

2
u2(ξ)− V u(ξ) + k = 0 (17)

Here δ, k, V are constants which will be used as parameters. This equation represents
a particular case of (14).The balancing procedure between the terms δu′′(ξ) and 1

2
u2(ξ)

leads to m = 2, so the solutions (8) will have the form of the following expansion:

u(ξ) =
2∑

i=−2

Pi(G)(G′)i (18)

where we have supposed that the function G(ξ) satisfy the auxiliary equation of the form:

G′′ + λG′ + µG = 0. (19)

This example was intensively studied in [9], where it was proved that the most general
solution has the form:

u(ξ) = V − δλ2 − 24δω2G
′

2ω2G+ ω1

− 12δ
(G′)2

ω2G2 + ω1G+ ω0

(20)

It is one of the largest solution that has been pointed out for the KdV equation.
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3 The attached flow method

3.1 Description of the method

The method we are discussing here is in fact a version of the first integral method [10].
We consider a nonlinear partial differential equations in its general form:

ut = ∆(u, ux, ..., umx);umx =
∂mx

∂xm
(21)

As previously, the given partial nonlinear equation (21) can be converted into an ordinary
differential equation introducing the transformation u ≡ U(ξ) , where ξ is given by (2):

F (ξ, U, U ′, ..., U (m)) = 0;U (m) =
dmU

dξm
(22)

The main idea of the method we are proposing consists in attaching to the ”master”
equation a supplementary, flow type equation, of the form:

U ′ = V (U). (23)

The quantity V (U) can be a polynomial or a function of U(ξ). The method is a ”reduction
method”, leading to an equation in V (U) with a reduced order of differentiability. We
will apply the method on the BBM equation [11].

3.2 The example of the Benjamin-Bona-Mahony (BBM) Model

The BBM equation describes the uni-directional propagation of small-amplitude long
waves on the surface of the water in a channel and also for hydromagnetic and acoustic
waves. For a quantity u(x, t) described in a 2-dimensional space, its mathematical form
is:

ut − uxxt + ux(1 + un) = 0 (24)

For n = 1 the equation represents the BBM equation itself. We note that for this case the
attached ODEs is similar with (17) attached to KdV. For n = 2 the equation represents
the modified BBM equation. As far as our approach, we will reduce (24) to an ordinary
differential equation by using the wave transformation (2). With the notation u(x, t) =
U(ξ), the equation (24) becomes:

λU ′′′ − U ′(λ− 1− Un) = 0 (25)

We will apply the attached flow method for {n = 1, 2}.
In the case n = 1 , by integrating the ODE once with respect to ξ, will result the next

equation:

λU ′′ + U(1− λ+
1

2
U2) = 0 (26)

We will try to find traveling wave solutions of (25) , considering the supplementary re-
quirement U ′ = V (U)

λV (U)
dV

dU
+ U(1− λ+

1

2
U2) = 0 (27)
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The above equation can be solved, assuming the integration constant 0:

V (U) = ± U

λ
√

3

√
λ(3λ− 3− U) (28)

ξ =
2λ
√

3 tanh−1(

√
3λ(λ−1)−λU√

3λ(λ−1)
)√

3λ(λ− 1)
(29)

Finnaly we get the solution of BBM equation:

u(x, t) =
3(λ− 1)

cosh2( 1
2λ

(x− λt)
√
λ(λ− 1))

(30)

For n = 2, by integrating (25) once with respect to ξ, will result the next equation:

λU ′′ + U(1− λ+
1

3
U3) = 0 (31)

λV (U)
dV

dU
+ U(1− λ+

1

3
U3) = 0 (32)

V (U) = ± 1

λ
√

6

√
−λU(−6λ+ 6 + U2) (33)

ζ =
λ√

λ(λ− 1)
ln

(
12λ(λ− 1) + 2

√
6λ(λ− 1)

√
6λ(λ− 1)− λU2

U

)
(34)

u(x, t) =
24λ(λ− 1) (coshA+ sinhA)

cosh 2A+ sinh 2A+ 24λ2(λ− 1)
(35)

where A = (x−λt)
√
λ−1√

λ
. We conclude that in both cases, for n = 1 and for n = 2, the BBM

equation can be solved using the attached flow method.

4 Conclusions

It is well known that, depending on the initial or on the border conditions, the NPDEs
can accept a large variety of solutions. There is not a general solution as for the linear
equations and there is not an unique and well-defined solving procedure. Various solving
methods [12], [13], [14], could work or not and could give different classses of solutions. In
this paper we investigated two specific procedures allowing to find traveling wave solutions
of various NPDEs: the auxiliary equation and the attached flow methods. As starting
step for both approaches, the NPDE has to be transformed in a NODE by using the
wave variable (2). Another common feature of the two approaches is that both appeal
to reduction procedures: the auxiliary equation method reduces the class of solutions
that can be determined to those of the form (8), related with the solutions G(ξ) of
the considered auxiliary equation; the second considered method, the attached flow, also
reduce the class of obtenaible solutions to those satisfying the supplementary flow equation
(23). The two methods were illustrated on two important models of nonlinear dynamics:
the KdV and BBM models. Both models belong to a very large class of models, describing
a lot of natural phenomena from hydrodynamics, optics or plasma physics and reunited
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in the commun form of the equation (14). Soliton-like solutions were pointed out for the
two investigated models.

An important issue that will be investigated in future works [15] is related to the
identification of the models for which the two methods are suitable. Rules of the form
”go-no go” could be formulated for various specific polynomials A(U), B(U), C(U) and
E(U) from (14). It will be possible to make a choice of the solving methods for various
dynamical systems.
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