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Abstract

The paper investigates two important phenomena which characterize the behav-

ior of an important example of nonlinear dynamical system expressed by a simple

electronic circuit, the Chua model.

1 Introduction

In the signal theory, the Chua circuits are specific representation of very simple nonlinear

circuits with chaotic behavior. Important studies were devoted to this electronic circuit,

and many results related to the stability of signals, to the analogy with other circuits, or

to the possibility of its synchronization were published. In recent decades, synchroniza-

tion of coupled chaotic systems has been exploated for secure communication, generating

a new important field of communication sciences called anticontrol theory. The phenom-

enon of chaos synchronization was first revealed by Pecora and Carroll [1]. In recent

years new appoaches for synchronization of chaotic systems has been proposed. In the

scientific literature one can find mentions on: the complete synchronization [2], the phase

synchronization [3], the generalized synchronization [4], the adaptive synchronization [5],

the lag synchronization [6], or on the impulsive control [7].

The present paper will reffere to the stability analysis and the control of chaotic

oscillations, which are of great interest because of their practical applications. We will

apply the Rough-Hurvitz criteria and we will decide when exactly the analized systems is

stable or not. We will continue, by studying the synchronization of two identical smooth

Chua systems, using the classic approach of the master-slave system configuration. One

of the two Chua systems will be considered as master, the second one as slave, and the

system of errors will be investigated in terms of some uncertain parameters. Nonlinear

filtering processes will be used in order to preserve the chaotic synchronization.

2 Chua circuit: stability analysis

Chua circuit (Figure 1) is a well known electronic circuit generating chaotic signals. It

became an important toy model in many domains, starting from neurosciences (model

of neural networks), till various engineering applications, as for example generator of

electronic music.
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Figure 1: Chua’s electronic circuit

By writing down the Kirchoff ’s law for the circuit, a set of three differential equations

are generated. They have the form:

̇ =  [( − ) + ()] (1)

̇ = −  +  (2)

̇ = − (3)

The function () describe the characteristic  = ( ) of the nonlinear element know as

Chua diode. Many types of nonlinearities were considered. In this paper we shall choose:

() =

⎧⎨⎩ sin   ∈ [− 
2
 
2
]

−1   − 
2

1   
2

(4)

This choice corresponds to a 1 function on  whose graphic is presented in Figure 2.
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We shall be interested in studying the chaotic behavior and the regular regime cor-

responding to this circuit. In order to do this study, we shall compute the equilibrium

points. They are given by:

( − ) + () = 0

−  +  = 0 (5)

− = 0

or, equivalent

− () = 0

+  = 0 (6)

 = 0

Three important cases can be identified:

Case 1 - An unique equilibrium point:

 ≤ 1→ 1 = (0 0 0) (7)

Case 2 - Three equilibrium points:



2
   1→ 1 = (0 0 0); 2 = (0 0−0); 3 = (−0 0 0) (8)

where 0 is the positive solution for the following equation

 = sin  (9)

Case 3 — Three equilibrium points:

 


2
→ 1 = (0 0 0); ̄2 = (1 0−1); ̄3 = (−1 0 1) (10)

Remarks:

1) The most interesting case we have here is the case: 1    
2
. In this case the

position of the equilibrium points depends by .

2) If  → 
2
then 2 → ̄2 and 3 → ̄3

3) If  → 1 then 2 → 1 and 3 → 1so there is no pitchfork bifurcation for  = 1.

4) The equilibrium points 2 si 3 are situated symmetric in respect with (0 0 0)

(that is also a fixed point) because the system has geometric symmetry from origin:

 ◦  =  ◦ (11)

Here (  ) = ( [( − ) + ()]  −  + −) and (  ) = (−−−). So
2 and 3 will always have the same properties. What happens around of 2 also happens

around 3.

5) The Jacobian matrix attached to the system is given by:

(  ) =

⎛⎝ −1 +  cos  1 0

1 −1 1

0 − 0

⎞⎠ (12)
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Let us effectively apply the study for the three possible equilibrium points.

Equilibrium points O (0,0,0)

The Jacobian matrix takes in this case the form:

(0 0 0) =

⎛⎝ −1 +  1 0

1 −1 1

0 − 0

⎞⎠ (13)

The eigenvalues are given by the equation:¯̄̄̄
¯̄  − 1−  1 0

1 −1−  1

0 − −

¯̄̄̄
¯̄ = 0 (14)

The previous condition is equivalent with the following equation:

3 + (1− )2 + ( − )+ (1− ) = 0 (15)

Let us use the notation:

1−  = 1 = −(1 + 2 + 3)

 −  = 2 = 12 + 23 + 13 (16)

(1− ) = 3 = −123
The Rough-Hurvitz criteria asks for stability that:

1  0 (17)

3  0

12 − 3  0

It is not satisfied for   1 because (1− ) = −123  0⇒ 123  0. So (0 0 0)

cannot be attractor point until Re1  0; Re2  0; Re3  0 . The point (0 0 0) is

stable.

The equilibrium point 2 = (0 0−0)
The Jacobian matrix takes in this case the form:

(0 0−0) =
⎛⎝ −1 +  cos 0 1 0

1 −1 1

0 − 0

⎞⎠ (18)

This means that the eigenvalues of (0 0−0) are solutions of the following equation:
3 + (1−  cos 0)

2 + ( −  cos 0)+ (1−  cos 0) = 0 (19)

2 is stable if⎧⎨⎩ 1 = 1−  cos 0  0

3 = (1−  cos 0)  0

12 − 3 = (1−  cos 0) ( −  cos 0)− (1−  cos 0)  0

(20)

That is equivalent with

1−  cos 0  0 (21)

 −  cos 0 −  = − cos 0  0
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it isn’t possible because

0 ∈
³
0



2

´
⊂
³
0


2

´
(22)

so the Rough-Hurvitz criterion (sufficient condition) it is not satisfied and it can’t be

decided through this method if the points are stabile.

Nevertheless

123 = −(1−  cos 0) (23)

could take negative value as:  → 
2


Regarding what we said above we can conclude that no Hopf bifurcation appears (and

no limit cycle forms because the ecuation (23) cannot have pure imaginary roots.

3 Syncronization of two Chua systems

Let us consider Chua system with nonlinearity of type :⎧⎪⎨⎪⎩

 = 

³
 − − 2−1

2+1

´

 = −  + 


 = −

(24)

The corresponding master-system will have the form:⎧⎪⎨⎪⎩

1 = 

³
1 − 1 − 21−1

21+1

´

1 = 1 − 1 + 1


1 = −1

(25)

and the slave-system have the form:⎧⎪⎨⎪⎩

2 = 

³
2 − 2 − 22−1

22+1
+ 22

´
+ 1


2 = 2 − 2 + 2 + 2


2 = −2 + 3

(26)

Let us introduce the errors:

1 = 2 − 1 2 = 2 − 1 3 = 2 − 1 (27)

so that the errors-systems will have the form:⎧⎪⎨⎪⎩

1 = 

³
2 − 1 − 22−1

22+1
+ 21−1

21+1
+ 22

´
+ 1


2 = 1 − 2 + 3 + 2


3 = −2 + 3

(28)

We can choice the control parameters 1 2 3 as:

1 = 

µ
22 − 1
22 + 1

− 21 − 1
21 + 1

− 22

¶
+ 1(1 2 3)

2 = 2(1 2 3) (29)

3 = 3(1 2 3)
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and the error-system becames:⎧⎨⎩

1 =  (2 − 1) + 1(1 2 3)

2 = 1 − 2 + 3 + 2(1 2 3)


3 = −2 + 3(1 2 3)

(30)

We want to stabilize this system in 1 2, 3 in origin (0 0 0). There are many choises

to control parameters 1 2, 3 :⎛⎝ 1
2
3

⎞⎠ =

⎛⎝ 11 12 13
21 22 23
31 32 33

⎞⎠⎛⎝ 1
2
3

⎞⎠ (31)

where  =

⎛⎝ 11 12 13
21 22 23
31 32 33

⎞⎠ is 3x3 matrix. For the system to be stable, they need the

 ’s own values must have the real negative side:⎛⎝ 
1

2

3

⎞⎠ =

⎛⎝ −1 0 0

0 −1 0

0 0 −1

⎞⎠⎛⎝ 1
2
3

⎞⎠ (32)

For that, we need to choose⎛⎝ 1
2
3

⎞⎠ =

⎛⎝ − 1 − 0

−1 0 −1
0  −1

⎞⎠⎛⎝ 1
2
3

⎞⎠ (33)

The characteristic polynomial is

 () =

¯̄̄̄
¯̄ − 1 − 0

−1 0 −1
0  −1

¯̄̄̄
¯̄ (34)

and the characteristic equation has the form:

3 + (2− )2 + ( + 1− 2)+ (1− ) +  = 0 (35)

We want all three roots of the equation to have the real-side negative. This will imply

some conditions on the  and  coefficients. Let us use the notation:

2−  = 1 = −(1 + 2 + 3)

 + 1− 2 = 2 = 12 + 23 + 13 (36)

(1− ) +  = 3 = −123
The Rough-Hurvitz criteria asks for stability that:

1  0

3  0 (37)

12 − 3  0
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Figure 2:  = 2  = 1

For our model this means

2−   0

(1− ) +   0 (38)

(2− )( + 1− 2)− (1− ) +   0

From first inequation we obtain

  2 (39)

and from the last one

  −2(− 1)2 (40)

The two above inequations leads to

−   2[1 + (− 1)2] (41)

This means

−123 = (1− ) +   −   2[1 + (− 1)2]  4 (42)

123  −4 (43)

This means that (0 0 0) can be attractor point because Re1  0; Re2  0; Re3  0

(for −4  123  0) but may also be a stable point for 123  0 (and the systems of

errors will synchronize).
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