On the movement of dust particles in inhomogeneous magnetic field with radial magnetic perturbation

I. Petrisor
Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, 13 A.I. Cuza Str., 200585 Craiova, Romania

Abstract

The model developed in our paper considers a stochastic magnetic field that contains a term representing the gradient of the magnetic field and a radial fluctuating term that is described by the dimensionless function $A b_{x}(Y)$ that are perpendicular to the mean magnetic field B_{0}. We have calculated the solutions, the hodographs of velocities, the accelerations from the Newton-Lorentz equation for different values of the dimensionless Lorentz frequency Ω and the dimensionless parameters A, α_{x}, γ and K_{B}.

PACS numbers: $52.35 \mathrm{Ra}, 52.25 \mathrm{Fi}, 05.40 .-\mathrm{a}, 02.50$. -r.

1 Introduction

We have analyzed in this paper the dust particles trajectories induced by the fluctuations of the magnetic field. We have solved the Newton -Lorentz equation of dust particles for physically relevant parameter values, namely the dimensionless Larmor frequency Ω and the dimensionless parameters $A, \alpha_{x}, \gamma, \Omega$ and K_{B} (see below).

The paper is organized as follows. The magnetic field model and the Lorentz equations are established in section 2 . In section 3, the hodograph of velocities, the accelerations and the trajectories for the dust particles were calculated and represented. The conclusions are summarized in section 4 .

2 The magnetic field model and the Lorentz equations

The expression of the inhomogeneous stochastic magnetic field that is characterized only by a radial perturbation is:

$$
\begin{equation*}
\mathbf{B}(X, Y, Z)=B_{0}\left\{\left[1+X L_{B}^{-1}\right] \mathbf{e}_{z}+A b_{x}(Y) \mathbf{e}_{x}+\mathbf{e}_{y}\right\} \tag{1}
\end{equation*}
$$

where A is a dimensionless parameter measuring the amplitude of the magnetic field fluctuation relative to the mean magnetic field $B_{0}\{$ see e.g. [3], [4], [5],[6]\}. There is one linear term depending on X in the right hand side of eq.(1): the nonhomogeneous term $X L_{B}^{-1}$ where L_{B} is the gradient scale length. We will define the term $B_{0}\left[1+X L_{B}^{-1}\right] \mathbf{e}_{z}$ as the gradient \mathbf{B} term. The Newton-Lorentz force is:

$$
\begin{equation*}
m \frac{d \mathbf{V}}{d t}=q(\mathbf{V} \times \mathbf{B}) \tag{2}
\end{equation*}
$$

and the corresponding system of equations corresponding to the definition given in (1) is:

$$
\begin{align*}
\frac{d V_{x}}{d t} & =\frac{q B_{0}}{m} V_{y}\left(1+X L_{B}^{-1}\right) \tag{3}\\
\frac{d V_{y}}{d t} & =\frac{q B_{0}}{m}\left[-V_{x}\left(1+X L_{B}^{-1}\right)+V_{z} A b_{x}\right] \tag{4}\\
\frac{d V_{z}}{d t} & =\frac{q B_{0}}{m}\left(V_{x}-V_{y} A b_{x}\right) \tag{5}
\end{align*}
$$

We use the following dimensionless quantities:

$$
\begin{equation*}
\frac{\mathbf{V}}{v_{0}}=\mathbf{v} \quad, \quad \frac{t}{t_{0}}=\tau, \quad \frac{\mathbf{X}}{L}=\mathbf{x} \tag{6}
\end{equation*}
$$

where $v_{0} \equiv v_{t h} \simeq 10^{3} \mathrm{~ms}^{-1}, t_{0} \equiv t_{s} \simeq 10^{4} \mathrm{sec}$ and L is of order of meter. The dimensionless system of equations is the following:

$$
\begin{align*}
& \frac{d v_{x}}{d \tau}=\Omega v_{y}\left(1+K_{B} x\right) \\
& \frac{d v_{y}}{d \tau}=\Omega\left[-v_{x}\left(1+K_{B} x\right)+v_{z} A b_{x}\right] \\
& \frac{d v_{z}}{d \tau}=\Omega\left(v_{x}-v_{y} A b_{x}\right) \tag{7}
\end{align*}
$$

In the system (7) the following dimensionless parameters are introduced:

$$
\begin{gather*}
\text { Dimensionless frequency } \Omega=\frac{q B_{0} t_{0}}{m} \tag{8}\\
\text { The inhomogeneous parameter } K_{B}=\frac{L}{L_{B}} \tag{9}
\end{gather*}
$$

We choose $A b_{x}=A \sin \left(\alpha_{x} y+\gamma\right)$ where A is dimensionless amplitude of the radial fluctuation and α_{x} is proportional to L^{-1}. We will consider that the masses of the dust particles are in the range from $\left[10^{-11}, 10^{-10}\right] \mathrm{kg}$ and the electric charges are in the range from $\left[10^{-14}, 10^{-13}\right] C[1],[2]$. The order of magnitude of the magnetic field is considered to be of order $10 T$. The thermal velocity $v_{t h}$ is of order $10^{3} \mathrm{~m} / \mathrm{s}$ and the stopping time $t_{0}=t_{s}$ is of order $10^{4} s$ if the dimension of the dust grain is $10^{-2} \mathrm{~m} . \Omega$ is considered to be of order $[1,100]$ and L_{B} is of order of L.

3 The trajectories, velocities, hodographs of velocities and accelerations

In Figure 1 we visualized the trajectories (left up), velcocities (right up), hodograph of velocities (left down) and accelerations (right down) for fixed values of the parameters $A=1, \alpha_{x}=1, \gamma=0, \Omega=1$ and $K_{B}=1$. The helix trajectory is obvious with a relatively small pitch.

In Figure 2 was represented the trajectories (up) and the hodographs (down) of velocities for $A=1, \alpha_{x}=1, \gamma=0, K_{B}=1, \Omega=\{1$ (blue), 5 (red), 10 (green) $\}$. The volume occupied by the 3 -dimensional trajectory the smaller the greater Ω is. The smallest gyration radius is then for $\Omega=10$ (the green curve). The volume of the 3 -dimensional

Figure 1: $A=1, \alpha_{x}=1, \gamma=0, K_{B}=1, \Omega=1$
trajectory diminishes if the parameter K_{B} increases (see this feature comparing the Figures 2 and 3).In Figure 3 was represented the trajectories (up) and the hodographs (down) of velocities for $A=1, \alpha_{x}=1, \gamma=0, K_{B}=10, \Omega=\{1$ (blue), 5 (red), 10 (green) $\}$. In figure (4) was represented the trajectories (up) and the hodographs (down) of velocities for $A=1, \gamma=0, K_{B}=10, \Omega=10, \alpha_{x}=1$ (green), $\alpha_{x}=3$ (magenta), $\alpha_{x}=2$ (black). Varying the parameter α_{x} we notice that the gyration radius is diminished but the elongation of the trajectory increases: the greater is in the case of $\alpha_{x}=3$ (magenta).In Figure 5 was visualized the trajectories (up) and the hodographs of velocities (down) for $A=1$, $\alpha_{x}=1, K_{B}=1, \Omega=5, \gamma=0.1$ (red), $\gamma=0$ (blue). If the phase is $\gamma=0.1$ or 0 there are no rotations for the ions.

4 Conclusion

In this paper we obtained first results concerning the movement (trajectories, hodographs of velocities, accelerations) for a dust particle for different values of the dimensionless quantities such as: Lorentz frequency Ω, the parameters A, α_{x}, γ and K_{B}.

Figure 2: $A=1, \alpha_{x}=1, \gamma=0, K_{B}=1, \Omega=\{1$ (blue), 5 (red), 10 (green) $\}$

Figure 3: $A=1, \alpha_{x}=1, \gamma=0, K_{B}=10, \Omega=\{1$ (blue), 5 (red), 10 (green) $\}$

Figure 4: $A=1, \alpha=1, \gamma=0, K_{B}=10, \Omega=1$ (blue), 5 (red), 10 (green)

Figure 5: $A=1, \alpha_{x}=1, K_{B}=1, \Omega=5, \gamma=0.1$ (red), $\gamma=0$ (blue)

We can conclude that the movement is influenced by α_{x}, Ω and γ and a small influence is given by K_{B}.

Acknowledgments. This work was supported by the Grant 1EU/5.06.2014.

References

[1] L V Deputatova, V S Filinov, D S Lapitsky, V Ya Pecherkin, R A Syrovatka, L M Vasilyak and V I Vladimirov, Journal of Physics: Conference Series 653 (2015) 012129
[2] P.K. Shukla, N.L. Tsintsadze, Physics Letters A 372, 2053-2055 (2008).
[3] A. Greco, A. L. Taktakishvili, G. Zimbardo, P. Veltri, G. Cimino, L. M. Zelenyi, and R. E. Lopez, Journal of Geophysical Research, Vol. 108, No. A11, 1395, doi:10.1029/2003JA010087, 2003
[4] M. Negrea, Trajectories of a dust particle in a magnetic field with constant shear, Physics AUC, vol.16, 2016, pp. 28-33.
[5] P. Pommois, P. Veltri, and G. Zimbardo, Phys.Rev.E , 59, 2, 1999, pp. 2244.
[6] M. Negrea, I. Petrisor, D. Constantinescu, Physics AUC, vol. 24, 116-122 (2014).

