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Abstract

The dust particles di¤usion induced by a magnetic �eld with linear x-dependence
of the shear and without turbulence is studied. The solutions of the Newton -Lorentz
equation of dust particles are obtained for physically relevant parameter values; we
obtained also the trajectories for di¤erent values of the shear parameter and the
Larmor frequency.
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1 Introduction

We have analyzed in our previous paper [1], the dust particles trajectories induced by
a magnetic �eld with average component and without turbulence. We have solved the
Newton-Lorentz equation of dust particles for physically relevant parameter values, namely
the shear parameter and the Larmor frequency. Because the impact of dust particles on
tokamak walls can create a deterioration of the latter it is very important to study the
transport of dust grains at the edge of the plasma. We extended the previous mentioned
paper and in the current paper we use a linear x-dependence (i.e. on the radial coordinate
x) of the shear speci�c to tokamak plasma and astrophysics systems.
The paper is organized as follows. The equations of motion for the dust particle in a

sheared slab magnetic �eld are established in section 2. In section 3, the velocities and
the trajectories for the dust particles were calculated and represented. The conclusions
are summarized in section 4.

2 Equations of motion for the dust particle

The electric �eld is considered to be irrelevant in our analysis and only the unperturbed
magnetic �eld with shear is considered. The Newton-Lorentz force is:

m
dV

dt
= q (V �B) (1)

where the unperturbed sheared magnetic �eld is given by the expression:

B (X)=B0
�
ez +XL

�1
s ey

�
(2)
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where X � (X; Y; Z) and the shear parameter has the order of magnitude of L�1s 2
[10�1; 10�2] m�1 [4]. The scalar equations corresponding to eqs. (1) combined with the
eq.(2) are:

m
dVx
dt

= qB0
�
Vy � VzXL�1s

�
(3)

m
dVy
dt

= �qB0Vx (4)

m
dVz
dt

= qB0VxXL
�1
s (5)

We use the following dimensionless quantities:

V

v0
= v ;

t

t0
= �;

X

L
= x (6)

where v0 � vth ' 103ms�1; t0 � ts ' 104 sec and L is of order of meter. The dimensionless
equations that we obtain is:

dvx
d�

=
qB0t0
m

�
vy � vzxLL�1s

�
� 
 (vy � xKshvz)

dvy
d�

= �qB0t0
m

vx � �
vx
dvz
d�

=
qB0t0
m

xLL�1s vx � 
xKshvx (7)

where 
 � qB0t0
m

and Ksh = LL�1s . We will consider that the masses of thr dust
particles are in the range from [10�11; 10�10] kg and the electric charges are in the range
from [10�14; 10�13] C [2]-[5]. The order of magnitude of the magnetic �eld is considered
to be of order 10 T . The thermal velocity vth is of order 103 m=s and the stopping time
t0 = ts is of order 104s if the dimension of the dust grain is 10�2m: 
 is considered to be
of order [10; 100].

3 The trajectories for the dust particle

In this section we represented the solutions and the trajectories for the dust particle for
di¤erent values of the Lorentz frequency 
 and the shear parameter Ksh [6]. In �gure (1)
were represented the solutions of the system (7) for 
 = 10 and 
 = 25 and a �xed shear
parameter Ksh = 5:5. We also represented the trajectories for the dimensionless Larmor
frequency 
 = 10 and 
 = 25 and a �xed shear parameter Ksh = 5:5 in �gure (2). It is
obviously that for the same time-interval � 2 [0; 0:1] an increase of the Larmor frequency
from 
 = 10 to 
 = 25 gives an increased number of oscillations as we can observe from
the �gure (2).
In �gure (3) were represented the solutions of the system (7) for 
 = 30 and 
 = 60

and a �xed shear parameter Ksh = 10. We also represented the corresponding trajectories
in �gure (4). It is obviously that for the same time-interval � 2 [0; 0:1] an increase of
the Larmor frequency from 
 = 30 to 
 = 60 gives �nally helical trajectories as we can
observe from the �gure (4). Correspondingly the number of oscillations of the solutions
increase if the Larmor frequency increase as we can observe from �gure (3). In �gure
(5) a comparison between the solutions and the velocities corresponding to the model
analyzed () in this work and the model of a average component analyzed in the previous
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Figure 1: The solutions for the dimensionless Larmor frequency 
 = 10 and 
 = 25 and
a �xed shear parameter Ksh = 5:5.
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Figure 2: The trajectories for the dimensionless Larmor frequency 
 = 10 and 
 = 25
and a �xed shear parameter Ksh = 5:5.
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Figure 3: The solutions for the dimensionless Larmor frequency 
 = 30 and 
 = 60 and
a �xed shear parameter Ksh = 10.
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Figure 4: The trajectories for the dimensionless Larmor frequency 
 = 30 and 
 = 60
and a �xed shear parameter Ksh = 10.
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Figure 5: Comparison between the solutions and the velocities corresponding to the model
analyzed in this work and the model of a constant shear analyzed in the previous paper.
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paper [1] is shown (the subscript "0" is for the model studied in [1]). We note from the
�gure 5 that x(�) and y(�) have similar behaviour for both studied models, but z(�)
display and strong escape in comparison with z0(�); because the ecuation of acceleration
is: dvz

d�
= qB0t0

m
xLL�1s vx instead of

dvz0
d�
= qB0t0

m
bshvx0; (in the model [1]); practically there

is a x�deppendence that imposes such kind of behaviour.

4 Conclusions

The dust particles motion was studied and their trajectories were calculated for a class of
Larmor frequency and shear parameter. The increase of the Larmor frequency and of the
shear parameter produce closed trajectories. More informations on the dynamics will be
obtained from the analysis of the running and asymptotic di¤usion coe¢ cients but this
issue is left for a future paper.
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