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Abstract

This paper proposes a direct study for the Lie symmetries investigation in the
case of a 2D Hamiltonian system arising from astrophysics: the 2D Hénon-Heiles
mechanical model. General Lie operators are deduced firstly and, in the the next
step, the associated Lie invariants are derived.
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1 Introduction

In the last years, nonlinear dynamical systems were intensively studied for their important
role in the sphere of basic theoretical researches from mathematics and physics, and in
the application of these related branches of science.

Chaos is characteristic for many nonlinear dynamical systems with finite or infinite
degrees of freedom. In nature, chaotic behavior more is a rule than an exception. The
investigation methods of chaotic dynamics are studied in [1]. To prove that some of the
dynamical systems are chaotic (nonintegrable systems), a study of the periodical orbits
of the system can be done, case in which this analysis is possible, through numerical
methods.

Opposite to the chaotic dynamical systems are the integrable ones, which present a
regular behavior. In a tight connection with integrability is the problem of isolating the
constants of motion for a given physical system. The determination of the invariants for
autonomous or non-autonomous Hamiltonian integrable systems can be done by using
direct or indirect methods. In the case of a 2-dimensional autonomous system, where the
Hamiltonian does not depend explicitly on time, a first constant quantity is immediately
found: the Hamiltonian itself that represents the system’s total energy. Therefore, the
only problem to be solved in order to fulfill the integrability condition would be to find a
second invariant.

The indirect methods for constructing the invariants consist in their determining from
the symmetries found for the analyzed system. Both, the Lie symmetries which leave
invariant the evolution equations of the system (leave invariant the differential equation
with partial derivatives which described the physics’ process) and the Noether symmetries
which leave invariant the action of the system, are in the attention of researchers. In [2],
are pointed out the Noether and Lie symmetries and the associated invariants too, for
the non-autonomous Kepler system. Two main indirect approaches of integrability are
usually used: the Painlevé analysis [3] and the recursion operator method [4]. In the
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recent years, were also investigated another type of symmetries for various models. A
special type of nonlocal symmetries are investigated in [5], [6].

The way followed in this paper is a more direct one. It consists in the check of the
symmetries of the system using the Lie group approach [4]. After this introduction,
we apply the general algorithm for the computation of Lie symmetries and associated
constants of motion for the generalized Hénon-Heiles system.

The Hénon-Heiles (HH) model:{
ẍ = −x1 − 2x1y1
ÿ = −y1 − x2

1 + y21
, (1)

with the Hamiltonian

H1 =
1

2
ẋ2
1 +

1

2
ẏ21 +

1

2
x2
1 +

1

2
y21 + x1y

2
1 −

1

3
x3
1. (2)

was created for describing stellar motion in a cylindrical symmetric galaxy with gravita-
tional potential and is formed by a set of two coupled non-linear second order ordinary
differential equations. The original form with fixed parameters was used by Hnon and
Heiles in 1964 [7] to examine the regular and chaotic motion of a star in the galaxy. The
general form of this model is{

ẍ = −Ax− 2Bxy
ÿ = −Cx2 −Dy + Ey2

, (3)

which is know to be Hamiltonian and integrable in the original case: for A=D and B=C=-
E.

After this introduction, we apply the general algorithm for the computation of Lie
symmetries for the HH system which depend only on the independent and dependent
variables (the classical point symmetries). In order to capture the full invariance proper-
ties of the analyzed system, we search also for Lie generalized symmetries, in the 4D space
(x, y, ẋ, ẏ). By this, more general Lie symmetries than the standard ones are obtained.
Some remarks and conclusions will end the paper.

2 Classical symmetries of generalized Henon-Héiles

system

Consider the equation Hénon-Heiles{
ẍ = −Ax− 2Bxy
ÿ = −Cx2 −Dy + Ey2

, (4)

written in the form {
ẍ−K1 = ẍ+ Ax+ 2Bxy = 0
ÿ −K2 = ÿ + Cx2 +Dy − Ey2 = 0

. (5)

Let take a generalized vector field:

U = ξ
∂

∂t
+ φ1

∂

∂x
+ φ2

∂

∂y
(6)
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with a second order extension:

U (2) = ξ
∂

∂t
+ φ1

∂

∂x
+ φ2

∂

∂y
+ φt

1

∂

∂ẋ
+ φt

2

∂

∂ẏ
+ φtt

1

∂

∂ẍ
+ φtt

2

∂

∂ÿ
(7)

where 
φt
1 = d

dt
[φ1 − ξ · xt] + ξxtt

φt
2 = d

dt
[φ2 − ξ · yt] + ξytt

φtt
1 = d2

dt2
[φ1 − ξ · xt] + ξxttt

φtt
2 = d2

dt2
[φ2 − ξ · yt] + ξyttt

, (8)

The invariant conditions of the evolution equations (5) are:{
U (2)[ẍ−K1] = φtt

1 + φ1(A+ 2By) + 2φ2Bx = 0
U (2)[ÿ −K2] = φtt

2 + 2φ1Cx+ φ2(D − 2Ey) = 0
. (9)

Supposing now that the infinitesimal generators ξ = ξ(t, x, y), φ1 = φ1(t, x, y) and
φ2 = φ2(t, x, y) depend only on the independent and dependent variables (the case of
classical Lie symmetries), after vanishing the coefficients of various monomials of the
form ẋaẏb, a, b = 0, 1, 2..., in (9), we obtain a system S of certain number of equations
with the unknown functions ξ φ1 and φ2.

The first of the equations (9) split into the equations:

(φ1)xx − 2ξtx = 0, (10)

(φ1)yy = 0, (11)

2(φ1)xy − 2ξty = 0, (12)

−2(ξ)xy = 0, (13)

−(ξ)xx = 0, (14)

−(ξ)yy = 0, (15)

2(φ1)tx − ξtt + 3ξx(Ax+ 2Bxy) + ξy(Cx2 +Dy − Ey2) = 0, (16)

2(φ1)ty + 2ξy(Ax+ 2Bxy) = 0, (17)

Aφ1 + 2Byφ1 + 2Bxφ2 + (φ1)tt − (φ1)x(Ax+ 2Bxy) −
−(φ1)y(Cx2 +Dy − Ey2) + 2ξt(Ax+ 2Bxy) = 0.

(18)

The second equation of (9) gives

(φ2)yy − 2ξty = 0, (19)

(φ2)xx = 0, (20)
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2(φ2)xy − 2ξtx = 0, (21)

−2(ξ)yx = 0, (22)

−(ξ)yy = 0, (23)

−(ξ)xx = 0, (24)

2(φ2)ty − ξtt + ξx(Ax+ 2Bxy) + 3ξy(Cx2 +Dy − Ey2) = 0, (25)

2(φ2)tx + 2ξx(Cx2 +Dy − Ey2) = 0, (26)

2φ1Cx+Dφ2 − 2φ2Ey + (φ2)tt − (φ2)x(Ax+ 2Bxy) −
−(φ2)y(Cx2 +Dy − Ey2) + 2ξt(Cx2 +Dy − Ey2) = 0.

(27)

From the equations (13), (14) and (15) we deduce that ξ is linear in x and y, and have
the form

ξ = f(t)x+ g(t)y + h(t).

From (11), we obtain that φ1 is linear in y, and from (20), φ2 must be linear in x.
Suppose that φ1 and φ2 have the form:

φ1 = k1x+m1y + r1 (28)

φ2 = k2x+m2y + r2 (29)

Using the first 18 equations (10)-(27), we obtain by reduction a new system:

2Br2 = 0 (30)

m1A+ 2Br1 −Dm1 = 0 (31)

2Bm2 = 0 (32)

2Bm1 − Em1 = 0 (33)

2Bk2 − Cm1 = 0 (34)

Em2 = 0 (35)

2C(k1 −m2) = 0 (36)

2Cm1 − 2Ek2 − 2k2B = 0 (37)

Er2 = 0 (38)

2Cr1 +Dk2 − Ak2 = 0 (39)

Dr2 = 0 (40)

Ar1 = 0. (41)

From these equations we can distingue some different cases:
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• If B=0, E=0, C=0, A = D ̸= 0 (the trivial linear case), we obtained the solutions

ξ = q , φ1 = m1y + k1x , φ2 = m2x+ k2y (42)

where m1, m2, k1, k2 and q are constants. The infinitesimal generators of the
symmetries are

U1 =
∂

∂t
, U2 = x

∂

∂x
, U3 = y

∂

∂x
, U4 = x

∂

∂y
, U5 = y

∂

∂y
;

• If B=0, E=0, C=0 and A ̸= D (the second linear case), we obtained the solutions

ξ = q , φ1 = k1x , φ2 = 2k1y (43)

where m1, m2, k1, k2 and q are constants.The infinitesimal generators of the sym-
metries are

U1 =
∂

∂t
, U2 = x

∂

∂x
+ 2y

∂

∂y
;

• If C = 0, E ̸= 0, and A ̸= 0, we obtained the solutions

ξ = q , φ1 = k1x , φ2 = 0 (44)

where k1 and q are constants. Here B and D can have any value. The infinitesimal
generators of the symmetries are

U1 =
∂

∂t
, U2 = x

∂

∂x

• If B ̸= 0, E=2B, C=0 and A=0, we obtained the solutions

ξ = q , φ1 = m1y + k1x+
D

2B
m1 , φ2 = 0, (45)

where m1, k1, and q are constants. The infinitesimal generators of the symmetries
are

U1 =
∂

∂t
, U2 = x

∂

∂x
, U3 = [y +

D

2B
]
∂

∂x

• In any other cases the only classical symmetry admitted by the general Hénon-Heiles
system is

ξ = q , φ1 = 0 , φ2 = 0, (46)

where q is a constant. The infinitesimal generator of the symmetries is

U1 =
∂

∂t

The original Hénon- Heiles system is included in this category. Note that this sym-
metry correspond to a time-translation and is common to any autonomous system.
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3 The generalized symmetries

The Lie generalized symmetries for a PDE system which describes a dynamical system
are the solution of the Lie invariance condition of Olver (9) that involves the derivatives
of the dependent variables x and y.

An alternate version of the Lie invariance condition can be obtained by introducing
the couple Q = (Q1, Q2), known as the characteristic of the symmetry operator (5):

Q1 ≡ φ1 − ξẋ , Q2 ≡ φ2 − ξẏ (47)

the Lie invariance condition (9) become:{
U (2)[K1 − ẍ] = −D2

tQ
1 +Q1K1,x +Q2K1,y = 0

U (2)[K2 − ÿ] = −D2
tQ

2 +Q1K2,x +Q2K2,y = 0
. (48)

where K1 = −Ax− 2Bxy and K2 = −Cx2 −Dy + Ey2.
In this paper we restricted our-self to the case of linear dependence of the symmetry

operators on the velocities ẋ and ẏ, then the symmetries characteristics Q1 and Q2 are
given by {

Q1 = Q11(t, x, y)ẋ+Q12(t, x, y)ẏ
Q2 = Q21(t, x, y)ẋ+Q22(t, x, y)ẏ

. (49)

with Qij constants. In this case, the symmetry condition (48) rewrite as{
(Q11ẋ+Q12ẏ)K1,x + (Q21ẋ+Q22ẏ)K1,y = Q11DtK1 +Q12DtK2

(Q11ẋ+Q12ẏ)K2,x + (Q21ẋ+Q22ẏ)K2,y = Q21DtK1 +Q22DtK2
. (50)

But DtKi = Ki,xẋ +Ki,yẏ for i = 1, 2, then, equaling the coefficients of ẋ, ẏ in (50) one
obtain the system 

Q12K2,x = Q21K1,y

Q12(K1,x −K2,y) = K1,y(Q11 −Q22)
Q21(K1,x −K2,y) = K2,x(Q11 −Q22)

. (51)

One observe that the system (51) is obviously verified if Q21 = Q12 = 0 and Q11 = Q22,
then the system (4) admit in any situation the symmetry operator

U0 = ẋ
∂

∂x
+ ẏ

∂

∂y
. (52)

The main result of this section can be formulated as

Proposition 1 Consider the generalized Hénon -Heiles system{
ẍ = −Ax− 2Bxy
ÿ = −Cx2 −Dy + Ey2

. (53)

Then we have the following assertions:

a. The system (53) always admit the symmetry operator (52)

U0 = ẋ
∂

∂x
+ ẏ

∂

∂y
.
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b. The operator

U21 = αẏ
∂

∂x
+ βẋ

∂

∂y
(54)

is symmetry for the system (53) if and only if
A = D
B = −E

αC = βB
. (55)

c. The operator

U22 = (αẏ − γ

2x
ẋ)

∂

∂x
+ (βẋ+

γ

2x
ẏ)

∂

∂y
. (56)

is symmetry for the system (53) if and only if
B = −E

2γB = α(A−D)
2γC = β(D − A)

. (57)

d. Their are no other generalized symmetries that are linear in the velocities ẋ and v̇ for
the generalized Hénon-Heiles system.

Proof. By insertion of the expressions K1 = −Ax−2Bxy and K2 = −Cx2−Dy+Ey2

into the system (51) and the re-notation α = Q12, β = Q21 and γ = Q22−Q11, one obtains
the solutions of the resulting system in the form described below.

Remark 1 The classical Hénon-Heiles system verifies the condition (b.) from the Propo-
sition 1.

The cases of generalized symmetries that are not linear in velocities will be approached
in a future paper.

4 Concluding remarks

We investigated the problem of the existence of classical and generalized symmetries of
the generalized Hénon-Heiles equation{

ẍ = −Ax− 2Bxy
ÿ = −Cx2 −Dy + Ey2

, (58)

using the Lie approach The main results we obtained could be synthesized as follows:
(i) The group of classical Lie symmetries for the equation Hénon-Heiles generalized

is generated by one, two, three or four operators (the 42-46 formulas), depending of some
conditions imposed to the coefficients A,B,C,D ;

(ii) The generalized symmetries, linear in velocities ẋ and v̇, for this equation are
spanned by (52) and (54) or (56), depending on some restriction of the coefficients
A,B,C,D. Note that the existence of more complex symmetries was proved for two par-
ticular cases of the HH equation in [3].

The methodological approach exposed here do not require the investigated system to
be Hamiltonian and can be easy adapted and applied in the case of other mechanical
models of field theories, as, for examples, the case of Yang-Mills equation.
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