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Abstract

Here we approach all consistent and nontrivial couplings that can be introduced
between a massless tensor field with the mixed symmetry (k, 1) for k ≥ 4 and a
Pauli–Fierz field in the context of the antifield-BRST deformation method under
some standard “selection rules” from Quantum Field Theory.

PACS: 11.10.Ef

1 Introduction

The class of tensor fields with mixed symmetries (neither completely antisymmetric nor
fully symmetric), i.e. transforming according to the irreducible exotic representations of
the group GL(D,R), became of real interest in theoretical high energy physics due to
its involvement in many important physical theories (superstrings, supergravity, super-
symmetric high-spin theories). The enhancement of gauge field theory spectrum such as
to include bosonic tensor fields with mixed symmetries (i.e. transforming in true exotic
representations of the Lorentz group) made possible a successful approach to several im-
portant issues, such as the proof of the absence of nontrivial consistent interactions in
the dual formulation of linearized gravity in D = 5 [1], the connection of such models to
M -theory [2–4], or the development of consistent interactions between this class of gauge
field theories and gravity on both Minkowski and anti-de Sitter backgrounds [5–7].

Here we focus on the class of massless real tensor fields transforming in irreducible
exotic representations of the Lorentz group corresponding to the so-called “hook” Young
diagrams: two-column, with (k + 1) cells, and displaying k ≥ 4 rows — also known as
tensor fields with the mixed symmetry (k, 1). For arbitrary values of k, such tensor fields
(massless and massive) have initially been investigated more than two decades ago [8–
12]. Their key feature follows from the fact their free action provides one of the dual
formulations of linearized gravity in D = k + 3. Thus, the raised interest in constructing
gravity-like dual theories unveiled the prominent role played in this context by various
types of mixed-symmetry tensor fields, like for instance that of fundamental field in the
“magnetic representation” [13].
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The main purpose of the present paper is to construct all consistent and nontrivial
couplings between a massless tensor field with the mixed symmetry (k, 1) (D ≥ k + 2,
k ≥ 4) and a spin-2 gauge field. Regarding the spin-2 gauge field, we start from the
Pauli–Fierz formulation [26, 27] based on a massless symmetric tensor field of order two
endowed with the gauge algebra of linearized diffeomorphisms. We employ one of the
main applications of the antifield-BRST formalism [14–17], namely the construction of
consistent interactions in gauge field theories [18–21] by means of deforming the solution
to the classical master equation. This method requires the computation of the local
cohomology of the BRST differential in ghost number 0 and in maximum form degree
[22–25]. In addition, we ask that the deformations agree with the usual selection rules of
Quantum Field Theory: analyticity in the coupling constant, spacetime locality, Lorentz
covariance, Poincaré invariance, and conservation of the differential order of the free field
equations at the level of the coupled theories. The last hypothesis is strengthened by
requiring that the interacting vertices preserve the maximum derivative order the free
Lagrangian density at all orders of perturbation theory, namely two. The findings exposed
here complement and extend various developments [28–47].

Under the specified working hypotheses, we will prove the following main results:

1. There are no consistent and nontrivial cross-coupling first-order deformations that
check all the imposed selection rules. The main obstruction seems to originate in the
maximum derivative order equal to two of the interacting Lagrangian density at all
orders of perturbation theory. It is possible that the relaxation of this assumption
leads to nontrivial cross-couplings;

2. The only eligible terms from the deformed solution to the master equation corre-
spond to the graviton self-interactions, materialized in the Einstein–Hilbert action
(possibly with a cosmological term), invariant under diffeomorphisms, and respec-
tively to the self-interactions of a single tensor field with the mixed symmetry (k, 1)
(nontrivial only for k = 2k̄ and in D = 4k̄).

2 Free limit: Lagrangian formulation and antifield-

BRST symmetry

The starting point is a free Lagrangian action describing a massless tensor field with the
mixed symmetry (k, 1) (k ≥ 4) and a Pauli–Fierz field

S0[tµ1...µk|α, hµ|α] = St
0[tµ1...µk|α] + Sh

0 [hµ|α], (1)

where

St
0 = − 1

2·(k+1)!

∫ [
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µkF
µ1...µk

]
dDx, (2)

Sh
0 =

∫ [
− 1

2
(∂ρhµ|α)(∂ρhµ|α) + (∂µh

µ|α)(∂νhν|α)

− (∂αh)(∂µhµ|α) + 1
2
(∂ρh)(∂ρh)

]
dDx. (3)

We work on a Minkowski spacetimeM of dimension D ≥ k+2 ≥ 6 with a mostly positive
metric σµν = σµν = (− + . . .+) and define the Levi-Civita symbol in D dimensions
εµ1...µD by ε01...D−1 = −1. The mixed symmetry (k, 1) of the field tµ1...µk|α means it is
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antisymmetric in its first k indices and satisfies the identities t[µ1...µk|α] ≡ 0. Its trace,
tµ1...µk−1

= tµ1...µk|ασ
µkα, is a completely antisymmetric tensor of order (k − 1), while

Fµ1...µk+1|α = ∂[µ1tµ2...µk+1]|α, (4)

Fµ1...µk ≡ Fµ1...µk+1|ασ
µk+1α = ∂[µ1tµ2...µk]

+ (−)k∂αtµ1...µk|α, (5)

so the tensor Fµ1...µk+1|α displays the mixed symmetry (k+1, 1) and its trace is completely
antisymmetric. The field hµ|α is a symmetric two-tensor and h denotes its trace, h ≡
hµ|ασ

µα. Functional Sh
0 is precisely the Pauli–Fierz action [26, 27] and coincides with the

linearized Einstein–Hilbert action (without a cosmologic term). Everywhere in this paper
the notation [µ . . . ν] signifies complete antisymmetry with respect to the (Lorentz) indices
between brackets, with the conventions that the minimum number of terms is always used
and the result is never divided by the number of terms. The stationary surface of this
free model is defined by the field equations

δSt
0

δtν1...νk|α
≡ 1

k!
T ν1...νk|α ≈ 0, (6)

δSh
0

δhµ|α
≡ Hµ|α ≈ 0, (7)

with

T ν1...νk|α = ∂µF
µν1...νk|α − σα[ν1∂µF

ν2...νkµ], (8)

Hµ|α = �hµ|α − ∂(µh
α)|β,

β + ∂µ∂αh+ σµα(∂ν∂βh
ν|β −�h). (9)

In (9) we employed the standard notation f,µ ≡ ∂µf . Obviously, T ν1...νk|α and Hµ|α
preserve the symmetry properties of the corresponding fields, namely T ν1...νk|α exhibits
the mixed symmetry (k, 1) and Hµ|α is symmetric.

A generating set of (infinitesimal) gauge transformations of action (1) can be taken as

δ(1)

θ ,
(1)
ε
tµ1...µk|α = ∂[µ1

(1)

θ µ2...µk]|α + ∂[µ1

(1)
ε µ2...µkα] + (−)k+1(k + 1)∂α

(1)
ε µ1...µk , (10)

together with the linearized version of diffeomorphisms in the Pauli–Fierz sector

δξhµ|α = ∂(µξα). (11)

The gauge parameters from the (k, 1) sector are some real, arbitrary tensors on the space-

time manifoldM such that in addition
(1)

θ µ1...µk−1|α possesses the mixed symmetry (k−1, 1)

and
(1)
ε µ1...µk is completely antisymmetric. The bosonic gauge parameter ξ is an arbitrary

vector field on M. The most general gauge-invariant quantities of this free theory are
functions of the gauge-invariant objects from both sectors. Related to the Pauli–Fierz
model, these are precisely the components of the linearized Riemann tensor

Kh
µν|αβ = ∂[µhν]|[β,α] ≡ ∂µ∂αhν|β − ∂ν∂αhµ|β + ∂ν∂βhµ|α − ∂µ∂βhν|α (12)

together with their spacetime derivatives. The linearized Riemann tensor is linear in
the Pauli–Fierz field, of order two in its spacetime derivatives, and exhibits the mixed
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symmetry (2, 2). This means it is separately antisymmetric in {µ, ν} and {α, β}, sym-
metric under their exchange ({µ, ν} ↔ {α, β}), and satisfies the first (algebraic) Bianchi
identities

Kh
[µν|α]β = 0. (13)

In addition, it verifies also the second (differential) Bianchi identities

∂[λK
h
µν]|αβ = 0. (14)

The following property will be useful in what follows: if a (real) symmetric tensor H̄µ|α

is divergence-free, then there exists a (real) tensor with the mixed symmetry (2,2) (of the
linearized Riemann tensor), such that H̄µ|α is written (up to the metric tensor) like its
double divergence

∂µH̄
µ|α = 0⇔

(
H̄µ|α = ∂ν∂βΦ̄µν|αβ + cσµα, c ∈ R

)
. (15)

Regarding the free (k, 1) model alone, the most general gauge-invariant quantities are
represented by the “curvature tensor”

Kµ1...µk+1|αβ = ∂αFµ1...µk+1|β − Fµ1...µk+1|α ≡ ∂[µ1tµ2...µk+1]|[β,α], (16)

and its spacetime derivatives. The tensor Kµ1...µk+1|αβ exhibits the mixed symmetry (k +
1, 2), so it is separately antisymmetric in its first k + 1 and respectively last two indices,
satisfies the (first Bianchi) algebraic identities K[µ1...µk+1|α]β ≡ 0 and also the (second
Bianchi) differential identities ∂[µ1Kµ2...µk+2]|αβ ≡ 0 together with Kµ1...µk+1|[αβ,γ] ≡ 0. We
notice that Kµ1...µk+1|αβ plays, in the context of the free theory (k, 1), exactly the same role
like the linearized Riemann tensor in the framework of the Pauli–Fierz model. Moreover,
if T̄ µ1...µk|α is a (real) covariant tensor with the mixed symmetry (k, 1) whose both kinds
of divergences are vanishing, then there exists a (real) tensor Φ̄µ1...µk+1|αβ with the mixed
symmetry (k+1, 2) of the curvature tensor such that T̄ µ1...µk|α is represented like its double
divergence(

∂µ1T̄
µ1...µk|α = 0, ∂αT̄

µ1...µk|α = 0
)
⇔ T̄ µ1...µk|α = ∂µk+1

∂βΦ̄µ1...µk+1|αβ. (17)

The generating set of gauge transformations (11) for linearized gravity are irreducible
and generate an Abelian algebra, whereas the Pauli–Fierz field equations were shown to
be linear in the spin-2 field and of order two in its derivatives. Therefore the “graviton”
sector is described by a linear gauge theory with the Cauchy order equal to 2. Altogether,
action (1) inherits all the properties of the free massless tensor field with the mixed
symmetry (k, 1): the gauge algebra remains Abelian, but the overall generating set of
gauge transformations becomes reducible of order (k − 1), such that its Cauchy order is
(k + 1) ≥ 5.

The BRST algebra of this free model is constructed starting from the generators
corresponding to the (k, 1) sector

ΦA ≡
{
tµ1...µk|α,

{(m)

C µ1...µk−m|α,
(m)
η µ1...µk−m+1

}
m=1,k−1

,
(k)
η µ

}
, (18)

Φ∗A ≡
{
t∗µ1...µk|α,

{(m)

C

∗µ1...µk−m|α

,
(m)
η
∗µ1...µk−m+1}

m=1,k−1
,

(k)
η
∗µ}

, (19)

whose properties are detailed in [40, 46] (a synthetic view is given in Table 1 from [46]),
to which we add the generators from Table 1 with the properties specified therein. We
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BRST generator pgh agh gh ε
hµ|α 0 0 0 0
Cα 1 0 1 1
h∗µ|α 0 1 −1 1
C∗α 0 2 −2 0

Table 1: Various gradings of the BRST generators from the Pauli–Fierz sector.

mention that the ghosts Cα are due to the gauge parameters ξα. The antifields h∗µ|α

preserve the symmetry property of the Pauli–Fierz field components, h∗µ|α = h∗α|µ. In
this case, the BRST differential simply decomposes like

s = δ + γ, s2 = 0⇔ (δ2 = 0, γ2 = 0, δγ + γδ = 0) (20)

into the sum between the Koszul–Tate differential δ (N-graded in terms of the antighost
number agh, agh(δ) = −1) and the longitudinal exterior derivative γ (here a true dif-
ferential that anticommutes with δ and is N-graded along the pure ghost number pgh,
pgh(γ) = 1). The BRST differential is Z-graded according to the ghost number gh (de-
fined in the standard fashion like pgh− agh), such that gh(s) = gh(δ) = gh(γ) = 1. The
actions of δ and γ on the (k, 1) BRST generators can be found in [46] (formulas (15)–(23)),
while on the “graviton” ones read as

γhµ|α = ∂(µCα), γCα = 0, γh∗µ|α = 0 = γC∗α, (21)

δhµ|α = 0 = δCα, δh∗µ|α = −Hµ|α, δC∗α = −2∂µh
∗µ|α. (22)

The solution to the classical master equation is nothing but the sum between those asso-
ciated with the (k, 1) sector and the Pauli–Fierz model

S =St + Sh, (23)

St =St
0[tµ1...µk|α] +

∫ {
t∗µ1...µk|α

[
∂[µ1

(1)

C µ2...µk]|α + ∂[µ1

(1)
η µ2...µkα]

+ (−)k+1(k + 1)∂α
(1)
η µ1...µk

]
+

(k−1)

C

∗µ1|α

∂(µ1

(k)
η α)

+
k−2∑
m=1

(m)

C

∗µ1...µk−m|α[
∂[µ1

(m+1)

C µ2...µk−m]|α + ∂[µ1

(m+1)
η µ2...µk−mα]

+ (−)k−m+1(k −m+ 1)∂α
(m+1)
η µ1...µk−m

]
+

k−1∑
m=1

k−m
k−m+2

(m)
η
∗µ1...µk−m+1

∂[µ1

(m+1)
η µ2...µk−m+1]

}
dDx, (24)

Sh =Sh
0 [hµ|α] +

∫
h∗µ|α∂(µCα)d

Dx. (25)

It is useful to denote all the BRST generators in a condensed form like

Φ̄Ā = {ΦA, hµ|α, Cα}, Φ̄∗Ā = {Φ∗A, h∗µ|α, C∗α}, (26)

with ΦA si Φ∗A like in (18) and (19), respectively.
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3 Main properties of the local BRST cohomology

From the perspective of analyzing the (nontrivial) consistent interactions that can be
added to the free action (1), here we discuss the main properties of the local BRST
cohomology in maximum form degree (D) for the free model under study computed in
the algebra of local forms, HD(s|d). The last algebra is defined via the coefficients of
the underlying forms, which are required to be elements of the BRST algebra of local
functions Ā, defined by polynomials in ghosts, antifields, and their derivatives up to a finite
order, ‘smooth’ functions in the undifferentiated fields t and h, and again polynomials in
the field derivatives up to a finite order. All the BRST cohomological results reported
in Refs. [46, 47] in relation to a single massless tensor field with the mixed symmetry
(k, 1) still hold in the present broader context up to properly include the supplementary
dependence on the Pauli–Fierz BRST generators. Related to the local BRST cohomology
corresponding to the Pauli–Fierz model we adopt the line from Ref. [48] where we eliminate
the graviton collection indices.

Regarding the cohomologies H(γ) and H(γ|d), the results from Ref. [46] apply up the
following observations. At the level of the algebra of invariant polynomials, namely the
cohomology of γ in pgh = 0 computed in Ā for the entire free gauge theory, the Pauli–
Fierz sector brings in an additional, polynomial dependence on the linearized Riemann
tensor Kt given in (12), on the antifields h∗, C∗, as well as on their spacetime derivatives
up to a finite order, such that

H0(γ) in Ā = {algebra of invariant polynomials} ≡
{
ᾱ
([

Φ̄∗Ā
]
, [K], [Kh]

)}
, (27)

where we employ the condensed notation from (26) and by f([y]) we mean that f depends
on y and its derivatives up to a finite order. In strictly positive pure ghost numbers, the
presence of the “graviton” component is manifested by a supplementary dependence on
the undifferentiated fermionic ghosts Cα (of pgh = 1) and of their antisymmetric first-
order derivatives

Fhµν ≡ ∂[µCν], Fhµν = −Fhνµ, ε(Fhµν) = 1, pgh(Fhµν) = 1. (28)

The symmetric first-order derivatives of the ghosts C are γ-exact, in agreement with the
first formula from (21), and similarly the derivatives of Fh of various orders due to

∂ρFhµν = γ(∂[µhν]|ρ). (29)

As a consequence, Table 2 from Ref. [46] should be replaced with Table 2 below, where

the object
(1)

F µ1...µk+1
is specific to the (k, 1) sector

(1)

F µ1...µk+1
≡ ∂[µ1

(1)
η µ2...µk+1], ε

((1)

F µ1...µk+1

)
= 1, pgh

((1)

F µ1...µk+1

)
= 1. (30)

The derivatives of
(1)

F µ1...µk+1
of various orders are trivial in H(γ) (just like those of Fh)

on account of the relation

∂ρ1

(1)

F µ1...µk+1
= γ

(
(−)k+1

k
Fµ1...µk+1|ρ1

)
. (31)

By virtue of Table 2, the general nontrivial elements a of the cohomology H(γ) computed
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BRST generator Nontrivial representatives pgh
[tµ1...µk|α] [Kµ1...µk+1|αβ] 0

[hµ|α] [Kh
µν|αβ

]
0[

Φ̄∗
Ā

] [
Φ̄∗
Ā

]
0[(1)

η µ1...µk

]
,
[(1)

C µ1...µk−1|α
] (1)

F µ1...µk+1
1[(m)

η µ1...µk−m+1

]
,
[(m)

C µ1...µk−m|α
]

— m, m = 2, k − 1[(k)
η α
] (k)

η α k
[Cα] Cα,Fh

µν 1

Table 2: Nontrivial representatives of the cohomology H(γ) computed in the algebra Ā.

in Ā that satisfy the properties pgh(a) = l ≥ 0 and agh(a) = j ≥ 0, are expressed by

a =
∑
J

ᾱJ
([

Φ̄∗Ā
]
, [K], [Kh]

)
ēJ
((1)

F ,
(k)
η , C,Fh

)
, agh(ᾱJ) = j ≥ 0, pgh(ēJ) = l ≥ 0, (32)

where ēJ denote the elements of pgh = l of a basis in the objects
(1)

F ,
(k)
η , C, and Fh. An

important result is that the analogue of Corollary 3 from Ref. [46] is still valid in the
presence of the Pauli–Fierz model.

The local cohomologies H(δ|d) (in pgh = 0) and H inv(δ|d) are still subdued to the
main properties from Ref. [46], up to the following specifications. The statements of
Corollary 5, Lemma 6, Theorem 7, and Corollary 8 therein are to be completed by the
eligible dependence on the Pauli–Fierz antifields. Actually, the nontrivial representatives
that span the spaces

(
HD
j (δ|d)

)
j=3,k+1

(in pgh = 0) and
(
H invD
j (δ|d)

)
j=3,k+1

coincide with

those of the (k, 1) model. Only in agh = 2 there appears a supplementary dependence on
the components of the undifferentiated antifield C∗, such that Table 1 from [47] will be
replaced by Table 3 below, where

(m)

C ′
∗µ1...µk−m||α

≡
(m)

C

∗µ1...µk−m|α

+ 1
k−m+2

(m)
η
∗µ1...µk−mα

, m = 1, k − 1. (33)

The antifields
(m)

C ′
∗

span, at each agh = m + 1 ∈ 2, k, all the independent components of
the antifield spectrum from the (k, 1) sector. The double bar signifies that they display
no mixed-symmetry property, but are only antisymmetric in their first (k −m) indices,
where applicable. Actually, we can equally define some ghost combinations

(m)

C ′µ1...µk−m||α ≡
(m)

C µ1...µk−m|α + (k −m+ 2)
(m)
η µ1...µk−mα

, m = 1, k − 1, (34)

that span, at each pgh = m ∈ 1, k − 1, all the independent components of the ghost
spectrum from the (k, 1) sector and, moreover, are respectively conjugated with (33) in
the antibracket.

Finally, the local BRST cohomology in maximum form degree for the free theory
(1) computed in the algebra of local forms, HD(s|d), is still adequately governed by
Proposition 10 from Ref. [47] (up to the appropriate inclusion of the “graviton” sector),
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agh complete set of nontrivial representatives

k + 1
(k)
η
∗α

j = 3, k
(j−1)

C ′
∗µ1...µk−j+1||α

2
(1)

C ′
∗µ1...µk−1||α

, C∗α

Table 3: Nontrivial representatives spanning
(
HD
j (δ|d)

)
j=2,k+1

and
(
H invD
j (δ|d)

)
j=2,k+1

.

but the analysis following this proposition should be changed appropriately. For instance,
relation (99) from Ref. [47] becomes

[D]
a k+1 =

∑
J

[D]

ᾱ J ē
J
((1)

F ,
(k)
η , C,Fh

)
,

[D]

ᾱ J ∈ H invD
k+1 (δ|d), pgh(ēJ) = k + 1 + g. (35)

4 Deformed solution of the classical master equation.

No-go results

4.1 Antifield-BRST deformation method in brief

The reformulation of the problem of constructing consistent interactions in gauge field
theories within the antifield-BRST formalism [18–21] is based on the fact that if consistent
couplings can be introduced, then the solution to the classical master equation of the initial
gauge theory, S, may be deformed into a solution to the classical master equation for the
interacting gauge theory

S̄ = S + λS1 + λ2S2 + λ3S3 + · · · , 1
2
(S̄, S̄) = 0. (36)

Related to the coupled theory, we maintain the field, ghost, and antifield spectra of the
original gauge theory in order to preserve the number of physical degrees of freedom. In
the above S̄ is a bosonic functional of fields, ghosts, and antifields with the ghost number
equal to 0. The projection of equation 1

2
(S̄, S̄) = 0 on the various powers in the coupling

constant λ is equivalent to the tower of equations

λ1 : sS1 = 0, λ2 : sS2 + 1
2
(S1, S1) = 0, λ3 : sS3 + (S1, S2) = 0, · · · (37)

known as the equation of the antifield-BRST deformation method. In this context the
functionals Si, i ≥ 1, are called deformations of order i of the solution to the master
equation. The solutions to the first-order deformation equation sS1 = 0 always exist since
they belong to the cohomology of the BRST differential s in ghost number 0 computed
in the space of all functionals (local and nonlocal) of fields, ghosts, and antifields, H0(s),
which is nonempty due to its isomorphism to the algebra of physical observables of the
initial gauge theory. Moreover, trivial first-order deformations, defined as trivial elements
of H0(s) (s-exact functionals), should be ruled out due to the fact that they provoke trivial
interactions in the sense of field theory (that can be eliminated by some possibly nonlinear
field redefinitions). The existence of solutions to the remaining higher-order equations
from (37) has been shown in [19] by means of the triviality of the antibracket map in
the BRST cohomology H(s) computed in the space of all functionals. In conclusion, if
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we impose no restrictions on the interactions (spacetime locality, etc.), then the antifield-
BRST deformation procedure can be developed without obstructions.

Nevertheless, if we work with local functionals, then the procedure starts as follows.
We make the notation

S1 =

∫
a1d

Dx, (38)

where the nonintegrated density of the first-order deformation, a1, is now an element of
the BRST algebra of local “functions”. The general properties of S1 are transferred to a1

ε(a1) = 0, gh(a1) = 0. (39)

The equation satisfied by the first-order deformation (the first equation from (37)) takes
in dual language the local form

sa1 + ∂µb
µ
1 = 0, ε(bµ1) = 1, gh(bµ1) = 1, (40)

where the current bµ1 should be local. In other words, the first-order deformation defines
precisely a class from the local BRST cohomology in maximum form degree and in ghost
number equal to zero computed in the algebra of local forms, H0,D(s|d), where d symbol-
izes the spacetime exterior differential. Meanwhile, all purely trivial contributions from
H0,D(s|d) computed in the algebra of local forms should be discarded since they generate
only trivial interactions

atriv
1 = sc+ ∂µe

µ, (41)

ε(c) = 1, ε(eµ) = 0, gh(c) = −1, gh(eµ) = 0, (42)

with both c and eµ local. Thus, the first step of the deformation method in the presence of
the locality assumption is represented by finding nontrivial solutions to equation (40) that
should be further filtered by additional selection rules if applicable. If no such solutions
are detected, then the deformation procedure is obstructed and one concludes that no
true interactions may be constructed with respect to the starting gauge theory.

4.2 Cross-coupling first-order deformation

The scope of this work is to generate all nontrivial, consistent interactions that can be
added to the free model (1) in the framework of the antifield-BRST deformation method
briefly exposed in the previous subsection under the following standard assumptions from
Quantum Field Theory. We require that the deformation of the solution to the master
equation, (36), is analytical in the coupling constant, local in spacetime, Lorentz covariant,
Poincaré invariant, and conserves the differential order of each free field equation at the
level of the coupled theories. The last hypothesis is strengthened by asking that the
interacting vertices display the maximum derivative order of the free Lagrangian density
at any order in the coupling constant, namely two in this case. Due to the locality
hypothesis, we adopt notation (38) and find that the nonintegrated density of the first-
order deformation, a1, is solution to equation (40), and thus, as argued in the previous
subsection, should be a nontrivial element of the local BRST cohomology H0,D(s|d).

The presence of the two distinct sectors induces a natural decomposition of the first-
order deformation as a sum among three (local) pieces

S1 =St
1 + Sh

1 + St−h
1 , (43)
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St
1 =

∫
at

1d
Dx, Sh

1 =

∫
ah

1d
Dx, St−h

1 =

∫
at−h

1 dDx, (44)

where St
1 and Sh

1 describe the self-interactions of the tensor (k, 1) and respectively of the
Pauli–Fierz field and St−h

1 the cross-couplings between these two fields, such that

a1 = at
1 + ah

1 + at−h
1 . (45)

These three pieces are functionally independent (the first involves only BRST genera-
tors from the (k, 1) sector, the second solely from the Pauli–Fierz sector, and the third
mandatorily mixes both kinds of generators), so equation (40) splits into three equivalent,
independent equations

sat
1 + ∂µb

tµ
1 = 0, sah

1 + ∂µb
hµ
1 = 0, sat−h

1 + ∂µb
t−hµ
1 = 0. (46)

The first equation has been considered in Ref. [45], where it has been proved that we
can take at

1 to stop in agh = 1
at

1 = at
1,1 + at

1,0, (47)

with

at
1,1 =δk2k̄δ

D
4k̄εµ1...µ4k̄

t∗µ1...µ2k̄−1

(1)

F
µ2k̄...µ4k̄

, (48)

at
1,0 =− δk2k̄δ

D
4k̄

(2k̄−1)(2k̄+1)

(2k̄)!8k̄2 εµ1...µ4k̄
F µ1...µ2k̄F µ2k̄+1...µ4k̄ . (49)

From now on, the second lower index of the quantities involved in the various orders of
perturbation theory signifies their antighost number (for instance, see expansion (47)).
The supplementary factors δk

2k̄
and δD

4k̄
were introduced to mark that relations (48) and

(49) hold only for even values of k (2k̄) and in D = 4k̄ spacetime dimensions. The second
equation from (46) has been analyzed in detail in Ref. [48] in the context of a collection
of Pauli–Fierz fields. Eliminating the collection indices, we infer that the nonintegrated
density of the first-order deformation for the purely “graviton” sector may be taken to
stop in agh = 2

ah
1 = ah

1,0 + ah
1,1 + ah

1,2, (50)

where
ah

1,2 = C∗µCν∂µCν , ah
1,1 = h∗µ|νCρ(∂ρhµ|ν − ∂(µhν)|ρ) (51)

and the Lagrangian density in order one of perturbation theory, ah
1,0, reduces to the sum

between the cubic vertex of the Einstein–Hilbert Lagrangian plus a cosmologic term (linear
in the trace of the Pauli–Fierz field).

In the sequel we construct the remaining piece, namely the cross-coupling first-order
deformation as solution to the last equation from (46), using the cohomological ingredients
analyzed in the previous section. For this purpose, we need the following result.

Proposition 1 The nontrivial solutions to the homogeneous cross-coupling equations in
strictly positive values of the antighost number that depend of at least one undifferentiated
Pauli–Fierz ghost generate inconsistencies at the level of the first-order deformation at−h

1 .

In order to understand the consequences of the above proposition, we take a non-integrated
density of the first-order cross-coupling deformation that ends at a maximum, strictly
positive value j of the antighost number

j > 0 : āt−h
1 |j =

j∑
̄=0

āt−h
1,̄ |j, ε(āt−h

1,̄ |j) = 0, gh(āt−h
1,̄ |j) = 0, agh(āt−h

1,̄ |j) = ̄, (52)
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sāt−h
1 |j + ∂µb̄

t−hµ
1 |j = 0. (53)

On the one hand, the similar to Proposition 10 from Ref. [47] grants that we can take
j ≤ k+ 1 without affecting the generality of our approach. On the other hand, in view of
decomposition s = δ+γ and taking into account expansion (52), the analogue of Corollary
3 from [46] ensures that we can take the current b̄t−hµ

1 |j to stop in agh = j − 1

j > 0 : b̄t−hµ
1 |j =

j−1∑
̄=0

b̄t−hµ
1,̄ |j, ε(b̄t−hµ

1,̄ |j) = 1, gh(b̄t−hµ
1,̄ |j) = 1, agh(b̄t−hµ

1,̄ |j) = ̄, (54)

such that equation (53) becomes equivalent to the chain

γāt−h
1,j |j =0, (55)

δāt−h
1,̄+1|j + γāt−h

1,̄ |j + ∂µb̄
t−hµ
1,̄ |j =0, ̄ = 0, j − 1. (56)

The piece of maximum antighost j > 0 can always be constructed as solution to the
homogenous equation (55), i.e. via the (nontrivial) elements of the cohomology Hj(γ)
with the supplementary properties that follow from (52). In agreement with result (32)
for l = j > 0, the nontrivial solutions to the homogeneous equation (55) read

āt−h
1,j |j = ᾱj

([
Φ̄∗Ā
]
, [K], [Kh]

)
ēj
((1)

F ,
(k)
η , C,Fh

)
, agh(ᾱj) = j > 0, pgh(ēj) = j > 0. (57)

Proposition 1 states thus that if we start from a cross-coupling first-order deformation
whose piece of maximum antighost number j > 0 is expressed like in (57) and the elements
of the basis ēj effectively depend on the components of the undifferentiated Pauli–Fierz
ghost Cα, then (irrespective of the corresponding invariant polynomial ᾱj) there exists a
value ̄ ∈ 0, j − 1 such that the corresponding equation in agh = ̄ from (56) possesses no
solutions with respect to āt−h

1,̄ |j

āt−h
1,j |j = ᾱj

([
Φ̄∗Ā
]
, [K], [Kh]

)
ēj
((1)

F ,
(k)
η , C,Fh

)
⇒ inconsistencies for āt−h

1 |j, (58)

where by underlining one or more arguments we mean an explicit dependence on it (them).
Let us discuss now the implications of the hypothesis on the maximum derivative-order

of the cross-coupling Lagrangian density to be equal to two. We underline that all the
results envisaged in this context hold independently of Proposition 1, even if we maintain
some notations or recall certain equations or general results mentioned in the previous
paragraph. We assume an expansion of the cross-coupling first-order deformation āt−h

1 |j
that stops at a maximum value of the antighost number strictly greater than one and less
or equal to (k + 1)

2 ≤ j ≤ k + 1 : āt−h
1 |j =

j∑
̄=0

āt−h
1,̄ |j (59)

and satisfies equation (53). Clearly, the components āt−h
1,̄ |j display the properties given

in (52). By standard arguments we find that the expansion of the corresponding current
can be taken to end in agh = j − 1

2 ≤ j ≤ k + 1 : b̄t−hµ
1 |j =

j−1∑
̄=0

b̄t−hµ
1,̄ |j, (60)
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such that (53) becomes equivalent to the (finite) descent

γāt−h
1,j |j = 0, δāt−h

1,j |j+γāt−h
1,j−1|j+∂µb̄

t−hµ
1,j−1|j = 0, · · · , δāt−h

1,1 |j+γāt−h
1,0 |j+∂µb̄

t−hµ
1,0 |j = 0, (61)

where the properties of the currents b̄t−hµ
1,̄ |j read as in (54). For the sake of simplicity we

consider only solutions to the homogeneous equation in maximum agh (the first equation
in (61)) of the form (57) where we take the invariant polynomials to be linear in the
undifferentiated antifields of antighost number 2 ≤ j ≤ k + 1. Recalling notation (26),
this means that

ᾱj ∼ Φ̄∗Ā|j, 2 ≤ j ≤ k + 1, (62)

where Φ̄∗
Ā
|j symbolizes only the antifields of agh = j from (26). Consequently, we start

from the class of solutions to the homogeneous equation γāt−h
1,j |j = 0 written like

2 ≤ j ≤ k + 1, āt−h
1,j |j :

{
Φ̄∗Ā|j 
 ēj

((1)

F ,
(k)
η , C,Fh

)}
, pgh(ēj) = j. (63)

At this point we retain among the elements of the basis ēj only the polynomials of min-

imum order equal to two in the objects
(1)

F and Fh (both fermionic, of pgh = 1, and
containing a single spacetime derivative, in agreement with definitions (30) and (28),
respectively)

2 ≤ j ≤ k + 1 : ēj
((1)

F , C,Fh
)

= ej1
((1)

F
)
ēj2
(
Fh
)
ēj−(j1+j2)(C), 2 ≤ j1 + j2 ≤ j, (64)

pgh
(
ej1
((1)

F
))

= j1, pgh
(
ēj2
(
Fh
))

= j2, pgh(ēj−(j1+j2)(C)) = j − (j1 + j2). (65)

The elements of the basis ej1
((1)

F
)

are polynomials of order j1 in
(1)

F , of the type

ej
((1)

F
)
≡
((1)

F
)j

=
(1)

F
µ

(1)
1 ...µ

(1)
k+1 (1)

F
µ

(2)
1 ...µ

(2)
k+1

· · ·
(1)

F
µ

(j)
1 ...µ

(j)
k+1

, j ≥ 1 (66)

with j → j1, whereas the elements ēj2
(
Fh
)

are of the same form, but in terms of Fh

ēj2
(
Fh
)
≡
(
Fh
)j2 = Fhµ

(1)
1 ν

(1)
1 · · · Fhµ

(j2)
1 ν

(j2)
1 , j2 ≥ 1. (67)

If we did not fix the upper bound of j to (k+1), we could include in (64) also a dependence

on
(k)
η via ēj−(j1+j2). Under the given conditions: j ≤ k + 1 and j1 + j2 ≥ 2, we deduce

that j − (j1 + j2) ≤ k − 1, so the presence of the ghost
(k)
η (with pgh = k) is not allowed

in ēj−(j1+j2) (there are no BRST generators of strictly negative values of the pure ghost
number, in particular −1). Since the undifferentiated Pauli–Fierz ghost is of pgh = 1,
the elements of the basis ēl(C) for any value l ≥ 1 of the pure ghost number will be
represented also like polynomials of order l in its components

ēl(C) ≡ (C)l = Cρ1 · · · Cρl , l ≥ 1. (68)

Until now we selected among the nontrivial solutions to the homogeneous equation in
agh = j with 2 ≤ j ≤ k+1 (the first equation from (61)) only those simultaneously linear

in the undifferentiated antifields and at least quadratic in the objects
(1)

F and Fh

2 ≤ j ≤ k + 1, āt−h
1,j |j :

{
Φ̄∗Ā|j 
 ej1

((1)

F
)
ēj2
(
Fh
)
ēj−(j1+j2)(C)

}
, 2 ≤ j1 + j2 ≤ j. (69)
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Combining the derivative order equal to one of the objects
(1)

F and Fh with the assumed
independence of the spacetime derivatives of the antifields at the level of the considered
class of invariant polynomials, we can state that the derivative order of āt−h

1,j |j expressed
by (69) is equal to j1 +j2. Assume that (69) generates consistent cross-coupling first-order
deformations, i.e. there exist (local) solutions to the remaining equations from the set
(61). If we combine the fact that the action of the operator δ on all the antifields of agh > 1
from the (k, 1) sector contains a single derivative with the last relation from (22), then
by applying δ on (69) one obtains a quantity proportional with the first-order derivatives
of the antifields with agh = j − 1 included within (26). Transferring the derivative to act
on the elements of the ghost basis (by some integrations by parts), we infer three distinct
classes of possible terms, all linear in the undifferentiated antifields of agh = j− 1, where

the derivative acts on the elements ej1
((1)

F
)

, ēj2
(
Fh
)
, and ēj−(j1+j2)(C), respectively. From

formula (66) with j → j1, (67) and (68) particularized to l → j − (j1 + j2), we reach the

conclusion that related to the first class the derivative will act on a single object
(1)

F times

the elements ej1−1
((1)

F
)

, regarding the second class on a sole quantity Fh multiplied with

the elements ēj2−1
(
Fh
)
, whereas with respect to the third class on a single ghost C times

the elements ēj−(j1+j2+1)(C) (of course, if either of j1, j2 or j − (j1 + j2) is vanishing, it is
understood that the accompanying basis elements are absent, so no terms with the pure
ghost number apparently equal to -1 emerge)

δāt−h
1,j |j :

{
Φ̄∗Ā|j−1 


(
∂

(1)

F
)
ej1−1

((1)

F
)
ēj2
(
Fh
)
ēj−(j1+j2)(C),

Φ̄∗Ā|j−1 

(
∂Fh

)
ej1
((1)

F
)
ēj2−1

(
Fh
)
ēj−(j1+j2)(C),

Φ̄∗Ā|j−1 
 (∂C)ej1
((1)

F
)
ēj2
(
Fh
)
ēj−(j1+j2+1)(C)

}
. (70)

The assumption of consistency of (59) in agh = j−1 together with results (31), (29), and

the first relation from (21), to which we add the γ-invariance of
(1)

F , Fh, and C, generates
from (70) three classes of possible terms into the solution to the second equation from the
chain (61)

āt−h
1,j−1|j :

{
Φ̄∗Ā|j−1 
 (∂t)ej1−1

((1)

F
)
ēj2
(
Fh
)
ēj−(j1+j2)(C),

Φ̄∗Ā|j−1 
 (∂h)ej1
((1)

F
)
ēj2−1

(
Fh
)
ēj−(j1+j2)(C),

Φ̄∗Ā|j−1 
 hej1
((1)

F
)
ēj2
(
Fh
)
ēj−(j1+j2+1)(C)

}
. (71)

Each class is homogeneous with respect to the total number of derivatives, which is equal
precisely to (j1 + j2) and coincides with that of the piece of maximum antighost number
(āt−h

1,j |j of the form (69)). The same reasoning can be applied without modifications up

to the component of antighost number 1, āt−h
1,1 |j, which will also conserve the starting

total number of derivatives — (j1 + j2). The passing from āt−h
1,1 |j to āt−h

1,0 |j via the last
equation from (61) produces a variation equal to two with respect to the total number
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of derivatives. Indeed, the fact that the action of δ on the antifield t∗ is linear in the
second-order derivatives of the field t and a similar behavior at the level of the Pauli–
Fierz sector (see the second relation from (22) correlated with expression (9)) indicates
that the action of δ on āt−h

1,1 |j leads also to homogeneous terms with respect to the total
number of derivatives, which is now equal to (j1 + j2 + 2), that are meanwhile monomials

of order one in the quantities
(1)

F , Fh, and C. Only one of these additional derivatives
is absorbed in the form of γ-exact terms via formulas (31), (29), and the first relation
from (21), such that the presumption of consistency in agh = 0 provokes various types
of terms in āt−h

1,0 |j, all containing one more derivative than the starting component of
agh = j, namely (j1 + j2 + 1). In this manner we showed that the assumption j1 +
j2 ≥ 2 in (69) generated at order one of perturbation theory a Lagrangian density āt−h

1,0 |j
containing at least three derivatives, which breaks the derivative-order hypothesis. This
argument was conducted in the most favorable scenario, where the invariant polynomial
that enters the component of maximum antighost number from the cross-coupling first-
order deformation is derivative-free, so the above conclusion is automatically valid if one
takes into consideration a more general dependence of the invariant polynomial on the
derivatives of the eligible antifields and/or the curvature tensors and/or their derivatives.
These considerations are synthesized by the next proposition.

Proposition 2 Assuming they are consistent at order one of perturbation theory, the
nontrivial solutions to the homogeneous cross-coupling equations that are at least quadratic

in the quantities
(1)

F and Fh break the derivative-order assumption at the level of the
corresponding Lagrangian densities.

The systematic application of the last two propositions allows for a complete analysis of
the cross-coupling first-order deformation.

In order to generate the solutions at−h
1 to the last equation from (46), we invoke the

similar of Proposition 10 from Ref. [47] and develop this nonintegrated density and the
associated current up to the maximally allowed values of the antighost number, equal to
(k + 1) and k, respectively,

at−h
1 =

k+1∑
j=0

at−h
1,j , bt−hµ

1 =
k∑
j=0

bt−hµ
1,j , (72)

such that equation sat−h
1 + ∂µb

t−hµ
1 = 0 becomes equivalent to the chain

γat−h
1,k+1 =0, (73)

δat−h
1,k+1 + γat−h

1,k + ∂µb
t−hµ
1,k =0, (74)

δat−h
1,k + γat−h

1,k−1 + ∂µb
t−hµ
1,k−1 =0, (75)

...

δat−h
1,1 + γat−h

1,0 + ∂µb
t−hµ
1,0 =0. (76)

By means of formula (35) for g = 0 and Table 3 in agh = k + 1 we obtain the generic
form of at−h

1,k+1 like

at−h
1,k+1 :

{
(k)
η
∗

 ēk+1

((1)

F ,
(k)
η , C,Fh

)}
, pgh(ēk+1) = k + 1. (77)
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Since the invariant polynomial may be constructed only in terms of BRST generators
from the (k, 1) sector, the enforcement of cross-couplings requires that the elements of the
basis ēk+1 explicitly depend on the Pauli–Fierz ghost combinations C and Fh. Proposition
1 eliminates the dependence on C, which leaves us with

at−h
1,k+1 :

{
(k)
η
∗

 ēk+1

((1)

F ,
(k)
η ,Fh

)}
. (78)

According to the discussion prior to the statement of Proposition 2, the dependence on Fh

becomes linear, which further discards the dependence on
(1)

F (since otherwise Proposition
2 induces that the derivative-order criterion is not fulfilled). Due to the fact that the pure

ghost number of
(k)
η is equal to k, we arrive at the unique possibility that the elements of

the ghost basis are linear in both
(k)
η and Fh

at−h
1,k+1 = Υα||β||µν

(k)
η
∗α

(k)
η
β

Fhµν , (79)

with Υ a non-derivative, constant real tensor, antisymmetric in its last two indices. By
arguments of Lorentz covariance, Poincaré invariance, and taking into account the restric-
tions D ≥ k + 2 and k ≥ 4, we find a unique solution

Υα||β||µν = c1(σαµσβν − σανσβµ), c1 ∈ R. (80)

Consequently, the most general nontrivial expression of the solution to equation (73) that
agrees with all the imposed selection rules takes the simple form

at−h
1,k+1 = c1

(k)
η
∗[µ

(k)
η
ν]

Fh
µν . (81)

After some computation, we deduce the solution to equation (74) (disregarding the solu-
tions to the homogeneous equation in agh = k)

at−h
1,k = c1

(k−1)

C ′
∗ρ||[µ(

(k−1)

C ′
ν]

ρ|| Fh
µν − 2

(k)
η
ν]

∂[µhν]|ρ

)
, (82)

where the antifield
(k−1)

C ′
∗

and the ghost
(k−1)

C ′ follow from relations (33) and (34) with
m = k− 1. Regarding the component of agh = k− 1 as solution to equation (75), we act
with δ on (82) and infer

δat−h
1,k =− 2c1

(k−2)

C ′
∗λρ||[µ

(k)
η
ν]

Kh
λρ|µν − ∂µb

t−hµ
1,k−1

− γ

[
c1

(k−2)

C ′
∗λρ||[µ(

(k−2)

C ′
ν]

λρ|| Fh
µν − ∂[µhν]|[λ

(k−1)

C ′
ν]

ρ]||

)]
, (83)

where
(k−2)

C ′
∗

and
(k−2)

C ′ are of the form (33) and (34) with m = k−2 and Kh stands for the
linearized Riemann tensor defined in (12). Substituting (83) in equation (75), we remark
that is possesses solutions with respect to at−h

1,k−1 if and only if the first term from the
right-hand side of relation (83) may be written in a γ-exact form modulo a full divergence

2c1

(k−2)

C ′
∗λρ||[µ

(k)
η
ν]

Kh
λρ|µν = γa′t−h

1,k−1 + ∂µb
′t−hµ
1,k−1. (84)
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By means of expression (33) with m = k − 2 and of the first Bianchi identities (13),
the term from the left-hand side of equation (84) following by contracting the completely

antisymmetric components of the antifield
(k−2)
η
∗

with those ofKh are identically vanishing,
such that (84) takes the equivalent form

4c1

(k−2)

C

∗λρ|µ
(k)
η
ν

Kh
λρ|µν = γa′t−h

1,k−1 + ∂µb
′t−hµ
1,k−1. (85)

The double bar from
(k−2)

C ′
∗

has been replaced now by a single one at the level of the

antifield
(k−2)

C

∗

since the last is a truly (2,1) mixed-symmetry tensor. In order to analyze
the last condition we act in a standard fashion, namely, we take the left Euler–Lagrange

derivative with respect to the antifield
(k−2)

C

∗

and use the property that this operation
commutes with the action of the operator γ, which further implies

4c1K
h
λρ|µν

(k)
η
ν

= γ

 δLa′t−h
1,k−1

δ
(k−2)

C

∗λρ|µ

 . (86)

The left-hand side of the above equation is a nontrivial element of agh = 0 pertaining
to the cohomology space Hk(γ), such that (86) takes place if and only if c1 = 0, which
automatically annihilates the piece of maximum antighost number of the form (81). In
this manner we argued that the first-order deformation that couples the (k, 1) tensor to
the Pauli–Fierz field cannot stop in agh = k + 1.

The cases where the cross-coupling first-order deformation stops in maximum values
of the antighost number m ∈ 3, k will be investigated simultaneously. The analogue of
Corollary 3 from Ref. [46] induces that for every fixed value of m within the chosen range,
we can start from the expansions

at−h
1 =

m∑
j=0

at−h
1,j , bt−hµ

1 =
m−1∑
j=0

bt−hµ
1,j , (87)

where the above components are subject to the equations

γat−h
1,m = 0, · · · , δat−h

1,1 + γat−h
1,0 + ∂µb

t−hµ
1,0 = 0. (88)

Moreover, the similar of Proposition 10 from Ref. [47] provides the piece of maximum
antighost number in the form

at−h
1,m = ᾱmē

m
((1)

F ,
(k)
η , C,Fh

)
, ᾱm ↔ H invD

m , pgh(ēm) = m. (89)

Table 3 in agh = m ∈ 3, k restricts the invariant polynomial ᾱm to be linear in the

undifferentiated antifields
(m−1)

C ′
∗

from the (k, 1) sector, such that the cross-coupling de-
mand binds the elements ēm to effectively depend on the Pauli–Fierz objects C and/or
Fh. Proposition 1 forbids C, such that ēm remains to involve Fh. Since the pure ghost

number of this quantity is equal to one, we have to exclude the ghost
(k)
η (with pgh = k)

from the elements ēm with m = 3, k, which leaves us with

ēm
((1)

F ,Fh
)

=
m∑
n=1

em−n
((1)

F
)
ēn
(
Fh
)
, m = 3, k, (90)
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with em−n
((1)

F
)

like in (66) for j → m−n and ēn of the type (67) for j2 → n. Consequently,

the solution to the homogeneous equation in agh = m (the first from chain (88)) will
contain precisely m classes of possible terms

m = 3, k, at−h
1,m :

{(m−1)

C ′
∗


 em−n
((1)

F
)
ēn
(
Fh
)}

n=1,m
. (91)

Since the overall basis (90) is a polynomial of order m ≥ 3 in the objects
(1)

F and Fh, Propo-
sition 2 leads to the conclusion that, if consistent, the pieces from (91) would generate
nonintegrated Lagrangian densities that cannot comply with the derivative-order assump-
tion, so they must be discarded. In view of this, we can state that the cross-coupling first-
order deformation cannot stop either in maximum antighost numbers ranging between 3
and k.

Regarding the next possible maximum value of the antighost number, namely 2, we
apply the analogue of Corollary 3 from Ref. [46] and begin with the expansions

at−h
1 = at−h

1,0 + at−h
1,1 + at−h

1,2 , bt−hµ
1 = bt−hµ

1,0 + bt−hµ
1,1 , (92)

and the corresponding equations

γat−h
1,2 = 0, δat−h

1,2 + γat−h
1,1 + ∂µb

t−hµ
1,1 = 0, δat−h

1,1 + γat−h
1,0 + ∂µb

t−hµ
1,0 = 0. (93)

Proposition 10 from Ref. [47] adapted to the model under study provides the solution to
the (homogenous) equation in agh = 2 like

at−h
1,2 = ᾱ2ē

2
((1)

F , C,Fh
)
, ᾱ2 ↔ H invD

2 , pgh(ē2) = 2, (94)

and Proposition 1 eliminates the dependence of ē2 on C, such that

at−h
1,2 = ᾱ2ē

2
((1)

F ,Fh
)
, ᾱ2 ↔ H invD

2 , pgh(ē2) = 2. (95)

By means of Table 3 in agh = 2, we remark this is the first case where the Pauli–
Fierz sector may contribute to the invariant polynomials, such that the cross-coupling
requirement furnishes four classes of eligible terms in (95)

at−h
1,2 :

{(1)

C ′
∗



(1)

FFh,
(1)

C ′
∗


 ē2
(
Fh
)
, C∗ 
 e2

((1)

F
)
, C∗ 


(1)

FFh
}
. (96)

With the help of formulas (66) for j = 2 and (67) for j2 = 2, we notice that all the above

elements are polynomials of order two in
(1)

F and Fh, such that we can safely eliminate them
by Proposition 2. In this way we obtain that the cross-coupling first-order deformation
cannot stop either in antighost number 2.

Next, we analyze the situation where the maximum value of agh is equal to 1, where
the similar of Corollary 3 from Ref. [46] still applies. Therefore, the starting point is given
here by the decompositions and accompanying equations

at−h
1 =at−h

1,0 + at−h
1,1 , bt−hµ

1 = bt−hµ
1,0 , (97)

γat−h
1,1 =0, δat−h

1,1 + γat−h
1,0 + ∂µb

t−hµ
1,0 = 0. (98)
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The solutions to the homogeneous equation follow from formula (32) for j = 1 = l

at−h
1,1 = ᾱ1([t∗], [h∗], [K], [Kh])ē1

((1)

F , C,Fh
)
, agh(ᾱ1) = 1, pgh(ē1) = 1, (99)

where the invariant polynomials ᾱ1 are of order one in [t∗] and [h∗]. By virtue of Propo-
sition 1 we can safely eliminate the dependence on C and work with

ē1
((1)

F , C,Fh
)
→ ē1

((1)

F ,Fh
)

=
{(1)

F ,Fh
}
. (100)

Since both elements of the basis ē1 already contain a spacetime derivative, in agreement
with the discussion from the paragraph preceding Proposition 2 the derivative-order as-
sumption requires that the invariant polynomials ᾱ1 are linear in the undifferentiated
eligible antifields and do not depend on the components of either the curvature tensor,
the linearized Riemann tensor, or their spacetime derivatives. The cross-coupling hypoth-
esis finally selects only two possible classes of terms in at−h

1,1

at−h
1,1 :

{
t∗ 
 Fh, h∗ 


(1)

F
}
. (101)

Equivalently, we can write

at−h
1,1 = Υµ1...µk||α||νρt

∗µ1...µk|αFhνρ + Υµ||ν||ρ1...ρk+1
h∗µ|ν

(1)

F
ρ1...ρk+1

, (102)

where the objects denoted by Υ represent some non-derivative, constant real tensors.
Arguments of Lorentz covariance and Poincaré invariance on the spacetime manifold M
of dimension D ≥ k + 2, with k ≥ 4, lead to the solutions

Υµ1...µk||α||νρ = c2εµ1...µkανρ, Υµ||ν||µ1...µk+1
= c3εµνρ1...ρk+1

, c2, c3 ∈ R, (103)

which replaced in (102) annihilate the solution at−h
1,1 respectively due to the mixed sym-

metry (k, 1) of t∗, t∗[µ1...µk|α] ≡ 0 and to the symmetry of h∗, h∗µ|ν = h∗ν|µ

at−h
1,1 = 0. (104)

As at−h
1,1 contains all the information on the deformation of the generating set of gauge

transformations, result (104) can be reformulated by the statement that in dimensions
D ≥ k + 2 with k ≥ 4 there are no consistent and nontrivial cross-couplings between a
massless tensor field with the mixed symmetry (k, 1) and a Pauli–Fierz field in order one
of perturbation theory that deform the gauge symmetries from the free limit.

We are now left with a single possibility, namely that the cross-coupling first-order
deformation reduces to its component of antighost number 0, i.e., to the Lagrangian
density at order one of perturbation theory

at−h
1 = at−h

1,0 ([t], [h]), bt−hµ
1 = bt−hµ

1,0 . (105)

The analogue of Corollary 3 from Ref. [46] is no longer valid, such that (105) is subject
to the non-homogeneous equation

γat−h
1,0 ([t], [h]) + ∂µb

t−hµ
1,0 = 0. (106)
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We investigate separately the general solutions to the homogeneous equation (bt−hµ
1,0 = 0

in (106))
γāt−h

1,0 ([t], [h]) = 0, (107)

which are given by invariant polynomials of agh = 0, so they follow from (27) where we
discard the dependence on antifields and their derivatives

āt−h
1,0 ([t], [h]) ≡ āt−h

1,0 ([K], [Kh]). (108)

The cross-coupling requirement asks that āt−h
1,0 is at least linear in both the components of

the curvature tensor K and of the linearized Riemann tensor Kh, which is not acceptable
since would lead to interaction vertices with at least four derivatives. In other words,
we argued that there is no gauge-invariant cross-coupling Lagrangian density that agrees
with all the imposed selection rules. The solutions to the non-homogeneous equation
(106) (bt−hµ

1,0 6= 0) are approached along a line similar to that exposed in Ref. [45] in
relation with the couplings between a tensor with the mixed symmetry (k, 1) and a field
with the mixed symmetry of the Riemann tensor. With the help of definition (20) and of
the first formula in (21) we can show that equation (106) involves the following necessary
conditions on the Euler–Lagrange derivatives of at−h

1,0

∂µ1

(
δat−h

1,0 ([t], [h])

δtµ1...µk|α

)
= 0, ∂α

(
δat−h

1,0 ([t], [h])

δtµ1...µk|α

)
= 0, ∂µ

(
δat−h

1,0 ([t], [h])

δhµ|α

)
= 0. (109)

Results (17) and (15) enable us to represent the solutions to the above equations like

δat−h
1,0 ([t], [h])

δtµ1...µk|α
= ∂µk+1

∂βΦ̃µ1...µk+1|αβ([t], [h]),
δat−h

1,0 ([t], [h])

δhµ|α
= ∂ν∂βΦ̄µν|αβ([t], [h]), (110)

where the tensors Φ̃ and Φ̄ exhibit the mixed symmetries (k+1, 2) and (2,2), respectively.
(We set c = 0 in (15) since otherwise we would obtain a term linear in the trace of
the Pauli–Fierz field, which obviously promotes no cross-coupling.) The derivative-order
assumption forbids the dependence of both Φ̃ and Φ̄ on any field derivative, while the
cross-coupling requirement imposes that Φ̃ effectively involves the Pauli–Fierz field and
Φ̄ the mixed-symmetry (k, 1) tensor field. The last considerations are translated into

δat−h
1,0 ([t], [h])

δtµ1...µk|α
= ∂µk+1

∂βΦ̃µ1...µk+1|αβ(t, h),
δat−h

1,0 ([t], [h])

δhµ|α
= ∂ν∂βΦ̄µν|αβ(t, h). (111)

From (111) we construct the Lagrangian density by the homotopy formula (where we omit
the prospect divergences)

at−h
1,0 ([t], [h]) =

1∫
0

dτ
[(
∂µk+1

∂βΦ̃µ1...µk+1|αβ(τt, τh)
)
tµ1...µk|α

+
(
∂ν∂βΦ̄µν|αβ(τt, τh)

)
hµ|α

]
. (112)

Integrating twice by parts in (112) and neglecting the resulting divergences, we have that

at−h
1,0 ([t], [h]) =

1∫
0

dτ
[

(−)k+1

2(k+1)
Φ̃µ1...µk+1|αβ(τt, τh)Kµ1...µk+1|αβ
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+ 1
4
Φ̄µν|αβ(τt, τh)Kt

µν|αβ

]
, (113)

where K and Kt symbolize the curvature tensor and the linearized Riemann tensor,
respectively. Applying again the operator γ on (113), after several steps we infer that the
only nontrivial possibilities in D = k + 2 (with k ≥ 4) are

Φ̃
µ1...µk+1|

αβ(τt, τh) =c4τ
(
δ[µ1
α δµ2

β t
µ3...µk+1ρ]|

ρ

)
, (114)

Φ̄
µν|

αβ(τt, τh) =c5τ
(
h[µ|

αδ
ν]
β + h

[ν|
βδ

µ]
α − δ[µ

α δ
ν]
β h
)
, (115)

with c4 and c5 two arbitrary real constants. Unfortunately, none of these variants satisfies
the cross-coupling requirement (the right-hand side of (114) should explicitly depend on
h and the right-hand side of (115) on t) so they must be annihilated by setting c4 =
0 = c5. Actually, the above solutions generate in (113) a linear combination of the two
free Lagrangians, which provokes anyway a trivial element from H0,D(s|d) that may be
cancelled. In conclusion, under the given working hypotheses there are no nontrivial
cross-couplings at order one of perturbation theory between the fields t and h with the
property of preserving the gauge symmetries from the free limit.

Assembling all the partial conclusions and results exposed so far we can state that
one cannot construct any nontrivial and consistent first-order deformation responsible for
the cross-couplings between a massless tensor field with the mixed symmetry (k, 1) and
a spin-2 field described in the free limit by the Pauli–Fierz action that agrees with the
imposed selection rules. To put it otherwise, we are bound to implement St−h

1 = 0 in
(43), which then yields

S̄ = S̄t + S̄h. (116)

The Lagrangian formulation of (116) enables us to formulate the final conclusion of this
section: the only terms that can be added to the free action (1) from the perspective of con-
structing consistent interactions are represented by the self-interactions of the Pauli–Fierz
field, manifested through the Einstein–Hilbert action with a cosmologic term, invariant
under diffeomorphisms, and the self-interactions of a single tensor field with the mixed
symmetry (k, 1), analyzed in Ref. [45].

5 Conclusion

The main result of this paper can be synthesized into the conclusion that there are no con-
sistent and nontrivial couplings that can be added between a tensor field with the mixed
symmetry (k, 1) and a spin-2 field described in the free limit by the Pauli–Fierz model in
the context of some standard selection rules from Quantum Field Theory completed by
the requirement that the interactions vertices may contain at most two spacetime deriva-
tives. It is possible that the relaxation of the derivative-order assumption in a rigorous,
well-defined context may lead to different conclusions regarding the interactions among a
collection of massless tensor fields with the mixed symmetry (k, 1) and various graviton
gauge theories, such as Einstein–Hilbert or Weyl.
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