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Abstract

In this paper we analyze all consistent and nontrivial couplings that can be
introduced between a massless tensor field with the mixed symmetry (k, 1) for k ≥ 4
and an Abelian vector field in the context of the antifield-BRST deformation method
under some standard “selection rules” from Quantum Field Theory.

PACS: 11.10.Ef

1 Introduction

Tensor fields with mixed symmetry were brought into attention along with the raised
interest in irreducible exotic representations of the group GL(D,R). Among the many
reasons for studying this class of fields it is worth mentioning that they are involved in
several important physical theories such as superstrings, supergravity, or supersymmetric
high-spin theories. The analysis of gauge theories containing bosonic tensor fields with
mixed symmetries opened a variety of perspectives in both theoretical and mathematical
physics, like for instance their correlation with high-spin gauge theories[1–5].

In this paper we target the class of massless real tensor fields transforming according to
the irreducible representations of GL(D,R) corresponding to some “spin-2” (two-column)
Young diagrams with (k + 1) cells and k ≥ 4 rows (the so-called “hook diagrams”), also
known as fields with the mixed symmetry (k, 1). For arbitrary values of k, such tensor
fields (massless and massive) have initially been investigated more than two decades ago
[6–10] and more recently for instance in [11–13] due to their presence in the bosonic sector
of Chern–Simons-like supergravity in odd dimensions following from the fact that their
free action gives one of the dual formulations of linearized gravity in D = k+3 dimensions.
The construction of gravity-like dual theories benefits of a raised interest in the context
of some new results, like the extension to higher dimensions of a formulation of linearized
gravity in 4 spacetime dimensions that is manifestly invariant under “duality rotations”
in the space spanned by a graviton and its dual [14].

The main aim of this work is to generate all consistent and nontrivial couplings between
a massless tensor field with the mixed symmetry (k, 1) (D ≥ k + 2, k ≥ 4) and a spin-1
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gauge field. Regarding the spin-1 gauge field, we start from the formulation based on
a massless vector field (Maxwell theory in the absence of sources) with an Abelian U(1)
gauge symmetry. We rely on one of the main applications of the antifield-BRST formalism
[15–18] regarding the construction of consistent interactions in gauge field theories [19–
22] by means of deforming the solution to the classical master equation. This setting
necessitates the computation of the local cohomology of the BRST differential in ghost
number 0 and in maximum form degree [23–26]. The entire analysis is done in the
presence of the following working hypotheses imposed on the deformations: analyticity
in the coupling constant, spacetime locality, Lorentz covariance, Poincaré invariance, and
conservation of the differential order of the free field equations at the level of the coupled
theories. The last hypothesis is strengthened by asking that the interacting vertices
display the maximum derivative order of the free Lagrangian density at any order in the
coupling constant, namely two. The results reported here complement and extend various
developments [27–46].

The main results deduced under the above mentioned working hypotheses may be
synthesized into:

1. The nontrivial first-order deformation responsible by the cross-couplings between
the spin-1 gauge vector field and the (k, 1) tensor with k ≥ 4 is nonvanishing only
in antighost number 0 and 1 and is defined on a Minkowski spacetime of minimum
dimension, D = k + 2, where the tensor (k, 1) has no physical degrees of freedom.
The component of antighost number equal to 1 is simultaneously linear in the un-
differentiated antifield of the vector field and in the first-order derivatives of the
antisymmetric ghost of pure ghost number equal to 1 from the (k, 1) sector. These
two quantities are assembled via the (k + 2)-dimensional Levi-Civita symbol. The
piece of antighost number 0, identified as the Lagrangian density at order one of
perturbation theory, is simultaneously linear in the (Abelian) field strength of the
vector field and in some combinations of the first-order derivatives of the field with
the mixed symmetry (k, 1);

2. Due to the fact that in D = k + 2 with k ≥ 4 there are no self-interactions of the
tensor (k, 1) and the gauge vector field displays no self-interactions that comply with
the derivative order assumption, it follows that the overall first-order deformation
reduces to the cross-coupling component;

3. The second-order deformation is nonvanishing and contains only terms of antighost
number 0 that are quadratic in the first-order derivatives of the tensor (k, 1) (but
nontrivial in the local BRST cohomology), while all the higher-order deformations
can be taken to vanish;

4. Consequently, the Lagrangian action of the interacting model includes only con-
tributions of order one and respectively two in the coupling constant, expressed by
“mixing-component” terms, which, moreover, break the PT invariance. These pieces
may be organized, together with the original Lagrangian density of the gauge vector
field, into a nonintegrated density that is quadratic into a deformed field strength of
the of the 1 field. This deformed field strength coincides with the original, Abelian
field strength of the vector field in the free limit and includes a neat contribution
in order one of perturbation theory linear in the first-order derivatives of the tensor
(k, 1);
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5. The generating set of infinitesimal gauge transformations of the interacting action
gets deformed only at the level of the vector field, in order one of perturbation
theory, by a term linear in the first-order derivatives of the antisymmetric gauge
parameters from the (k, 1) sector. It is interesting to mention that the deformed
field strength of the spin-1 field is invariant under the deformed gauge symmetries;

6. The other gauge features of the coupled model are not affected by the deforma-
tion procedure (the associated gauge algebra remains Abelian and the reducibility
functions/relations coincide with the initial ones, from the free limit).

2 Starting free model: Lagrangian formulation and

BRST symmetry

The starting point is given by the Lagrangian action describing a free massless tensor field
with the mixed symmetry (k, 1) for k ≥ 4 and an Abelian vector field

S0[tµ1...µk|α, Vµ] = St
0[tµ1...µk|α] + SV

0 [Vµ]. (1)

We work on a Minkowski spacetimeM of dimension D ≥ k+2 ≥ 6 endowed with a mostly
positive metric σµν = σµν = (−+. . .+) and define the Levi-Civita symbol in D dimensions
εµ1...µD by ε01...D−1 = −1. The field tµ1...µk|α is antisymmetric in its first k (Lorentz) indices
and satisfies the identities t[µ1...µk|α] ≡ 0, while its trace, tµ1...µk−1

= tµ1...µk|ασ
µkα, is a

completely antisymmetric tensor of order (k − 1). The components St
0 and SV

0 read as

St
0[tµ1...µk|α] = − 1

2·(k+1)!

∫ [
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µkF
µ1...µk

]
dDx, (2)

SV
0 [Vµ] = −1

4

∫
FV
µνF

VµνdDx, FV
µν ≡ ∂[µVν]. (3)

In the above

Fµ1...µk+1|α = ∂[µ1tµ2...µk+1]|α, (4)

Fµ1...µk ≡ Fµ1...µk+1|ασ
µk+1α = ∂[µ1tµ2...µk]

+ (−)k∂αtµ1...µk|α, (5)

so the tensor Fµ1...µk+1|α displays the mixed symmetry (k + 1, 1) and its trace, Fµ1...µk ,
is completely antisymmetric. Everywhere in this paper the notation [µ . . . ν] signifies
complete antisymmetry with respect to the (Lorentz) indices between brackets, with the
conventions that the minimum number of terms is always used and the result is never
divided by the number of terms. The stationary surface of this free model is defined by
the field equations

δSt
0

δtν1...νk|α
≡ 1

k!
T ν1...νk|α ≈ 0, (6)

δSV
0

δVµ
≡ ∂νF

Vνµ ≈ 0, (7)

where the tensor T ν1...νk|α exhibits the mixed symmetry (k, 1) and reads as

T ν1...νk|α = ∂µF
µν1...νk|α − σα[ν1∂µF

ν2...νkµ]. (8)

49



A generating set of infinitesimal gauge transformations of action (1) is given by the set
corresponding to the (k, 1) sector

δ(1)

θ ,
(1)
ε
tµ1...µk|α = ∂[µ1

(1)

θ µ2...µk]|α + ∂[µ1

(1)
ε µ2...µkα] + (−)k+1(k + 1)∂α

(1)
ε µ1...µk , (9)

supplemented by the local U(1) symmetry for the vector field

δξVµ = ∂µξ. (10)

The gauge parameters from the (k, 1) sector are some real, arbitrary tensors on the space-

time manifold M up to the requirements that
(1)

θ µ1...µk−1|α possesses the mixed symmetry

(k− 1, 1) and
(1)
ε µ1...µk is completely antisymmetric. The gauge parameter from the vector

sector, ξ, is an arbitrary real scalar function onM. The overall theory, governed by action
(1), inherits all the features of the free massless tensor field with the mixed symmetry
(k, 1): the gauge algebra is Abelian, the above generating set is off-shell reducible of order
(k − 1), and the total Cauchy order of this linear gauge theory is equal to (k + 1). The
vector field component is administered by the Lagrangian action (3), invariant under the
U(1) gauge symmetry, which is Abelian and irreducible, such that the “photonic” sector
(by abuse, we maintain the standard terminology from electrodynamics also in D > 4) is
separately described by a linear gauge theory with the Cauchy order equal to 2. The gen-
eral gauge-invariant quantities of this free model are polynomials in the curvature tensor
from the (k, 1) sector

Kµ1...µk+1|αβ = ∂αFµ1...µk+1|β − Fµ1...µk+1|α ≡ ∂[µ1tµ2...µk+1]|[β,α], (11)

in the Abelian field strength of the vector field introduced in the latter formula from (3),
as well as in their spacetime derivatives.

Next, we pass to the construction of the antifield-BRST symmetry for the theory under
study. Regarding the (k, 1) sector, we maintain all the notations, conventions, formulas,
and results from [39, 45, 45]. Consequently, the BRST differential algebra is constructed
starting with the generators from the (k, 1) sector

ΦA ≡
{
tµ1...µk|α,

{(m)

C µ1...µk−m|α,
(m)
η µ1...µk−m+1

}
m=1,k−1

,
(k)
η µ

}
, (12)

Φ∗A ≡
{
t∗µ1...µk|α,

{(m)

C

∗µ1...µk−m|α

,
(m)
η
∗µ1...µk−m+1}

m=1,k−1
,

(k)
η
∗µ}

, (13)

whose properties are detailed in [39, 45] (a synthetic view is given in Table 1 from [45]),
supplemented in the U(1) sector by the vector field Vµ, the ghost C corresponding to the
gauge parameter ξ, and their antifields. Their properties are listed in Table 1. The BRST
differential simply decomposes like

s = δ + γ, s2 = 0⇔ (δ2 = 0, γ2 = 0, δγ + γδ = 0) (14)

into the sum between the Koszul–Tate differential δ (N-graded in terms of the antighost
number agh, agh(δ) = −1) and the longitudinal exterior derivative γ (a true differential
in this case, which anticommutes with δ and is N-graded along the pure ghost number
pgh, pgh(γ) = 1). The BRST differential is Z-graded in terms of the ghost number gh
defined like pgh−agh, such that gh(s) = gh(δ) = gh(γ) = 1. The actions of the operators

50



BRST generator pgh agh gh ε
Vµ 0 0 0 0
C 1 0 1 1
V ∗µ 0 1 −1 1
C∗ 0 2 −2 0

Table 1: Degrees of the BRST generators from the vector sector.

δ and γ on the BRST generators from the (k, 1) sector are given for instance in [45] (see
formulas (15)–(23) therein), while on those from the U(1) sector read as

γVµ = ∂µC, γC = 0, γV ∗µ = 0 = γC∗, (15)

δVµ = 0 = δC, δV ∗µ = −∂νFVνµ, δC∗ = −∂µV ∗µ. (16)

The solution to the classical master equation reduces to the sum between that associated
with the (k, 1) sector and the one corresponding to the Abelian gauge field

S =St + SV, (17)

St =St
0[tµ1...µk|α] +

∫ {
t∗µ1...µk|α

[
∂[µ1

(1)

C µ2...µk]|α + ∂[µ1

(1)
η µ2...µkα]

+ (−)k+1(k + 1)∂α
(1)
η µ1...µk

]
+

(k−1)

C

∗µ1|α

∂(µ1

(k)
η α)

+
k−2∑
m=1

(m)

C

∗µ1...µk−m|α[
∂[µ1

(m+1)

C µ2...µk−m]|α + ∂[µ1

(m+1)
η µ2...µk−mα]

+ (−)k−m+1(k −m+ 1)∂α
(m+1)
η µ1...µk−m

]
+

k−1∑
m=1

k−m
k−m+2

(m)
η
∗µ1...µk−m+1

∂[µ1

(m+1)
η µ2...µk−m+1]

}
dDx, (18)

SV =SV
0 [Vµ] +

∫
(V ∗µ∂µC)dDx. (19)

It is useful to write all the BRST generators in a compact manner via the notations

Φ̄Ā = {ΦA, Vµ, C}, Φ̄∗Ā = {Φ∗A, V ∗µ, C∗}, (20)

where ΦA and Φ∗A are like in (12) and respectively (13).

3 Antifield-BRST deformation method

The reformulation of the problem of constructing consistent interactions in gauge field
theories within the antifield-BRST formalism [19–22] is based on the fact that if consistent
couplings can be introduced, then the solution to the classical master equation of the initial
gauge theory, S, may be deformed into a solution to the classical master equation for the
interacting gauge theory

S̄ = S + λS1 + λ2S2 + λ3S3 + · · · , 1
2
(S̄, S̄) = 0. (21)
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Related to the coupled theory, we maintain the field, ghost, and antifield spectra of the
original gauge theory in order to preserve the number of physical degrees of freedom.
Also, we do not deform either the antibracket or the general properties S̄ compared
to those of the starting theory, but only the canonical generator itself, so S̄ remains a
bosonic functional of fields, ghosts, and antifields with the ghost number equal to 0. The
projection of equation 1

2
(S̄, S̄) = 0 on the various powers in the coupling constant λ is

equivalent to the tower of equations

λ0 : 1
2
(S, S) = 0, λ1 : (S1, S) = 0, λ2 : (S2, S)+ 1

2
(S1, S1) = 0, λ3 : (S3, S)+(S1, S2) = 0, · · ·

known as the equation of the antifield-BRST deformation method. In this context the
functionals Si, i ≥ 1, are called deformations of order i of the solution to the master
equation. The first equation is fulfilled by assumption, while the others may be written
(due to the canonical action s· = (·, S)) as

λ1 : sS1 = 0, λ2 : sS2 + 1
2
(S1, S1) = 0, λ3 : sS3 + (S1, S2) = 0, · · · (22)

The solutions to the first-order deformation equation sS1 = 0 always exist since they
belong to the cohomology of the BRST differential s in ghost number 0 computed in the
space of all functionals (local and nonlocal) of fields, ghosts, and antifields, H0(s), which
is nonempty due to its isomorphism to the algebra of physical observables of the initial
gauge theory. Moreover, trivial first-order deformations, defined as trivial elements of
H0(s) (s-exact functionals), should be ruled out due to the fact that they provoke trivial
interactions in the sense of field theory (can be eliminated by some possibly nonlinear
field redefinitions). The existence of solutions to the remaining higher-order equations
from (22) has been shown in [20] by means of the triviality of the antibracket map in
the BRST cohomology H(s) computed in the space of all functionals. In conclusion, if
we impose no restrictions on the interactions (spacetime locality, etc.), then the antifield-
BRST deformation procedure can be developed without obstructions.

Nevertheless, if we work with local functionals, then the procedure goes as follows.
We make the notation

S1 =

∫
a1d

Dx ≡
∫

[D]
a1 , (23)

where the nonintegrated density of the first-order deformation, a1, is now an element of
the BRST algebra of local “functions”, namely, it is polynomial in the ghosts, antifields,
and their derivatives, smooth in the original fields, and polynomial in their derivatives up
to a finite order, with or respectively without an explicit dependence on the spacetime
coordinates xµ. The overscript between brackets represents the form degree deg. (If we
require the Poincaré invariance of the deformed solution to the master equation, then

we work without an explicit dependence on xµ.) In form language,
[D]
a1 is an element of

the algebra of local forms with or without an explicit dependence on xµ. The general

properties of S1 are transferred to a1 and
[D]
a1

ε(a1) = 0, gh(a1) = 0, deg(
[D]
a1) = D, gh(

[D]
a1) = 0. (24)

The equation satisfied by the first-order deformation (the first equation from (22)) takes
the local form

s
[D]
a1 + d

[D−1]

b1 = 0, deg(
[D−1]

b1 ) = D − 1, gh(
[D−1]

b1 ) = 1, (25)
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or, equivalently, in dual language

sa1 + ∂µb
µ
1 = 0, ε(bµ1) = 1, gh(bµ1) = 1, (26)

where the (D − 1) form
[D−1]

b1 = 0 and the current bµ1 should be local. In other words,
the first-order deformation defines precisely a class from the local BRST cohomology in
maximum form degree and in ghost number equal to zero, H0,D(s|d), computed in the
algebra of local forms with or without an explicit dependence on xµ, where d symbolizes
the spacetime exterior differential. From now on, the procedure is model-dependent via
the properties of H0,D(s|d). Supposing equation (25) (or (26)) possesses local solutions,
the resulting first-order deformations are then filtered (if necessary) according to the
“selection rules” associated with other working hypotheses than the spacetime locality
(such as Lorentz covariance, PT invariance, maximum derivative order of the interaction
vertices, etc.). Meanwhile, all purely trivial contributions from H0,D(s|d) computed in
the selected algebra of local forms

[D]

atriv
1 = s

[D]
c + d

[D−1]
e , (27)

deg
([D]
c
)

= D, deg
([D−1]
e
)

= D − 1, gh
([D]
c
)

= −1, gh
([D−1]
e
)

= 0, (28)

should be discarded since they generate only trivial interactions. By trivial first-order
deformations in the context of equation (26) we understand any s-exact object modulo a
divergence

atriv
1 = sc+ ∂µe

µ, (29)

ε(c) = 1, ε(eµ) = 0, gh(c) = −1, gh(eµ) = 0, (30)

with both c and eµ local.

4 Analysis of the local BRST cohomoology

The main aim of this paper is to construct all the nontrivial and consistent interactions
that can be added to the free model (1) by means of the antifield-BRST deformation
method synthesized in the previous section. We require that the deformation of the solu-
tion to the master equation, (21), is analytical in the coupling constant, local in spacetime,
Lorentz covariant, Poincaré invariant, and conserves the differential order of the free field
equations at the level of the coupled theories. The last hypothesis is strengthened by
asking that the interacting vertices display the maximum derivative order of the free La-
grangian density at any order in the coupling constant, namely two in this case. Due to
the locality hypothesis, we introduce notation (23) and obtain in dual language that the
nonintegrated density of the first-order deformation, a1, is solution to equation (26), and
thus, as argued in the previous section, should be a nontrivial element of the local BRST
cohomology H0,D(s|d). The last cohomology will be computed in the BRST algebra of
local forms Λ̄ whose coefficients are elements of the BRST algebra of local “functions” Ā,
namely polynomials in the ghosts, antifields, and their spacetime derivatives up to a finite
order, smooth in the undifferentiated fields t and respectively V , and again polynomials
in the field derivatives up to a finite order, and without an explicit dependence on the
spacetime coordinates (due to the Poincaré invariance). Most of the BRST cohomological
results exposed in Refs. [45, 46] related to the case a single massless tensor field with the
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mixed symmetry (k, 1) remain valid here up to the proper inclusion of the U(1) sector.
Regarding the local BRST cohomology of the U(1) gauge field, we employ the general
results for Abelian p-forms from Refs. [47–49] adapted to p = 1. In this context it is inter-
esting to mention the Hamiltonian approach to the construction of Stückelberg-coupled
p- and (p+ 1)-forms [50].

Related to the cohomology of the longitudinal exterior differential H(γ) and of its
local version, H(γ|d), both computed in Ā, all the results from Ref. [45] still hold up
to the following observations. First, the vector sector is manifested at the level of the
cohomology of the longitudinal exterior differential in pure ghost number 0 computed in
Ā, H0(γ), also known as the algebra of invariant polynomials, by the additional (compared
to the purely (k, 1) case analyzed in Ref. [45]) polynomial dependence on the Abelian field
strength FV, on the antifields V ∗, C∗, as well as on their spacetime derivatives up to a
finite order

H0(γ) in Ā = {algebra of invariant polynomials} ≡
{
ᾱ
([

Φ̄∗Ā
]
, [K],

[
FV
])}

, (31)

where K represent the components (11) of the curvature tensor, Φ̄∗
Ā

is a collective notation
for all the antifields (see (20)), and by f([y]) we mean that f depends on y and its
derivatives up to a finite order. A direct consequence of this result is that the elements
of the cohomology H0(γ) computed in the algebra of local forms Λ̄ are nothing but

H0(γ) =
D⊕
p=0

H0,p(γ), H0,p(γ) 3
[p]

ᾱ = 1
p!
ᾱµ1...µp

([
Φ̄∗Ā
]
, [K],

[
FV
])
dxµ1 ∧ · · · ∧ dxµp . (32)

Second, in pgh > 0 the contribution of the “Maxwell” sector resides in the undifferentiated
fermionic ghost C associated with the U(1) gauge symmetries (its derivatives are γ-exact,
in agreement with the first formula from (15)), while that of the (k, 1) sector may be found
in Table 2 from Ref. [45]. Obviously, the fermionic behaviour of the ghost C introduces
a dependence that is at most linear (C2 = 0). Under these considerations, the nontrivial
representatives of the cohomology H(γ) computed in the algebra Ā (without an explicit
dependence on xµ) are synthesized in Table 2, where

(1)

F µ1...µk+1
≡ ∂[µ1

(1)
η µ2...µk+1], ε

((1)

F µ1...µk+1

)
= 1, pgh

((1)

F µ1...µk+1

)
= 1. (33)

BRST generator Nontrivial representatives pgh
[tµ1...µk|α] [Kµ1...µk+1|αβ] 0

[Vµ]
[
FV
µν

]
0[

Φ̄∗
Ā

] [
Φ̄∗
Ā

]
0[(1)

η µ1...µk

]
,
[(1)

C µ1...µk−1|α
] (1)

F µ1...µk+1
1[(m)

η µ1...µk−m+1

]
,
[(m)

C µ1...µk−m|α
]

— m, m = 2, k − 1[(k)
η α
] (k)

η α k
[C] C 1

Table 2: Nontrivial representatives of the cohomology H(γ) computed in the algebra Ā.
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With the help of the above table we identify the general, nontrivial elements of H(γ)
evaluated in Ā with the properties

γa = 0, a ∈ A, pgh(a) = l ≥ 0, agh(a) = j ≥ 0, (34)

under the form

a =
∑
J

ᾱJ
([

Φ̄∗Ā
]
, [K],

[
FV
])
ēJ
((1)

F ,
(k)
η , C

)
, agh(ᾱJ) = j ≥ 0, pgh(ēJ) = l ≥ 0, (35)

and also the general, nontrivial elements of H(γ) computed in Λ̄ with the properties

γ$ = 0, $ ∈ Λ, deg($) = p ≤ D, pgh($) = l ≥ 0, agh($) = j ≥ 0, (36)

like

$ =
∑
J

[p]

ᾱJ
([

Φ̄∗Ā
]
, [K],

[
FV
])
ēJ
((1)

F ,
(k)
η , C

)
, (37)

deg(
[p]

ᾱJ) =p ≤ D, agh(
[p]

ᾱJ) = j ≥ 0, pgh(ēJ) = l ≥ 0. (38)

We notice that the elements of the basis in the ghosts, ēJ , is modified with respect to
that of the (k, 1) case alone by including a novel dependence (at most linear) of the
undifferentiated U(1) ghost C. Third, the analogue of Corollary 3 from [45] remains valid
in the case where one adds a free massless vector field to the free theory describing a
massless tensor field with the mixed symmetry (k, 1) and replaces the algebra Λ by Λ̄.

Regarding the local cohomologies of the Koszul–Tate differential in gh = 0, H(δ|d)
and H inv(δ|d), the relevant results from Ref. [46], contained in Corollary 5, Lemma 6,
Theorem 7, and Corollary 8, still hold up to including the presence of the supplementary
free spin-1 field. The nontrivial representatives that span the invariant characteristic
cohomology spaces with agh valued between 3 and (k + 1),

(
H invD
j (δ|d)

)
j=3,k+1

, gain

no new elements compared with those from Ref. [46], but in agh = 2 there appears
an additional contribution due to the vector sector, represented by the undifferentiated
antifield C∗, such that Table 1 from [46] should be replaced with Table 3 below. It is
understood that in agh = 1 the (nontrivial) representatives of the space HD

1 (δ|d) will
include also (linear) contributions in the antifield of the vector field, [V ∗].

agh complete set of nontrivial representatives

k + 1
(k)
η
∗α

j = 3, k
(j−1)

C ′
∗µ1...µk−j+1||α

2
(1)

C ′
∗µ1...µk−1||α

, C∗

Table 3: Nontrivial representatives spanning
(
HD
j (δ|d)

)
j=2,k+1

and
(
H invD
j (δ|d)

)
j=2,k+1

.

The local BRST cohomology in maximum form degree for the model under consider-
ation evaluated in the algebra of local forms without an explicit dependence of the space-
time coordinates, Λ̄, is still governed by the analogue of Proposition 10 from Ref. [46] (up
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to the appropriate inclusion of the vector sector), but the discussion following this propo-
sition should be adapted accordingly. For instance, formula (99) from Ref. [46] should be
replaced by

[D]
a k+1 =

∑
J

[D]

ᾱ J ē
J
((1)

F ,
(k)
η , C

)
,

[D]

ᾱ J ∈ H invD
k+1 (δ|d), pgh(ēJ) = k + 1 + g. (39)

5 Construction of the deformed solution to the clas-

sical master equation

In this section we construct the deformed solution to the classical master equation that
is consistent, nontrivial, and agrees with all the working hypotheses introduced in the
preamble of Section 4 with respect to a tensor field with the mixed symmetry (k, 1) and
a single vector field. We recall that the maximum derivative order of the interacting
Lagrangian density at all orders of perturbation theory should be equal to two. We apply
the antifield-BRST procedure exposed in Section 3 starting from formula (21), where S
reads now as in (17) and the remaining pieces signify the solutions to equations (22).

Due to the locality presumption and maintaining notations (23), it follows that the
nonintegrated density of the first-order deformation, a1, is subdued to equation (26) and
therefore defines a nontrivial element of the local BRST cohomology in maximum form
degree and in ghost number equal to 0. We decompose S1 in a natural way as a sum
between three local pieces

S1 =St
1 + SV

1 + St−V
1 , (40)

St
1 =

∫
at

1d
Dx, SV

1 =

∫
aV

1 d
Dx, St−V

1 =

∫
at−V

1 dDx, (41)

where St
1 describes the self-interactions of the tensor (k, 1), SV

1 those of the vector field,
and St−V

1 the cross-couplings between these two field sectors, so a1 inherits a similar
decomposition

a1 = at
1 + aV

1 + at−V
1 . (42)

Because at
1 may depend only on the BRST generators from the (k, 1) sector and aV

1 only on
those from the vector one, while each term from at−V

1 should contain at least one generator
from each sector, equation (26) becomes equivalent with three independent equations

sat
1 + ∂µb

tµ
1 = 0, saV

1 + ∂µb
Vµ
1 = 0, sat−V

1 + ∂µb
t−Vµ
1 = 0. (43)

The first equation has been analyzed in Ref. [44] in the context of the same deformation
method and general assumptions employed here, where it has been shown that we can
stop the first-order deformation at

1 in antighost number 1 and the current btµ
1 in antighost

number 0
at

1 = at
1,1 + at

1,0, btµ
1 = btµ

1,0, (44)

where the components at
1,1 and at

1,0 are expressed by

at
1,1 =cδk2k̄δ

D
4k̄εµ1...µ4k̄

t∗µ1...µ2k̄−1

(1)

F
µ2k̄...µ4k̄

, (45)

at
1,0 =− cδk2k̄δ

D
4k̄

(2k̄−1)(2k̄+1)

(2k̄)!8k̄2 εµ1...µ4k̄
F µ1...µ2k̄F µ2k̄+1...µ4k̄ , (46)
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such that the first-order deformation from the (k, 1) sector takes the form

St
1 =

∫
cεµ1...µ4k̄

(
t∗µ1...µ2k̄−1

(1)

F
µ2k̄...µ4k̄

− (2k̄−1)(2k̄+1)

(2k̄)!8k̄2 F µ1...µ2k̄F µ2k̄+1...µ4k̄

)
d4k̄x. (47)

Starting with formula (44), the second lower index of the quantities involved in the various
orders of perturbation theory signifies their antighost number. In the above c is an
arbitrary real constant and the supplementary factors δk

2k̄
and δD

4k̄
were introduced in

order to highlight that relations (45)–(47) are valid solely for even values of k, equal to
2k̄, and only in D = 4k̄ spacetime dimensions.

The second equation in (43) has been analyzed in Ref. [48], where it has been shown
that the only consistent first-order deformation that describes the self-interactions of a
single massless vector field does not modify the U(1) gauge symmetry

aV
1 = aV

1,0, γaV
1,0 + ∂µb

Vµ
1,0 = 0 (48)

and reduces to a sum among generalized Abelian Chern–Simons terms

aV
1 =

∑
i≥1

c̃(i)εµ1µ2...µ2i−1µ2iµ2i+1FV
µ1µ2
· · ·FV

µ2i−1µ2i
Vµ2i+1

, (49)

where c̃(i) denote some arbitrary real constants. For each fixed i the associated Lagrangian
density displays the derivative order equal to i. The simultaneous conditions D ≥ k + 2
and k ≥ 4 selects from the above sum only the pieces with i ≥ 3

aV
1 =

∑
i≥3

c̃(i)εµ1µ2...µ2i−1µ2iµ2i+1FV
µ1µ2
· · ·FV

µ2i−1µ2i
Vµ2i+1

, (50)

which contain at least three spacetime derivatives and therefore must be discarded by
virtue of the maximum derivative order assumption

c̃(3) = c̃(4) = · · · = 0⇒ aV
1 = 0. (51)

If we started from a collection of Abelian vector fields, V a
µ , then we would obtain some

nontrivial solutions, such as the Yang–Mills couplings [51], due to the presence of more
than one fermionic ghosts with pgh = 1, Ca, which allows the existence of nontrivial
elements in H(γ) at pure ghost number equal to two, of the type CaCb. Nevertheless,
in the present context of a single vector field we conclude that there are no nontrivial
self-interactions that satisfy the working hypotheses (in particular the derivative order
assumption) and hence we have that

SV
1 = 0. (52)

Next, we approach the cross-coupling first-order deformation as solution to the last
equation in (43). We act in the standard manner and develop at−V

1 and bt−Vµ
1 along agh.

According, the analogue of Proposition 10 from Ref. [46] ensures that we can safely start
from

at−V
1 =

k+1∑
j=0

at−V
1,j , bt−Vµ

1 =
k∑
j=0

bt−Vµ
1,j , (53)

such that equation sat−V
1 + ∂µb

t−Vµ
1 = 0 becomes equivalent to the chain

γat−V
1,k+1 =0, (54)
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δat−V
1,k+1 + γat−V

1,k + ∂µb
t−Vµ
1,k =0, (55)

δat−V
1,k + γat−V

1,k−1 + ∂µb
t−Vµ
1,k−1 =0, (56)

...

δat−V
1,1 + γat−V

1,0 + ∂µb
t−Vµ
1,0 =0. (57)

Moreover, result (39) particularized to g = 0 leads to

at−V
1,k+1 = ᾱk+1ē

k+1
((1)

F ,
(k)
η , C

)
, ᾱk+1 ↔ H invD

k+1 , pgh(ēk+1) = k + 1. (58)

Table 3 in agh = k + 1 provides the invariant polynomial ᾱk+1 as an object linear in the

undifferentiated antifield
(k)
η
∗

from the (k, 1) sector, such that the requirement of cross-
coupling in relation with formula (58) necessarily demands that we are compelled to select
among the elements of the basis in pgh = k+ 1, ēk+1, only those quantities depending on
the ghost C from the vector sector. On the one hand, this scalar ghost is fermionic, so it
may intervene only linearly (its square is identically vanishing), and, on the other hand,

its pure ghost number is equal to one. Consequently, the eligible elements ēk+1
((1)

F ,
(k)
η , C

)
reduce to

ēk+1
eligible

((1)

F ,
(k)
η , C

)
= ēk+1

((1)

F ,
(k)
η , C

)
=
{
ek
((1)

F
)
C,

(k)
η C
}
, (59)

with ek
((1)

F
)

of the form

ej
((1)

F
)
≡
((1)

F
)j

=
(1)

F
µ

(1)
1 ...µ

(1)
k+1 (1)

F
µ

(2)
1 ...µ

(2)
k+1

· · ·
(1)

F
µ

(j)
1 ...µ

(j)
k+1

, j ≥ 1 (60)

for j = k. The underlined ghost signifies that the elements of the basis explicitly depend
on C. The derivative order assumption forbids the presence of the first class of elements in
(58) (if consistent, such terms would produce a Lagrangian density with precisely k+1 ≥ 5
derivatives), so we are left with

at−V
1,k+1 :

{
(k)
η
∗



(k)
η C
}
, (61)

or, equivalently,

at−V
1,k+1 = Υµα

(k)
η
∗µ

(k)
η
α

C, (62)

with Υ a constant, non-derivative real tensor. Lorentz covariance and Poincaré invariance
arguments combined with D ≥ k + 2 ≥ 6 produce the unique option

Υµα = c1σµα, c1 ∈ R, (63)

which further yields the most general expression of the solution to equation (54) that
fulfills all the imposed properties like

at−V
1,k+1 = c1

(k)
η
∗

α

(k)
η
α

C. (64)

Using the actions of the operators δ and γ on the BRST generators, we find the solution
to equation (55) (up to the solutions of the homogeneous equation in agh = k) of the
form

at−V
1,k = 2c1

(k−1)

C ′
∗

µ1||α

(
1
2

(k−1)

C ′
µ1||α

C − V µ1
(k)
η
α
)
, (65)
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where the ghost
(k−1)

C ′ together with the antifield
(k−1)

C ′
∗

are defined by

(m)

C ′µ1...µk−m||α ≡
(m)

C µ1...µk−m|α + (k −m+ 2)
(m)
η µ1...µk−mα

, (66)

(m)

C ′
∗µ1...µk−m||α

≡
(m)

C

∗µ1...µk−m|α

+ 1
k−m+2

(m)
η
∗µ1...µk−mα

, (67)

with m = k − 1. We mention that the range of m in the last relations is m = 1, k − 1.
In order to generate the component of agh = k − 1 as solution to equation (56), we start
from (65) on which we act with δ. In this manner, after some computation we infer

δat−V
1,k =− 2c1

(k−2)

C ′
∗

µ1µ2||αF
Vµ1µ2

(k)
η
α

− ∂µbt−Vµ
1,k−1

− γ

[
c1

(k−2)

C ′
∗

µ1µ2||α

(
(k−2)

C ′
µ1µ2||α

C − V
[µ1

(k−1)

C ′
µ2]||α)]

, (68)

with
(k−2)

C ′ and
(k−2)

C ′
∗

like in (66) and respectively (67) for m = k − 2. Inserting result
(68) into equation (56), we notice that it possesses solutions with respect to at−V

1,k−1 if and
only if the first term from the right-hand side of relation (68) is γ-exact modulo a full
divergence

2c1

(k−2)

C ′
∗

µ1µ2||αF
Vµ1µ2

(k)
η
α

= γa′t−V
1,k−1 + ∂µb

′t−Vµ
1,k−1 . (69)

In order to analyze the last (necessary and sufficient) condition, we take its left functional

derivative with respect to the antifield
(k−2)

C ′
∗

, use the commutation of this operation with
the action of γ, and take into account the fact that the Euler–Lagrange (EL) derivatives
of the divergence vanish identically, which finally leads to

2c1F
Vµ1µ2

(k)
η
α

= γ

(
δLa′t−V

1,k−1

δ
(k−2)

C ′
∗

µ1µ2||α

)
. (70)

By means of formula (35), we observe that the left-hand side of the above equation is
a nontrivial element of agh = 0 pertaining to the cohomology space Hk(γ), such that
requirement (70) takes place if and only if

c1 = 0, (71)

which annihilates (64)
at−V

1,k+1 = 0. (72)

In conclusion, the first-order deformation that couples the (k, 1) sector to the vector one
cannot stop in maximum antighost number, equal to (k + 1).

Before analyzing the remaining possibilities related to the structure of the noninte-
grated density of the cross-coupling first-order deformation, we argue that the first class
of elements of the ghost basis with pgh = k + 1 present in the right-hand side of formula
(59) does not meet the maximum derivative order criterion. Indeed, in this situation we

consider in at−V
1,k+1 a particular solution to equation (54) of the form at−V

1,k+1 ∼
(k)
η
∗
ek
((1)

F
)
C,

where ek reads as in (60) with j = k, so it comprises precisely k spacetime derivatives. If
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consistent, this solution generates some components of the first-order deformation of lower
but strictly positive values of the antighost number (as solutions to equations (55), (56),
and so on, but not to equation (57)) that preserve the initial number of derivatives. In-
deed, all the nonvanishing actions of δ on the full antifield spectrum excepting the agh = 1
part together with all the nonvanishing actions of γ on the entire field/ghost spectrum
increase the derivative order by one, such that the supplementary derivative coming from
the action of δ will be absorbed (up to some divergences) by γ. To put it otherwise, all
the pieces at−V

1,j with j = 1, k will be homogeneous functions of order k with respect to
the total number of spacetime derivatives. This symmetry is broken when we act with δ
on at−V

1,1 in order to generate at−V
1,0 as solution to equation (57) since in this context there

appear two additional spacetime derivatives (the actions of delta on each antifield of the
original fields is proportional with the EL derivatives of the free Lagrangian density with
respect to the corresponding field, so they comprise exactly two spacetime derivatives).
Thus, up to some irrelevant full divergences, only one of these derivatives will be absorbed
by γ and will lead to an at−V

1,0 with exactly k+ 1 ≥ 5 derivatives, which disagrees with the
derivative order assumption.

The cases where the cross-coupling first-order deformation stops in maximum values
of the antighost number m = 3, k may be treated compactly. The analogue of Corollary
3 from Ref. [45] ensures that for every fixed value of m within this range we have that

at−V
1 =

m∑
j=0

at−V
1,j , bt−Vµ

1 =
m−1∑
j=0

bt−Vµ
1,j , (73)

where the various components of the above decompositions fulfill the equations

γat−V
1,m =0, (74)

δat−V
1,m + γat−V

1,m−1 + ∂µb
t−Vµ
1,m−1 =0, (75)

...

δat−V
1,1 + γat−V

1,0 + ∂µb
t−Vµ
1,0 =0. (76)

Moreover, the similar of Proposition 10 from Ref. [46] adapted to the present free model
provides the piece of maximum antighost number like

at−V
1,m = ᾱmē

m
((1)

F ,
(k)
η , C

)
, ᾱm ↔ H invD

m , pgh(ēm) = m. (77)

Combining the information from Table 3 for agh = m corresponding to the range under
consideration, which yields that the invariant polynomial ᾱm is linear in the undifferen-

tiated antifields
(m−1)

C ′
∗

from the (k, 1) sector, with the cross-coupling requirement related
to expression (77), we conclude that the eligible elements of the basis ēm are those linear
in the U(1) ghost C. Since its pure ghost number is equal to one, this further prevents

the ghost
(k)
η (with pgh = k) to enter ēm and leads to

ēm
((1)

F ,
(k)
η , C

)
= em−1

((1)

F
)
C, (78)

with em−1
((1)

F
)

as in (60) for j = m − 1. So far, we argued that at−V
1,m with m = 3, k

contains a single class of terms

at−V
1,m :

{(m−1)

C ′
∗


 em−1
((1)

F
)
C
}
. (79)
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Due to the fact that em−1 contains (m− 1) spacetime derivatives, a reasoning similar to
that developed in the previous paragraph implies that if consistent, such a term will pro-
duce a Lagrangian density with exactly m ≥ 3 derivatives, which contradicts the deriva-
tive order hypothesis. Consequently, the cross-coupling first-order deformation cannot
stop either in maximum values of the antighost number within the range 3, k.

We pass to the next possible value of the maximum antighost number, equal to 2, and
apply the result of Corollary 3 from Ref. [45] adapted here, which stipulates that we can
start from

at−V
1 = at−V

1,0 + at−V
1,1 + at−V

1,2 , bt−Vµ
1 = bt−Vµ

1,0 + bt−Vµ
1,1 , (80)

as solutions to the equations

γat−V
1,2 = 0, δat−V

1,2 + γat−V
1,1 + ∂µb

t−Vµ
1,1 = 0, δat−V

1,1 + γat−V
1,0 + ∂µb

t−Vµ
1,0 = 0. (81)

In agreement with the analogue of Proposition 10 from Ref. [46], the solution to the first
equation from the above chain can be represented like

at−V
1,2 = ᾱ2ē

2
((1)

F , C
)
, ᾱ2 ↔ H invD

2 , pgh(ē2) = 2. (82)

We investigate the elements of H invD
2 with the help of Table 3 and remark that this is the

first time when the vector sector contributes to the invariant characteristic cohomology,
such that the elements of the basis ē2 are no longer restricted to depend on C. Since

ē2
((1)

F , C
)

=
{
e2
((1)

F
)
,

(1)

FC
}
, (83)

the cross-coupling requirement allows three classes of terms in (82)

at−V
1,2 :

{(1)

C ′
∗



(1)

FC, C∗ 
 e2
((1)

F
)
, C∗ 


(1)

FC
}
. (84)

The second class does not comply with the derivative order criterion (if consistent, such
terms would produce a Lagrangian density with three derivatives), which leaves two al-
ternatives

at−V
1,2 =

(
Υµ1...µk−1||µk||ν1...νk+1

(1)

C ′
∗µ1...µk−1||µk

+ Υν1...νk+1
C∗
)(1)

F
ν1...νk+1

C, (85)

where the tensors Υ are imposed to be real, constant, and non-derivative. The double
bar signifies full antisymmetry (where applicable) only with respect to the delimited sub-
groups of Lorentz indices, without other mixed symmetry property. Taking into account
the Lorentz covariance together with the Poincaré invariance, as well as the complete

antisymmetry of the ghost
(1)

F plus the antisymmetry of the antifield
(1)

C ′
∗

with respect to
its first (k − 1) indices, we infer the next eligible solutions in D ≥ k + 2 ≥ 6

Υµ1...µk−1||µk||ν1...νk+1
= δD2k+1c2(k + 1)εµ1...µkν1...νk+1

+ δD2k−1c3σµk−1µkεµ1...µk−2ν1...νk+1
, (86)

Υν1...νk+1
= 0, (87)

where c2,3 stand for two arbitrary real constants and the numeric factor (k + 1) was
added for further convenience. We introduce the previous results in (85) and process

the resulting terms by recalling the expression of
(1)

C ′
∗

in terms of
(1)

C

∗

and
(1)
η
∗

following
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from relation (67) particularized to m = 1. By virtue of the mixed symmetry of the type

(k − 1, 1) of
(1)

C

∗

and employing formula

(m)

C ′
∗µ1...µk−m−1

=
(m)

C

∗µ1...µk−m−1

(88)

for m = 1, we finally obtain

at−V
1,2 =

(
δD2k+1c2εµ1...µkν1...νk+1

(1)
η
∗µ1...µk

+ δD2k−1c3εµ1...µk−2ν1...νk+1

(1)

C

∗µ1...µk−2)(1)

F
ν1...νk+1

C. (89)

≡at−V
1,2 (c2) + at−V

1,2 (c3). (90)

Since they evolve on Minkowski spacetime manifolds of different dimensions, D = 2k + 1
and respectively D = 2k−1, the two terms from (90) should be independently consistent,
i.e. the equations corresponding to agh = 1 and agh = 0 from (81) are to be split into
two independent subsets

δat−V
1,2 (c2) + γat−V

1,1 (c2) + ∂µb
t−Vµ
1,1 (c2) = 0, δat−V

1,1 (c2) + γat−V
1,0 (c2) + ∂µb

t−Vµ
1,0 (c2) = 0, (91)

δat−V
1,2 (c3) + γat−V

1,1 (c3) + ∂µb
t−Vµ
1,1 (c3) = 0, δat−V

1,1 (c3) + γat−V
1,0 (c3) + ∂µb

t−Vµ
1,0 (c3) = 0. (92)

Regarding the first equation from (91), we start from the first term in the right-hand side
of (89) and, after some computation, we find that

at−V
1,1 (c2) = δD2k+1c2(k + 1)εµ1...µkν1...νk+1

t∗µ1...µk|α
(

1
k
F ν1...νk+1|

αC + (−)kVα
(1)

F
ν1...νk+1)

. (93)

Acting similarly with respect to the first equation from (92), we deduce

at−V
1,1 (c3) = δD2k−1c3

(−)k+1k(k+1)
k−1

εµ1...µk−1ν1...νkt
∗µ1...µk−1

(
1
k
F ν1...νkC + Vµ

(1)

F
µν1...νk)

, (94)

where t∗µ1...µk−1 is the trace of the antifield t∗µ1...µk|α.
In order to analyze the solutions to the last equation from (91), we act with δ on (93)

and find

δat−V
1,1 (c2) = δD2k+1c2

k+1
k!
εµ1...µkν1...νk+1

[
1
k

(
∂µF

µµ1...µk|α + (−)k+1∂αF µ1...µk
)
F ν1...νk+1|

αC

+(−)k
(
∂µF

µµ1...µk|α + (−)k+1∂αF µ1...µk − σα[µ1∂ρF
µ2...µk]ρ

)
Vα

(1)

F
ν1...νk+1]

. (95)

Combining the result

∂ρ1

(1)

F µ1...µk+1
= γ

(
(−)k+1

k
Fµ1...µk+1|ρ1

)
(96)

with the first definition in (15), we get two necessary conditions for the existence of the
solutions at−V

1,0 (c2) to the last equation from (91)

εµ1...µkν1...νk+1

(
∂µF

µµ1...µk|α + (−)k+1∂αF µ1...µk
)
F ν1...νk+1|

α = ∂µB
µ, (97)

εµ1...µkν1...νk+1

(
∂µF

µµ1...µk|α + (−)k+1∂αF µ1...µk − σα[µ1∂µF
µ2...µk]µ

)
Vα
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=∂µB
µ
ν1...νk+1

. (98)

Let us analyze now (97) by means of relations (4) and (5). The second term in the
left-hand side of (97) can be represented (up to a global phase factor (−)k+1) under the
form

εµ1...µkν1...νk+1

(
∂αF µ1...µk

)
F ν1...νk+1|

α = ∂µ
[
εµ1...µkν1...νk+1

(
F µ1...µkF ν1...νk+1|µ

− σµ[µ1tµ2...µk]∂αF
ν1...νk+1|α

)]
− (k + 1)εµµ1...µkν1...νk

(
∂αt

µ1...µk|α
)
∂µ
(
∂βt

ν1...νk|β
)
, (99)

such that condition (97) becomes equivalent to

εµ1...µkν1...νk+1

(
∂µF

µµ1...µk|α
)
F ν1...νk+1|

α

+(−)k(k + 1)εµµ1...µkν1...νk

(
∂αt

µ1...µk|α
)
∂µ
(
∂βt

ν1...νk|β
)

= ∂µB̄
µ, (100)

where we made the notation

B̄µ ≡ Bµ + (−)kεµ1...µkν1...νk+1

(
F µ1...µkF ν1...νk+1|µ − σµ[µ1tµ2...µk]∂αF

ν1...νk+1|α
)
. (101)

It is easy to see that the following relations are valid in D = 2k + 1

εµ1...µkν1...νk+1

(
∂µF

µµ1...µk|α
)
F ν1...νk+1|

α = ∂µ
(
εµ1...µkν1...νk+1

F µµ1...µk|αF ν1...νk+1|
α

)
(−)k+1εµ1...µkν1...νk+1

(
∂µF

µµ1...µk|α
)
F ν1...νk+1|

α, (102)

εµ1...µkν1...νk+1
F µµ1...µk|αF ν1...νk+1|

α = (−)kεµ1...µkν1...νk+1
F µµ1...µk|αF ν1...νk+1|

α, (103)

εµµ1...µkν1...νk

(
∂αt

µ1...µk|α
)
∂µ
(
∂βt

ν1...νk|β
)

= ∂µ
[
εµ µ1...µkν1...νk

(
∂αt

µ1...µk|α
)(
∂βt

ν1...νk|β
)]

+ (−)k+1εµµ1...µkν1...νk

(
∂αt

µ1...µk|α
)
∂µ
(
∂βt

ν1...νk|β
)
, (104)

εµ µ1...µkν1...νk

(
∂αt

µ1...µk|α
)(
∂βt

ν1...νk|β
)

= (−)kεµ µ1...µkν1...νk

(
∂αt

µ1...µk|α
)(
∂βt

ν1...νk|β
)
. (105)

Taking into account formulas (102)–(105) and the equivalence of the necessary condition
(97) to (100), we remark that there appear two distinct situations:

1. for odd values, k = 2k̄ + 1 (k̄ ≥ 2), none of the two terms present in the left-hand
side of formula (100) reduces to a divergence, such that in this case there are no
solutions at−V

1,0 (c2) to the second equation from (91). Consequently, inconsistency

reasons force c2 = 0, which automatically annihilates the component at−V
1,2 (c2) from

the piece of maximum antighost number equal to 2, (90), of the cross-coupling
first-order deformation

at−V
1,2 (c2) = 0 for k = 2k̄ + 1, k̄ ≥ 2; (106)

2. for even values, k = 2k̄ (k̄ ≥ 2), we have that D = 4k̄+1, so (100) is indeed fulfilled

εµ1...µkν1...νk+1

(
∂µF

µµ1...µk|α
)
F ν1...νk+1|

α

+ (−)k(k + 1)εµµ1...µkν1...νk

(
∂αt

µ1...µk|α
)
∂µ
(
∂βt

ν1...νk|β
) k=2k̄,D=4k̄+1−→

εµ1...µ2k̄ν1...ν2k̄+1

(
∂µF

µµ1...µ2k̄|α
)
F
ν1...ν2k̄+1|

α

+ (2k̄ + 1)εµµ1...µ2k̄ν1...ν2k̄

(
∂αt

µ1...µ2k̄|α
)
∂µ
(
∂βt

ν1...ν2k̄|β
)
≡

∂µ

{
1
2

[
εµ1...µ2k̄ν1...ν2k̄+1

F µµ1...µ2k̄|αF
ν1...ν2k̄+1|

α
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+ (2k̄ + 1)εµ µ1...µ2k̄ν1...ν2k̄

(
∂αt

µ1...µ2k̄|α
)(
∂βt

ν1...ν2k̄|β
)]}

, (107)

so the first necessary condition for the existence of at−V
1,0 (c2), i.e. (97), indeed holds.

Under these circumstances, it can be shown by direct computation that requirement
(98) cannot take place, so no solutions at−V

1,0 (c2) to the second equation from (91)
exist. The elimination of inconsistencies is enforced like in the previous case by
taking c2 = 0, which implements

at−V
1,2 (c2) = 0 for k = 2k̄, k̄ ≥ 2 (108)

into the piece of maximum antighost number equal to 2, (90), of the cross-coupling
first-order deformation.

Next, we tackle the solutions to the last equation from (92). From the action of δ on
the antifield of the field with the mixed symmetry (k, 1) where we take its contraction
over the last two indices and particularize the emerging result to D = 2k− 1, we find the
action of the Koszul–Tate differential on the trace of the antifield t∗, which turns out to
be proportional with the divergence of the trace of the tensor defined by (4)

δt∗µ1...µk−1 = k−2
k!
∂µF

µµ1...µk−1 . (109)

Now, we act with δ on (94) and slightly process the resulting expression, which further
yields

δat−V
1,1 (c3) =δD2k−1c3

(−)k(k+1)(k−2)
k!(k−1)

εµ1...µk−1ν1...νk

(
∂µF

µµ1...µk−1
)
F ν1...νkC

+ δD2k−1c3
(k−2)
(k−1)!

εµ1...µk−2ν1...νk+1
Vρ
(
∂µF

µρµ1...µk−2
)(1)

F
ν1...νk+1

. (110)

Invoking again formula (96) together with the first definition from (15) we get that the
existence of solutions at−V

1,0 (c3) to the latter equation from (92) will be governed in this
case by the necessary conditions

εµ1...µk−1ν1...νk

(
∂µF

µµ1...µk−1
)
F ν1...νk =∂µM

µ, (111)

εµ1...µk−2ν1...νk+1
Vρ
(
∂µF

µρµ1...µk−2
)

=∂µM
µ
ν1...νk+1

, (112)

which are nothing but the analogue of relations (97)–(98) from the previous situation. It
is simple to check that the following identities hold in D = 2k − 1

εµ1...µk−1ν1...νk

(
∂µF

µµ1...µk−1
)
F ν1...νk =∂µ

(
εµ1...µk−1ν1...νkF

µµ1...µk−1F ν1...νk
)

+ (−)kεµ1...µk−1ν1...νk

(
∂µF

µµ1...µk−1
)
F ν1...νk , (113)

εµ1...µk−1ν1...νkF
µµ1...µk−1F ν1...νk =(−)k+1εµ1...µk−1ν1...νkF

µµ1...µk−1F ν1...νk , (114)

such that we find two complementary cases also in the present context:

1. for even values k = 2k̄ (k̄ ≥ 2) the left-hand side of (111) cannot be represented
like a full divergence, so there are no solutions at−V

1,0 (c3) to the former equation from

(92). Consequently, we must take c3 = 0, which implies that the component at−V
1,2 (c3)

from the piece of maximum antighost number equal to 2 present in the first-order
cross-coupling deformation density vanishes

at−V
1,2 (c3) = 0 for k = 2k̄, k̄ ≥ 2; (115)
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2. for odd values k = 2k̄+ 1 (k̄ ≥ 2), and hence D = 4k̄+ 1, condition (111) is fulfilled

εµ1...µ2k̄ν1...ν2k̄+1

(
∂µF

µµ1...µ2k̄
)
F ν1...ν2k̄+1

=∂µ
(

1
2
εµ1...µ2k̄ν1...ν2k̄+1

F µµ1...µ2k̄F ν1...ν2k̄+1
)
, (116)

but on the other hand this precise value of k implies that condition (112) cannot
be fulfilled, so we must also take c3 = 0, which annihilates one more time the cor-
responding piece of maximum antighost number equal to 2 from the nonintegrated
density of the first-order deformation

at−V
1,2 (c3) = 0 for k = 2k̄ + 1, k̄ ≥ 2. (117)

The main of conclusion of the arguments exposed so far is that the cross-coupling first-
order deformation cannot stop in a nontrivial manner in maximum antighost number
equal to 2.

In this way we reached the situation where the first-order deformation density at−V
1

stops in agh = 1. By applying the analogue of Corollary 3 from [45] adapted to the
present model, we are able to stop the current bt−Vµ

1 in agh = 0 without loss of nontrivial
terms, so the starting point will be given by the following expansions and corresponding
equations

at−V
1 =at−V

1,0 + at−V
1,1 , bt−Vµ

1 = bt−Vµ
1,0 , (118)

γat−V
1,1 =0, δat−V

1,1 + γat−V
1,0 + ∂µb

t−Vµ
1,0 = 0. (119)

Result (35) for j = 1 = l combined with the fact that the elements of the basis in pure
ghost number 1, ē1, are spanned by

ē1
((1)

F , C
)

=
{(1)

F , C
}
, (120)

allow for a formal representation of at−V
1,1 as solution to the former equation in (119) as

at−V
1,1 :

{
ᾱ′1
(
[t∗], [V ∗], [K],

[
FV
])



(1)

F , ᾱ′′1
(
[t∗], [V ∗], [K],

[
FV
])


 C
}
, (121)

where the invariant polynomials ᾱ′1 and ᾱ′′1 display the antighost number 1 and hence
are restricted to be monomials of order one in [t∗] and [V ∗]. One can always assume that
these invariant polynomials are in fact some monomials of order one in the undifferentiated
antifields t∗ and respectively V ∗ (up to some irrelevant divergences, we can absolve the
antifields from any derivatives acting on them and consequently eliminate the resulting
terms containing the derivatives of the two types of ghosts due to their γ-exactness, in
agreement with formula (96) and respectively the first definition in (15)). The derivative
order assumption combined with the actions of the Koszul–Tate operator and of the
longitudinal exterior derivative on the BRST generators imposes the next supplementary
restrictions on ᾱ′1 and ᾱ′′1:

– they cannot depend either on the components of the curvature tensor or on their
derivatives;

– the terms linear in
(1)

F cannot contain either the components of the Abelian field
strength or their derivatives;
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– the terms proportional with C may depend at most linearly on the Abelian field
strength.

The above considerations completed by the cross-coupling selection rule narrow at−V
1,1 to

three classes of possible terms:

at−V
1,1 =Υµ1µ2...µk+2

V ∗µ1

(1)

F
µ2...µk+2

+
(
Υµ1...µk||α||ρ1ρ2t

∗µ1...µk|αFVρ1ρ2 + Υµ1...µk|αt
∗µ1...µk|α

)
C, (122)

where the tensors denoted by Υ are real, constant, and non-derivative. Moreover, Lorentz
covariance and Poincaré invariance arguments furnish the next nontrivial solutions in
D ≥ k + 2 (k ≥ 4)

Υµ1µ2...µk+2
= δDk+2c4εµ1µ2...µk+2

, Υµ1...µk||α||ρ1ρ2 = εµ1...µkαρ1ρ2 , Υµ1...µk|α = 0, (123)

with c4 an arbitrary real constant. In addition, the identity t∗[µ1...µk|α] ≡ 0 annihilates the
second term from the right-hand side of (122), such that the general nontrivial solution
to the former equation from (119) that agrees with all the enforced selection rules is
expressed by

at−V
1,1 = δDk+2c4εµ1µ2...µk+2

V ∗µ1

(1)

F
µ2...µk+2

. (124)

From (124) we infer the solution to the latter equation in (119) (up to the solutions of
the “homogeneous” equation in antighost number 0) like

at−V
1,0 = δDk+2c4

k+1
2k
εµ1...µk+2

FVµ1µ2F µ3...µk+2 . (125)

The final step in the analysis of the cross-couplings at order one of perturbation theory
between the (k, 1) and the spin-1 fields is represented by the nontrivial solutions to the
“homogeneous” equation

γāt−V
1,0 ([t], [V ]) + ∂µb̄

t−Vµ
1,0 = 0, (126)

which does not modify the original generating set of gauge transformations corresponding
to the free action (1). Since the analogue of Corollary 3 from [45] does not hold in agh = 0,
we will analyze separately the solutions in the homogeneous case (b̄t−Vµ

1,0 = 0) from those

present in the inhomogeneous one (b̄t−Vµ
1,0 6= 0). In the homogeneous situation, the equation

γāt−V
1,0 ([t], [V ]) = 0 is completely equivalent to the gauge invariance of āt−V

1,0 ([t], [V ]) =

0 under the original gauge transformations (9) and (10), δ(1)

θ ,
(1)
ε ,ξ
āt−V

1,0 ([t], [V ]) = 0. In

other words, the associated Lagrangian densities are given by invariant polynomials with
agh = 0 of the starting free model, so they follow from (31) in agh = 0, āt−V

1,0 ([t], [V ]) ≡
āt−V

1,0 ([K], [FV]). The cross-coupling assumption forces such solutions to be at most linear
in both the components of the curvature tensorK and in those of the Abelian field strength
FV, which amounts to vertices with three spacetime derivatives and breaks the derivative
order hypothesis, so must be discarded. Regarding the solutions to the inhomogeneous
equation, we act like in Ref. [44]. Using definition (14) and the first formula from (15), we
get that equation (126) restricts the EL derivatives of āt−V

1,0 ([t], [V ]) to fulfill the necessary
conditions

∂µ1

(
δāt−V

1,0 ([t], [V ])

δtµ1...µk|α

)
= 0, ∂α

(
δāt−V

1,0 ([t], [V ])

δtµ1...µk|α

)
= 0, ∂µ

(
δāt−V

1,0 ([t], [V ])

δVµ

)
= 0, (127)
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which allows us to represent them under the form

δāt−V
1,0 ([t], [V ])

δtµ1...µk|α
= ∂µk+1

∂βΦ̃µ1...µk+1|αβ([t], [V ]),
δāt−V

1,0 ([t], [V ])

δVµ
= ∂νF̃

νµ([t], [V ]), (128)

where Φ̃ displays the mixed symmetry (k + 1, 2) and F̃ is antisymmetric. The derivative
order assumption on the one hand forbids the dependence of Φ̃ on all field derivatives
and on the other hand restricts the maximum derivative order of the tensor F̃ to one.
Meanwhile, the cross-coupling condition enforces that Φ̃ effectively involves the gauge
vector field whereas F̃ truly depends on the (k, 1) field. This additional requirements are
symbolized by

δāt−V
1,0 ([t], [V ])

δtµ1...µk|α
= ∂µk+1

∂βΦ̃µ1...µk+1|αβ(t, V ),
δāt−V

1,0 ([t], [V ])

δVµ
= ∂νF̃

νµ
1 ([t], [V ]), (129)

where the lower index “1” of F̃ signifies the eligible maximum derivative order. We re-
construct the Lagrangian density āt−V

1,0 from the EL derivatives by means of the homotopy
formula (up to some irrelevant full divergences, which can be eliminated since they are
trivial in the local BRST cohomology)

āt−V
1,0 ([t], [V ]) =

1∫
0

dτ
[(
∂µk+1

∂βΦ̃µ1...µk+1|αβ(τt, τV )
)
tµ1...µk|α

+
(
∂νF̃

νµ
1 ([τt], [τV ])

)
Vµ

]
(130)

and transfer all the derivatives to act on t and respectively on V by neglecting the prospect
divergences, which finally produces

āt−V
1,0 ([t], [V ]) =

1∫
0

dτ
[

(−)k+1

2(k+1)
Φ̃µ1...µk+1|αβ(τt, τV )Kµ1...µk+1|αβ− 1

2
F̃ µν

1 ([τt], [τV ])FV
µν

]
, (131)

where K and F V are nothing but the gauge-invariant quantities with a minimum num-
ber of derivatives of the starting free model. Acting now with γ on (131), after some
tedious computation that will be not reproduced here we deduce the necessary conditions
that must be fulfilled by Φ̃ and F̃ in order to ensure the existence of solutions to the
inhomogeneous equation (126)

Φ̃µ1...µk+1|αβ(τt, τV ) = Υµ1...µk+1||αβ||µτVµ,

F̃ µν
1 ([τt], [τV ]) = Υµνρ||µ1...µk||ατ∂ρtµ1...µk|α.

(132)

All the tensors denoted by Υ are required to be real, constant, non-derivative and an-
tisymmetric (where appropriate) with respect to each index group delimited by double
bars, while the right-hand sides of the previous relations are now linear in τ due to their
linearity in V and respectively in the first-order derivatives ∂t. Substituting (132) in (131)
and performing the integration over τ , we infer

āt−V
1,0 ([t], [V ]) = (−)k+1

4(k+1)
Υµ1...µk+1||αβ||µKµ1...µk+1|αβVµ − 1

4
Υµνρ||µ1...µk||αFV

µν∂ρtµ1...µk|α. (133)
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The antisymmetry of Υµνρ||µ1...µk||α with respect to {µ, ν, ρ} combined with the differential
identity satisfied by FV (∂[ρF

V
µν] ≡ 0) allow us to represent the last term from the right-

hand side of (133) in a divergence-like form

− 1
4
Υµνρ||µ1...µk||αFV

µν∂ρtµ1...µk|α = ∂ρ
(
− 1

4
Υµνρ||µ1...µk||αFV

µνtµ1...µk|α
)
, (134)

so it can be safely eliminated from āt−V
1,0 ([t], [V ]), which leaves us with

āt−V
1,0 ([t], [V ]) = (−)k+1

4(k+1)
Υµ1...µk+1||αβ||µKµ1...µk+1|αβVµ. (135)

Applying once more the operator γ on (135), we entail the necessary and sufficient con-
dition for the existence of solutions to equation (126)

Υµ1...µk+1||αβ||µ∂µKµ1...µk+1|αβ = 0. (136)

Because the only vanishing first-order differential combinations among the components of
the curvature tensor are represented by the second Bianchi identities

∂[µ1Kµ2...µk+2]|αβ ≡ 0, Kµ1...µk+1|[αβ,γ] ≡ 0 (137)

together with their successive contractions and in addition we work inD ≥ k+2 ≥ 6, it can
be explicitly checked that all the solutions Υµ1...µk+1||αβ||µ satisfying the above properties
generate in āt−V

1,0 ([t], [V ]) some terms that vanish identically on behalf of the first Bianchi
identities K[µ1...µk+1|α]β ≡ 0 and of their successive contractions. This observation together
with the similar one from the purely homogenous case allows us to conclude that there
are no nontrivial solutions to the “homogeneous” equation (126) in agh = 0

āt−V
1,0 ([t], [V ]) = 0. (138)

Putting together all the results obtained so far related to the piece at−V
1 , we conclude

that the nontrivial expression of the first-order deformation that couples a massless tensor
field with the mixed symmetry (k, 1) to a gauge vector field and fulfills all the imposed
selection rules evolves on a (Minkowski) spacetime of dimension D = k + 2 and reads as

St−V
1 = c4

∫
εµ1µ2...µk+2

(
V ∗µ1

(1)

F
µ2...µk+2

+ k+1
2k
FVµ1µ2F µ3...µk+2

)
dk+2x. (139)

Since it possesses nonvanishing components only of antighost number equal to 1 and
respectively 0, St−V

1 will generate a nontrivial cross-coupling Lagrangian density and will
also deform some gauge transformations in order one of perturbation theory, but will
not affect either the original gauge algebra or the initial reducibility functions/relations.
Inspecting decomposition (40), we remark that in fact we completed the overall first-order
deformation of the solution to the classical master equation, where St

1 is given in (47),
SV

1 is vanishing in agreement with relation (51), and St−V
1 takes the form (139). We

notice that St
1 is nonvanishing only for even values k = 2k̄ (k̄ ≥ 2) and in spacetime

dimensions Dt = 4k̄, while St−V
1 is nonzero for any arbitrary value k ≥ 4 investigated

here, but for each such value solely in the corresponding minimum allowed spacetime
dimension, Dt−V = k + 2. We try to make the two pieces simultaneously compatible at
the level of both k and D, which means to restrict k to be even, k = 2k̄, and find the
solutions k̄ to the equation Dt = Dt−V, equivalent to 4k̄ = 2k̄ + 2, within the set of
natural numbers greater or equal to 2. Since there are no such solutions within the above
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set (the only solution to the previous equation is k̄ = 1, but it does not belong to the
required set), it follows that the deformations St

1 and St−V
1 cannot coexist . We maintain

the cross-couplings between the spin-1 field and the tensor (k, 1) (as this is after all the
purpose of the entire cohomological approach developed in this section) and give up the
self-interactions of the last, such that the first-order deformation of the solution to the
classical master equation will coincide with the cross-coupling piece (where in addition
we normalize the constant c4 to unit)

S1 = St−V
1 ≡

∫
εµ1µ2...µk+2

(
V ∗µ1

(1)

F
µ2...µk+2

+ k+1
2k
FVµ1µ2F µ3...µk+2

)
dk+2x. (140)

The last step of the deformation procedure adopted here requires the construction of
the higher-order deformations. Related to the second-order deformation, we start from
the second equation in (22)

sS2 + 1
2
(S1, S1) = 0, (141)

and, by means of formula (140), we compute the antibracket (S1, S1)

1
2
(S1, S1) = s

[
−
(
k+1
k

)2 k!
2

∫
Fµ1...µkF

µ1...µkdk+2x

]
, (142)

such that (141) becomes equivalent to

s

[
S2 −

(
k+1
k

)2 k!
2

∫
Fµ1...µkF

µ1...µkdk+2x

]
= 0. (143)

The solution to the above equation is unique up to the general solution to the homogeneous
equation sS̄2 = 0, which has already been analyzed in the previous step, so we can take,
without affecting the generality of our approach

S2 =
(
k+1
k

)2 k!
2

∫
Fµ1...µkF

µ1...µkdk+2x. (144)

We remark that the nonintegrated density of the second-order deformation reduces to its
component of antighost number 0

a2 ≡ a2,0 =
(
k+1
k

)2 k!
2
Fµ1...µkF

µ1...µk (145)

and hence the second order of perturbation theory will strictly contribute to the La-
grangian density. We pass to the third-order deformation, governed by the third equation
from (22)

sS3 + (S1, S2) = 0 (146)

and, employing relations (140) and (144), we deduce that the antibracket (S1, S2) is
vanishing, so (146) reduces to

sS3 = 0. (147)

Like in the previous step, we neglect the solutions to the last equation since they have
already been considered within S1 and take

S3 = 0. (148)

Regarding the fourth-order deformation, we begin with the equation

sS4 + (S1, S3) + 1
2
(S2, S2) = 0, (149)
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and notice that both antibrackets are vanishing, the former due to (147) and the latter
because S2 contains no antifields, so, based on the same argument like before, we find
that we can set

S4 = 0. (150)

Further, it can be proved by complete induction that we can take all the remaining
higher-order deformations to vanish

Si = 0, i ≥ 5. (151)

Assembling the results deduced so far via expansion (21), we conclude that the most
general, nontrivial deformation of the solution to the master equation, which is consistent
to all orders of perturbation theory, complies with all the working hypotheses, and provides
cross-couplings between a massless tensor field with the mixed symmetry (k, 1) and a vector
gauge field, is nonvanishing only at orders one and two in the deformation parameter and
evolves on a spacetime of dimension D = k + 2

S̄ = S + λS1 + λ2S2, (152)

where S is the solution to thee master equation for the starting free model, (17), particu-
larized to D = k+ 2, whereas the other two pieces read as in (140) and (144). In order to
analyze the Lagrangian formulation of the emerging coupled model, we arrange the terms
from S̄ according to their increasing values of the antighost number

S̄ =

∫ {
− 1

2·(k+1)!

[
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µkF
µ1...µk

]
− 1

4
FV
µνF

Vµν

+ λk+1
2k
εµ1µ2...µk+2

FVµ1µ2F µ3...µk+2 + λ2
(
k+1
k

)2 k!
2
Fµ1...µkF

µ1...µk

+ t∗µ1...µk|α
[
∂[µ1

(1)

C µ2...µk]|α + ∂[µ1

(1)
η µ2...µkα] + (−)k+1(k + 1)∂α

(1)
η µ1...µk

]
+ V ∗µ1

(
∂µ1C + λεµ1µ2...µk+2

∂
[µ2 (1)
η
µ2...µk+2]

)
+

(k−1)

C

∗µ1|α

∂(µ1

(k)
η α)

+
k−2∑
m=1

(m)

C

∗µ1...µk−m|α[
∂[µ1

(m+1)

C µ2...µk−m]|α + ∂[µ1

(m+1)
η µ2...µk−mα]

+ (−)k−m+1(k −m+ 1)∂α
(m+1)
η µ1...µk−m

]
+

k−1∑
m=1

k−m
k−m+2

(m)
η
∗µ1...µk−m+1

∂[µ1

(m+1)
η µ2...µk−m+1]

}
dk+2x. (153)

6 Lagrangian formulation of the coupled model

Investigating the structure of (153), we deduce the Lagrangian formulation together with
the specific properties of the resulting coupled gauge model.

1. Cross-couplings are allowed only on a spacetime of minimum dimension, D = k+ 2,
where the massless tensor field with the mixed symmetry (k, 1) displays no physical
degrees of freedom and meanwhile allows no self-interactions.
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2. The projection of the functional S̄ on antighost number 0 provides the nontrivially
deformed Lagrangian action that satisfies all the selection rules like

S̄0

[
tµ1...µk|α, Vµ

]
=− 1

2·(k+1)!

∫ [
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µkF
µ1...µk

]
dk+2x

− 1
4

∫
FV
µνF

Vµνdk+2x+ λ(k+1)
2k

∫
εµ1...µk+2

FVµ1µ2F µ3...µk+2dk+2x

+
(λ(k+1)

k

)2 k!
2

∫
Fµ1...µkF

µ1...µkdk+2x. (154)

Due to the fact that both FV and F are linear in the first-order derivatives of the
fields, the Lagrangian density from (154) comprises only “mixing-component” cross-
coupling terms of order one and respectively two in the coupling constant that are
quadratic in the first-order derivatives of the fields. Consequently, the associated
field equations are linear in the fields and with the derivative order equal to two,
like the free ones.

3. By projecting the solution S̄ on antighost number 1, taking into account notation

(33), and recalling that the ghost combination
(1)
η comes from the gauge parameters

(1)
ε , it follows that the deformed generating set of infinitesimal gauge transformations
corresponding to the Lagrangian action (154) coincides with that from the free limit
at the level of the (k, 1) sector, but is different with respect to the spin-1 sector

δ̄(1)

θ ,
(1)
ε ,ξ
Vµ1 = ∂µ1ξ + λεµ1...µk+2

∂[µ2
(1)
ε
µ3...µk+2]

. (155)

As such, we can state that only the gauge transformations of the vector field get
modified during the deformation procedure, strictly in order one of perturbation
theory, by a term linear in the antisymmetric first-order derivatives of the antisym-
metric gauge parameters from the (k, 1) sector.

4. We can organize the last three terms from the right-hand side of relation (154) and
rewrite the cross-coupled Lagrangian action like

S̄0

[
tµ1...µk|α, Vµ

]
=− 1

2·(k+1)!

∫ [
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µkF
µ1...µk

]
dk+2x

− 1
4

∫
F̄µ1µ2F̄

µ1µ2dk+2x, (156)

in terms of a deformed antisymmetric tensor of order two whose free limit is nothing
but the Abelian field strength of the vector field

F̄µ1µ2 = FV
µ1µ2
− λ(k+1)

k
εµ1...µk+2

F µ3...µk+2 . (157)

The main property of F̄ is expressed by its gauge invariance with respect to the
deformed gauge transformations (in spite of its dependence on the first-order deriva-
tives of t), just like its free limit

δ̄(1)

θ ,
(1)
ε ,ξ
F̄µ1µ2 = 0. (158)

More precisely, the deformed field strength of the gauge vector field represents the
quantity with the minimum number of derivatives with the property of being gauge
invariant with respect to the coupled gauge transformations.
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5. The projection of the functional S̄ on agh ≥ 2 does not depend on λ (or, in other
words, coincides with the projection of the solution to the classical master equation
from the free limit, S) and therefore neither the Abelian gauge algebra associated
with the generating set of gauge transformations corresponding to the free action nor
the original reducibility functions/relations are modified at the level of the coupled
model.

6. The supplementary requirement of PT invariance with respect to the deformed
model eliminates the cross-couplings.

7. The problem of obtaining consistent interactions essentially depends in this case on
the spacetime dimension in the sense that if we require D > k + 2 (for instance in
order to have nonvanishing degrees of freedom in the mixed-symmetry sector), then
it is not possible to couple nontrivially the two sorts of fields under study.

7 Conclusion

The final conclusion of this paper is that, under the standard hypotheses on interacting
gauge field theories, there can be introduced nontrivial interactions between a massless
tensor field with the mixed symmetry (k, 1) and an Abelian vector field in D = k + 2
spacetime dimensions (mixing-component-type terms). It is nevertheless possible that the
relaxation of the working hypotheses, such as giving up the invariance under spacetime
translations (which is a component of the Poincaré invariance) or slightly adjusting the
derivative order assumption in the sense of still asking the preservation of the differential
order of the free field equations with respect to the coupled model, but renouncing the
condition on the maximum derivative order of the interacting Lagrangian, might generate
a broader spectrum of nontrivial cross-couplings.

References

[1] A. K. H. Bengtsson, I. Bengtsson, L. Brink, Nucl. Phys. B 227 (1983) 41–49

[2] M. A. Vasiliev, Nucl. Phys. B 616 (2001) 106–162; Erratum-ibid. 652 (2003) 407.

[3] E. Sezgin, P. Sundell, Nucl. Phys. B 634 (2002) 120–140

[4] D. Francia, A. Sagnotti, Phys. Lett. B 543 (2002) 303–310

[5] I. L. Buchbinder, A. Reshetnyak, Nucl. Phys. B 862 (2012) 270–326

[6] T. Curtright, Phys. Lett. B 165 (1985) 304–308

[7] T. Curtright, P. G. O. Freund, Nucl. Phys. B 172 (1980) 413–424

[8] J. M. Labastida, T. R. Morris, Phys. Lett. B 180 (1986) 101–106

[9] J. M. Labastida, Nucl. Phys. B 322 (1989) 185–209

[10] C. S. Aulakh, I. G. Koh, S. Ouvry, Phys. Lett. B 173 (1986) 284–288

[11] R. Troncoso, J. Zanelli, Phys. Rev. D 58 (1998) 101703

72



[12] R. Troncoso, J. Zanelli, Int. J. Theor. Phys. 38 (1999) 1181–1206

[13] M. Banados, Phys. Rev. Lett. 88 (2002) 031301
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