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Abstract

In this paper we analyze all consistent and nontrivial couplings that can be
introduced between a massless tensor field with the mixed symmetry (k, 1) for k ≥
4 and a matter theory of spin 0 and/or 1⁄2 in the context of the antifield-BRST
deformation method under some standard “selection rules” from Quantum Field
Theory.

PACS: 11.10.Ef

1 Introduction

Irreducible exotic representations of the group GL(D,R) determined the introduction of
tensor fields with mixed symmetry. There is a complex motivation for the study of this
class of fields due to the fact that they are involved in many important physical theories
such as superstrings, supergravity, or supersymmetric high-spin theories. The analysis
of gauge theories containing bosonic tensor fields with mixed symmetries brought into
attention many interesting problems, like for instance the dual formulation of spin-two or
higher-spin theories [1–6]. Gauge theories including in their field spectrum exotic represen-
tations of the Lorentz group are appropriately approached within the algebraic-differential
setting based on N -complexes. The notion of N -complex [7–9] emerged in relation with
irreducible tensor fields with mixed Young symmetries in view of generalizing at some
extent the differential calculus. This generalized differential framework of N -complexes
offers an elegant formulation for symmetric tensor gauge fields and their Hodge duals
[10, 11], resembling to the formulation of electrodynamics in differential form language.

In what follows we focus on the class of massless real tensor fields transforming ac-
cording to the irreducible representations of GL(D,R) corresponding to some “spin 2”
(two-column) Young diagrams with (k + 1) cells and k ≥ 4 rows, also known as “hook
diagrams” or, in other words, fields with the mixed symmetry (k, 1). For arbitrary values
of k, such tensor fields (massless and massive) have initially been investigated more than
two decades ago [12–16] and more recently (including within the BRST method) for in-
stance in [17, 18]. One of the main reasons of their study is that in the free limit such
theories produce one of the dual formulations of linearized gravity in D = k+3 spacetime
dimensions. The construction of gravity-like dual theories benefits of a raised interest in
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the context of some new results, such as the reformulation of nonlinear Einstein gravity
in terms of a dual graviton in the presence of a usual metric and of a shift gauge field [19].

The construction of couplings between gauge and matter fields represents a topic
of special interest in both theoretical and phenomenological high energy physics, which
led to essential results related to the build-up of the Standard Model. In this sense
we recall the construction of Scalar Electrodynamics and, in this context, the Abelian
Higgs mechanism (Englert, Brout, Higgs, Guralnik, Hagen, Kibble — 1964) [20–22] in the
presence of a “Mexican hat” potential, the Abelian sector of Quantum Electrodynamics
[23], and respectively the non-Abelian sector brought by Quantum Chromodynamics,
endowed with the crucial property of asymptotic freedom (Gross, Politzer, Wilczek —
1973) [24, 25].

The purpose of this paper is to analyze the consistent and nontrivial couplings between
a massless tensor field with the mixed symmetry (k, 1) (D ≥ k+2, k ≥ 4) and a matter the-
ory (of spin 0 and/or 1⁄2). We use one of the main applications of the antibracket-antifield
BRST symmetry [26–29] related to the construction of consistent interactions in gauge
field theories [30–33] via the deformation of the canonical generator of the antifield-BRST
differential (the solution to the classical master equation). This deformation procedure re-
quires the computation of the local cohomology of the BRST differential in ghost number
0 and in maximum form degree by specific techniques [34–37]. The whole construction is
done in the presence of some clearly defined selection rules (working hypotheses) imposed
on the deformations of the solution to the master equation: analyticity in the coupling
constant, spacetime locality, Lorentz covariance, Poincaré invariance, and conservation
of the differential order of the free field equations at the level of the coupled theories.
The last hypothesis is strengthened by asking that the interacting vertices display the
maximum derivative order of the free Lagrangian density at any order in the coupling
constant. We adopt the Standard Model vision according to which by matter theory we
understand any field theory that describes particles of spin 0 (scalar bosons) and/or 1⁄2
(quarks or leptons), so it possesses no nontrivial gauge symmetries. The results obtained
here complete various findings from the literature [38–57] related to massless tensor fields
with mixed symmetries. In particular, the cohomological approach to consistent interac-
tions between gauge and matter theories via the deformation of the canonical generator of
the BRST symmetry has been implemented in both Lagrangian and Hamiltonian versions
for various classes of gauge fields, like massless tensors with the mixed symmetry (3,1),
Abelian vector fields, Non-Abelian gauge fields, or topological BF models [39, 58–61].

Under the working hypotheses specified in the above we obtained the following results:

1. The first-order deformation responsible for the cross-couplings between the mixed
symmetry (k, 1) tensor field and matter fields of spin 0 and/or 1⁄2 may contain nonva-
nishing terms only in antighost numbers 0 and 1. Their existence and nontriviality
is equivalent to the requirement that the Lagrangian action of the matter theory
possesses a nontrivial rigid (global) symmetry whose parameters are the components
of a constant, bosonic, and antisymmetric tensor of order (k + 1);

2. Assuming this is the case, the antighost number 1 component is linear in the anti-
fields of the matter fields, which couple to the first-order derivatives of the antisym-
metric ghosts of pure ghost number equal to 1 from the (k, 1) sector precisely through
the generators of the above mentioned rigid symmetry. The piece of antighost num-
ber 0 is simultaneously linear in the first-order derivatives of the field (k, 1) and in
the (nontrivially) conserved current following from the rigid invariance of the matter
action via Noether’s Theorem. This means that at the first order of perturbation
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theory there appears a standard “conserved current – gauge field” coupling and the
matter fields gain gauge transformations obtained by gauging the global ones;

3. Examining the cases under consideration, of matter theories with spin 0 and/or 1⁄2
particles, we conclude that there are no nontrivial rigid symmetries with the required
properties and thus no nontrivial consistent couplings with the tensor field (k, 1);

4. The only terms allowed in the deformed solution to the classical master equation
reduce to the sum between the selfinteractions of the tensor field with the mixed
symmetry (k, 1) and all nontrivial couplings among the matter fields. In this context
the matter fields gain no nontrivial gauge transformations.

2 Free theory. BRST symmetry

The starting point is given by the Lagrangian action describing a free massless tensor
field with the mixed symmetry (k, 1) for k ≥ 4 and a matter theory with spin 0 and/or
1⁄2 fields

S0

[
tµ1...µk|α, φ

∆
]

= St
0[tµ1...µk|α] + Smat

0

[
φ∆
]
. (1)

We work on a Minkowski spacetime of dimension D ≥ k + 2 ≥ 6 endowed with a mostly
positive metric σµν = σµν = (−+. . .+) and define the Levi-Civita symbol in D dimensions
εµ1...µD by ε01...D−1 = −1. The field tµ1...µk|α is antisymmetric in its first k (Lorentz) indices
and satisfies the identities t[µ1...µk|α] ≡ 0, while its trace, tµ1...µk−1

= tµ1...µk|ασ
µkα, is a

completely antisymmetric tensor of order (k − 1). Each matter field φ∆ displays a well
defined Grassmann parity, ε∆ (equal to 0 for the scalar bosons and respectively 1 for the
spin 1⁄2 fields — quarks and/or leptons). The components St

0 and Smat
0 are given by

St
0[tµ1...µk|α] = − 1

2·(k+1)!

∫ [
Fµ1...µk+1|αF

µ1...µk+1|α − (k + 1)Fµ1...µkF
µ1...µk

]
dDx, (2)

Smat
0

[
φ∆
]

=

∫
Lmat

([
φ∆
])
dDx, ε

(
φ∆
)
≡ ε∆. (3)

In the above

Fµ1...µk+1|α = ∂[µ1tµ2...µk+1]|α, (4)

Fµ1...µk ≡ Fµ1...µk+1|ασ
µk+1α = ∂[µ1tµ2...µk]

+ (−)k∂αtµ1...µk|α, (5)

so the tensor Fµ1...µk+1|α displays the mixed symmetry (k + 1, 1) and its trace, Fµ1...µk ,
is completely antisymmetric. Everywhere in this paper the notation [µ . . . ν] signifies
complete antisymmetry with respect to the (Lorentz) indices between brackets, with the
conventions that the minimum number of terms is always used and the result is never
divided by the number of terms. The matter Lagrangian density Lmat is assumed to be
linear (in the case of quarks and/or leptons) or at most quadratic (for scalar bosons) in
the first-order spacetime derivatives of the matter fields, so it generates field equations
with the derivative order equal to one (in the case of spin 1⁄2 particles) and respectively
maximum two (for spin 0 particles). Since the action Smat

0

[
φ∆
]

possesses no nontrivial
gauge symmetries, it follows that a generating set of (infinitesimal) gauge transformations
of action (3) is given by the set corresponding to the (k, 1) sector

δ(1)

θ ,
(1)
ε
tµ1...µk|α = ∂[µ1

(1)

θ µ2...µk]|α + ∂[µ1

(1)
ε µ2...µkα] + (−)k+1(k + 1)∂α

(1)
ε µ1...µk , (6)
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supplemented by
δ(1)

θ ,
(1)
ε
φ∆ = 0 (7)

in the matter sector. Both types of gauge parameters are bosonic arbitrary tensors on the

spacetime manifold up to the requirements that
(1)

θ µ1...µk−1|α possesses the mixed symmetry

(k − 1, 1) and
(1)
ε µ1...µk is completely antisymmetric. Consequently, all the gauge features

of the free theory governed by formulas (1), (6), and (7) reduce to those from the (k, 1)
sector [50, 56]: off-shell reducibility of order (k−1), an Abelian gauge algebra, and a well
defined Cauchy order, equal to (k + 1). The separate Cauchy order of the matter theory
is equal to 1.

Although it has no true gauge symmetries, action Smat
0 possesses some rigid symme-

tries, written in a standard manner in infinitesimal form like

δξφ
∆ = Z∆

∆̄([φ], xµ)ξ∆̄. (8)

We assume the rigid parameters ξ∆̄ display definite Grassmann parities

ε
(
ξ∆̄
)
≡ ε∆̄, ε

(
Z∆

∆̄

)
= (ε∆ + ε∆̄) mod 2 (9)

and consider only rigid symmetries whose generators are local, so Z∆
∆̄

may depend on
the matter fields and their spacetime derivatives up to a finite order. Noether’s Theorem
ensures the existence of some conserved currents jµ

∆̄

δRLmat

δφ∆
Z∆

∆̄([φ], xµ) + ∂µj
µ

∆̄
([φ], xµ) = 0, ε

(
jµ

∆̄

)
= ε∆̄, (10)

where δR/δφ∆ signify the right Euler–Lagrange (EL) derivatives with respect to φ∆. We
mention in this context the notion of trivial rigid symmetry, defined via some generators
that vanish on the stationary surface of the matter theory

δξφ
∆ =

δRLmat

δφ∆′
Z∆′∆

∆̄([φ], xµ)ξ∆̄, ε
(
Z∆′∆

∆̄

)
= (ε∆′ + ε∆ + ε∆̄) mod 2 (11)

and mandatorily satisfy the generalized symmetry properties

Z∆′∆
∆̄ = (−)1+ε∆′ε∆Z∆∆′

∆̄. (12)

This means that they are antisymmetric in their upper indices for any pair of purely
bosonic fields and symmetric in the purely fermionic case. The global invariance of the
matter action under (11) takes place automatically due to properties (12), irrespective of
the Lagrangian density expression

δRLmat

δφ∆

δRLmat

δφ∆′
Z∆′∆

∆̄([φ], xµ) ≡ 0. (13)

Under these circumstances, Noether’s Theorem

δRLmat

δφ∆

δRLmat

δφ∆′
Z∆′∆

∆̄([φ], xµ) + ∂µj̄
µ

∆̄
([φ], xµ) = 0 (14)

emphasizes some trivially conserved currents

∂µj̄
µ

∆̄
([φ], xµ) ≡ 0⇒ j̄µ

∆̄
([φ], xµ) = ∂ν j̄

νµ

∆̄
([φ], xµ), j̄νµ

∆̄
= −j̄µν

∆̄
. (15)
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The attribute “trivial” related to the rigid transformations (11) and associated conserved
currents (15) underlines the lack of physical significance of these objects with respect to
any matter theory.

Next, we pass to the construction of the antifield-BRST symmetry for the theory under
study. Regarding the (k, 1) sector, we maintain all the notations, conventions, formulas,
and results from [50, 56, 56]. Consequently, the BRST differential algebra is constructed
starting with the (k, 1) generators

ΦA ≡
{
tµ1...µk|α,

{(m)

C µ1...µk−m|α,
(m)
η µ1...µk−m+1

}
m=1,k−1

,
(k)
η µ

}
, (16)

Φ∗A ≡
{
t∗µ1...µk|α,

{(m)

C

∗µ1...µk−m|α

,
(m)
η
∗µ1...µk−m+1}

m=1,k−1
,

(k)
η
∗µ}

, (17)

whose properties are detailed in [50, 56] (a synthetic view is given in Table 1 from [56]),
supplemented by the matter fields and their antifields

φ∆ : agh
(
φ∆
)

= 0 = pgh
(
φ∆
)
, (18)

φ∗∆ : agh
(
φ∗∆
)

= 1, pgh
(
φ∗∆
)

= 0, ε
(
φ∗∆
)

= (ε∆ + 1) mod 2. (19)

The BRST differential simply decomposes like

s = δ + γ, s2 = 0⇔ (δ2 = 0, γ2 = 0, δγ + γδ = 0) (20)

into the sum between the Koszul–Tate differential δ (N-graded in terms of the antighost
number agh, agh(δ) = −1) and the longitudinal exterior derivative γ (a true differential
in this case, which anticommutes with δ and is N-graded along the pure ghost number
pgh, pgh(γ) = 1). The BRST differential is Z-graded in terms of the ghost number gh
defined like pgh−agh, such that gh(s) = gh(δ) = gh(γ) = 1. The actions of the operators
δ and γ on the BRST generators from the (k, 1) sector are given for instance in [56] (see
formulas (15)–(23) therein), while on those from the matter sector read as

γφ∆ = 0, γφ∗∆ = 0, δφ∆ = 0, δφ∗∆ = −δ
LLmat

δφ∆
, (21)

where δL/δφ∆ denote the left EL derivatives of the matter Lagrangian density with respect
to φ∆. It is useful to recall the relationship between the left ant the right EL derivatives
of the matter Lagrangian density with respect to φ∆

δLLmat

δφ∆
= (−)ε∆

δRLmat

δφ∆
. (22)

The solution to the classical master equation reduces to the sum between that corre-
sponding to the free massless tensor field with the mixed symmetry (k, 1), St, and the
one associated with the matter theory, which, due to definitions (21), coincides with the
matter Lagrangian action (3)

S = St + Smat
0

[
φ∆
]
, (23)

where

St =St
0[tµ1...µk|α] +

∫ {
t∗µ1...µk|α

[
∂[µ1

(1)

C µ2...µk]|α + ∂[µ1

(1)
η µ2...µkα]
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+ (−)k+1(k + 1)∂α
(1)
η µ1...µk

]
+

(k−1)

C

∗µ1|α

∂(µ1

(k)
η α)

+
k−2∑
m=1

(m)

C

∗µ1...µk−m|α[
∂[µ1

(m+1)

C µ2...µk−m]|α + ∂[µ1

(m+1)
η µ2...µk−mα]

+ (−)k−m+1(k −m+ 1)∂α
(m+1)
η µ1...µk−m

]
+

k−1∑
m=1

k−m
k−m+2

(m)
η
∗µ1...µk−m+1

∂[µ1

(m+1)
η µ2...µk−m+1]

}
dDx. (24)

3 Interacting gauge field theories from local BRST

cohomology

The reformulation of the problem of constructing consistent interactions in gauge field
theories within the antifield-BRST formalism [30–33] is based on the fact that if consistent
couplings can be introduced, then the solution to the classical master equation of the initial
gauge theory, S, may be deformed into a solution to the classical master equation for the
interacting gauge theory

S̄ = S + λS1 + λ2S2 + λ3S3 + · · · , 1
2
(S̄, S̄) = 0. (25)

Related to the coupled theory, we maintain the field, ghost, and antifield spectra of the
original gauge theory in order to preserve the number of physical degrees of freedom.
Also, we do not deform either the antibracket or the general properties S̄ compared
to those of the starting theory, but only the canonical generator itself, so S̄ remains a
bosonic functional of fields, ghosts, and antifields with the ghost number equal to 0. The
projection of the equation 1

2
(S̄, S̄) = 0 on the various powers in the coupling constant λ

is equivalent to the tower of equations

λ0 : 1
2
(S, S) = 0, λ1 : (S1, S) = 0, λ2 : (S2, S)+ 1

2
(S1, S1) = 0, λ3 : (S3, S)+(S1, S2) = 0, · · ·

known as the equation of the antifield-BRST deformation method. In this context the
functionals Si, i ≥ 1, are called deformations of order i of the solution to the master
equation. The first equation is fulfilled by assumption, while the others may be written
(due to the canonical action s· = (·, S)) as

λ1 : sS1 = 0, λ2 : sS2 + 1
2
(S1, S1) = 0, λ3 : sS3 + (S1, S2) = 0, · · · (26)

The solutions to the first-order deformation equation sS1 = 0 always exist since they
belong to the cohomology of the BRST differential s in ghost number 0 computed in the
space of all functionals (local and nonlocal) of fields, ghosts, and antifields, H0(s), which
is nonempty due to its isomorphism to the algebra of physical observables of the initial
gauge theory. Moreover, trivial first-order deformations, defined as trivial elements of
H0(s) (s-exact functionals), should be ruled out due to the fact that they provoke trivial
interactions in the sense of field theory (can be eliminated by some possibly nonlinear
field redefinitions). The existence of solutions to the remaining higher-order equations
from (26) has been shown in [31] by means of the triviality of the antibracket map in
the BRST cohomology H(s) computed in the space of all functionals. In conclusion, if
we impose no restrictions on the interactions (spacetime locality, etc.), then the antifield-
BRST deformation procedure can be developed without obstructions.
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Nevertheless, if we work with local functionals, then the procedure goes as follows.
We make the notations

Si =

∫
aid

Dx ≡
∫

[D]
ai , i ≥ 1, (27)

where the nonintegrated densities of the deformations of order i ≥ 1, ai, are now elements
of the BRST algebra of local “functions”, namely, polynomials in ghosts, antifields, and
their derivatives, smooth in the original fields, and polynomials in their derivatives up
to a finite order, with or respectively without an explicit dependence on the spacetime
coordinates xµ. The overscript between brackets represents the form degree deg. (If we
require the Poincaré invariance of the deformed solution to the master equation, then

we work without an explicit dependence on xµ.) In form language,
[D]
ai are elements of

the algebra of local forms with or without an explicit dependence on xµ. The general

properties of Si are transferred to ai and
[D]
ai

ε(ai) = 0, gh(ai) = 0, deg(
[D]
ai ) = D, gh(

[D]
ai ) = 0. (28)

The equation satisfied by the first-order deformation (the first equation from (26)) takes
the local form

s
[D]
a1 + d

[D−1]

b1 = 0, deg(
[D−1]

b1 ) = D − 1, gh(
[D−1]

b1 ) = 1, (29)

or, equivalently, in dual language

sa1 + ∂µb
µ
1 = 0, ε(bµ1) = 1, gh(bµ1) = 1, (30)

where the (D − 1) form
[D−1]

b1 = 0 and the current bµ1 should be local. In other words,
the first-order deformation defines precisely a class from the local BRST cohomology in
maximum form degree and in ghost number equal to zero, H0,D(s|d), computed in the
algebra of local forms with or without an explicit dependence on xµ, where d symbolizes
the exterior differential in spacetime. From now on, the procedure is model-dependent via
the properties of H0,D(s|d). Supposing equation (29) (or (30)) possesses local solutions,
the resulting first-order deformations are then filtered (if necessary) according to the
“selection rules” associated with other working hypotheses than the spacetime locality
(such as Lorentz covariance, PT invariance, maximum derivative order of the interaction
vertices, etc.). Meanwhile, all purely trivial contributions from H0,D(s|d) computed in
the selected algebra of local forms

[D]

atriv
1 = s

[D]
c + d

[D−1]
e , (31)

deg
([D]
c
)

= D, deg
([D−1]
e
)

= D − 1, gh
([D]
c
)

= −1, gh
([D−1]
e
)

= 0, (32)

should be discarded since they generate only trivial interactions. By trivial first-order
deformations in the context of equation (30) we understand any s-exact object modulo a
divergence

atriv
1 = sc+ ∂µe

µ, (33)

ε(c) = 1, ε(eµ) = 0, gh(c) = −1, gh(eµ) = 0, (34)

with both c and eµ local. Assuming there exist nontrivial first-order deformations a1, the
next step is represented by their consistency at order two in the coupling constant, viz.
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the existence of second-order deformations as solutions to the second equation from (26).
Notations (27) together with

1
2
(S1, S1) ≡

∫
Γ2d

Dx, ε(Γ2) = 1, gh(Γ2) = 1, (35)

allow us to express equivalently the second equation from (26) in local from as

sa2 + Γ2 + ∂µb
µ
2 = 0, ε(bµ2) = 1, gh(bµ2) = 1, (36)

where the current bµ2 should be local. Because S1 is local by assumption and the an-
tibracket preserves the spacetime locality, it follows that the quantity Γ2 defined by (35)
is also local. Equation (36) requires that Γ2 is s-exact modulo some divergences, but in
this context the existence of both local solutions a2 and currents bµ2 is no longer granted.
Supposing there exist local nontrivial second-order deformations that also satisfy the ad-
ditional working hypotheses (if any), we recall (27) and add the notation

(S1, S2) ≡
∫

Γ3d
Dx, ε(Γ3) = 1, gh(Γ3) = 1, (37)

such that the third-order deformation equation (the third equation from (26)) takes the
local form

sa3 + Γ3 + ∂µb
µ
3 = 0, ε(bµ3) = 1, gh(bµ3) = 1. (38)

The object Γ3 is local by construction. However, the existence of some local elements a3

and bµ3 (with a3 also nontrivial) fulfilling (38) is not a priori ensured. This procedure may
end after a finite number of steps (either if the antibrackets among all the deformations
starting from a certain order vanish or whenever there appear obstructions at finding
solutions to the deformation of say order “i”) or may go on indefinitely (as it happens for
instance during the construction of graviton selfinteractions starting from the Pauli–Fierz
model that outputs the Einstein–Hilbert action).

4 Cohomological ingredients

The main aim of this paper is to construct all nontrivial, consistent interactions that can
be added to the free model described by formulas (1), (6), and (7) with the help of the
antifield-BRST deformation method outlined in the previous section. We require that
the deformation of the solution to the master equation, (25), is analytical in the coupling
constant, local in spacetime, Lorentz covariant, Poincaré invariant, and conserves the
differential order of the free field equations at the level of the coupled theories. The last
hypothesis is strengthened by asking that the interacting vertices display the maximum
derivative order of the free Lagrangian density at any order in the coupling constant.
Due to the locality hypothesis, we introduce notations (27) and obtain in dual language
that the nonintegrated density of the first-order deformation, a1, is solution to equation
(30), and thus, as argued in the previous section, should be a nontrivial element of the
local BRST cohomology H0,D(s|d). The last cohomology will be computed in the BRST
algebra of local forms Λ̄ whose coefficients are elements of the BRST algebra of local
“functions” Ā, namely polynomials in the ghosts, antifields (including φ∗∆) and their
spacetime derivatives up to a finite order, smooth in the undifferentiated fields (with
the mixed symmetry (k, 1) and matter, φ∆), polynomials in the field derivatives up to
a finite order, and without an explicit dependence on the spacetime coordinates (due to
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the Poincaré invariance). It is useful to write compactly all the BRST generators via the
notations

Φ̄Ā = {ΦA, φ∆}, Φ̄∗Ā = {Φ∗A, φ∗∆}, (39)

where ΦA and Φ∗A are given by (16) and (17). All the BRST cohomological results exposed
in Refs. [56, 57] related to the case a single massless tensor field with the mixed symmetry
(k, 1) remain valid. The only modifications appear in the concrete expressions of the
representatives belonging to the various cohomologies needed in the BRST context, which
may depend now on the matter fields and their derivatives and/or the matter antifields
and their derivatives.

More precisely, related to the cohomology of the longitudinal exterior differential H(γ)
and of its local version, H(γ|d), both computed in Ā, all the results from Ref. [56] still
hold up to the following specifications. First, the general representatives of the algebra of
invariant “polynomials” (the cohomology H0(γ) — in pure ghost number 0 — computed
in Ā) read as

H0(γ) in Ā = {algebra of invariant “polynomials”} ≡
{
ᾱ
([

Φ̄∗Ā
]
, [K],

[
φ∆
])}

, (40)

where K denotes the components of the curvature tensor

Kµ1...µk+1|αβ = ∂αFµ1...µk+1|β − Fµ1...µk+1|α ≡ ∂[µ1tµ2...µk+1]|[β,α], (41)

and the notation f([y]) means that f depends on y and its derivatives up to a finite order.
The quotes around the term polynomial indicate that the elements of H0(γ) computed
in Ā are true polynomials in all the arguments of ᾱ excepting the bosonic matter fields
(scalar fields), if any, in which they may be smooth functions. Consequently, the elements
of the cohomology H0(γ) computed in the algebra of local forms Λ̄ will change accordingly

H0(γ) =
D⊕
p=0

H0,p(γ), H0,p(γ) 3
[p]

ᾱ = 1
p!
ᾱµ1...µp

([
Φ̄∗Ā
]
, [K],

[
φ∆
])
dxµ1 ∧ · · · ∧ dxµp . (42)

Second, Table 2 from Ref. [56] is replaced with Table 1 below, where the quantity
(1)

F µ1...µk+1

is specific to the (k, 1) sector, being defined by

∂[µ1

(1)
η µ2...µk+1] ≡

(1)

F µ1...µk+1
, ε

((1)

F µ1...µk+1

)
= 1, pgh

((1)

F µ1...µk+1

)
= 1. (43)

From Table 1 we find that the general, nontrivial elements a from the cohomology H(γ)
computed in the algebra Ā with the properties

γa = 0, a ∈ Ā, pgh(a) = l ≥ 0, agh(a) = j ≥ 0, (44)

take the form

a =
∑
J

ᾱJ
([

Φ̄∗Ā
]
, [K],

[
φ∆
])
eJ
((1)

F ,
(k)
η
)
, agh(ᾱJ) = j ≥ 0, pgh(eJ) = l ≥ 0. (45)

Similarly, the general, nontrivial elements $ of H(γ) computed in Λ̄ with the properties

γ$ = 0, $ ∈ Λ̄, deg($) = p ≤ D, pgh($) = l ≥ 0, agh($) = j ≥ 0, (46)
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BRST generator Nontrivial representatives pgh
[tµ1...µk|α] [Kµ1...µk+1|αβ] 0

[φ∆] [φ∆] 0[
Φ̄∗
Ā

] [
Φ̄∗
Ā

]
0[(1)

η µ1...µk

]
,
[(1)

C µ1...µk−1|α
] (1)

F µ1...µk+1
1[(m)

η µ1...µk−m+1

]
,
[(m)

C µ1...µk−m|α
]

— m, m = 2, k − 1[(k)
η α
] (k)

η α k

Table 1: Nontrivial representatives of the cohomology H(γ) computed in the algebra Ā.

are expressed by

$ =
∑
J

[p]

ᾱJ
([

Φ̄∗Ā
]
, [K],

[
φ∆
])
eJ
((1)

F ,
(k)
η
)
, (47)

deg(
[p]

ᾱJ) =p ≤ D, agh(
[p]

ᾱJ) = j ≥ 0, pgh(eJ) = l ≥ 0. (48)

Obviously, the elements of the basis in the ghosts
(1)

F and
(k)
η , eJ , are those from the (k, 1)

sector discussed in Ref. [56] since the matter fields display no true gauge symmetries.
Third, Corollary 3 from Ref. [56], which will be useful in what follows, still holds in the
presence of the matter fields, up to replacing the algebra Λ specific to the field (k, 1) alone
with the algebra of local forms corresponding to the overall free model, Λ̄.

At the level of the local cohomology of the Koszul–Tate differential (in pure ghost
number 0) H(δ|d) and of the local cohomology of the Koszul–Tate differential computed
in the algebra of invariant “polynomials” H inv(δ|d) for the free model under consideration,
all the results given in Ref. [57] are applicable modulo the next mentions. The statements
of Corollary 5, Lemma 6, Theorem 7, and Corollary 8 from Ref. [57] should be completed
by mentioning the presence of the matter theory. The nontrivial representatives that
span the invariant characteristic cohomology spaces of agh ranging between 2 and (k+1),(
H invD
j (δ|d)

)
j=2,k+1

, gain no contributions from the matter sector, and coincide with those

from Table 1 in [57]. The only space affected by the presence of the matter theory is the
characteristic cohomology in agh = 1 (and pgh = 0), HD

1 (δ|d), which is isomorphic to the
space of inequivalent, nontrivial rigid symmetries of the starting free theory, defined like
the space of equivalence classes of rigid symmetries of action (1) modulo trivial ones. A
general result [34, 35] is given by the isomorphism HD−1

0 (d|δ) ' HD
1 (δ|d). As HD−1

0 (d|δ)
(in pgh = 0) is the space of inequivalent, nontrivial conserved currents, defined like
the space of equivalence classes of conserved currents of theory (1) modulo the trivial
ones, the last isomorphism expresses nothing but the one-to-one correspondence between
the inequivalent nontrivial rigid symmetries of action (1) and the associated, inequivalent
nontrivial conserved currents, i.e., the cohomological reformulation of Noether’s Theorem.
Applying the previous result to the matter sector, we infer that any nontrivial global
symmetry of the form (8) produces a nontrivial element of the characteristic cohomology
HD

1 (δ|d)
(−)ε∆̄φ∗∆Z

∆
∆̄d

Dx ∈ HD
1 (δ|d). (49)

Indeed, taking into account properties (9) and (19), relations (21) with respect to the
operator δ, and formula (22), it follows that (49) is established (in dual language) by
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Noether’s Theorem (10), expressed in cohomological form like

δ
(

(−)ε∆̄φ∗∆Z
∆

∆̄

)
= ∂µj

µ

∆̄
. (50)

Any trivial rigid symmetry of the matter theory, of the type (11)–(12), leads to a trivial
element from HD

1 (δ|d) and must be eliminated from the perspective of constructing non-
trivial interactions. This observation is motivated by the fact that the conserved currents
corresponding to trivial rigid symmetries are also trivial (see the expression of j̄µ

∆̄
from

(15)), such that the right-hand side of the analogue of relation (50) vanishes identically.
In this way, the corresponding element belongs to the cohomology space HD

1 (δ), so the
acyclicity of the differential δ in strictly positive values of the antighost number ensures
that this element is actually δ-exact, and therefore trivial also in HD

1 (δ|d).
Finally, regarding the local BRST cohomology for theory (1) in maximum form degree

evaluated in the algebra Λ̄ Proposition 10 from Ref. [57] is still valid up to its proper
reformulation such as to include the matter sector.

5 Computation of the deformed solution to the mas-

ter equation. Obstructions

We have at hand all the necessary ingredients for generating the deformed solutions to
the classical master equation that are consistent, nontrivial, and fulfill all the working
hypotheses starting from a massless tensor field with the mixed symmetry (k, 1) and a
set of matter fields of spin 0 and/or 1⁄2. In agreement with the general method exposed
in Section 3, we develop the deformed solution along the coupling constant like in (25),
where the first piece, S, reads now as in (23) and the deformations in various orders of
perturbation theory are subject to equations (26).

In view of the spacetime locality assumption, we maintain notations (27), such that the
nonintegrated density of the first-order deformation, a1, should satisfy equation (30), and
therefore should define a nontrivial element of the local BRST cohomology in maximum
form degree and in ghost number equal to 0. We decompose S1 as a sum among three
local pieces

S1 =St
1 + Smat

1 + St−mat
1 , (51)

St
1 =

∫
at

1d
Dx, Smat

1 =

∫
amat

1 dDx, St−mat
1 =

∫
at−mat

1 dDx, (52)

where St
1 describes the selfinteractions of the tensor (k, 1), Smat

1 those among the matter
fields, and St−mat

1 the cross-couplings between these two field sectors, so a1 inherits a
similar decomposition

a1 = at
1 + amat

1 + at−mat
1 . (53)

Because at
1 may depend only on the BRST generators from the (k, 1) sector and amat

1 only
on the matter ones, while each term from at−mat

1 should contain at least one generator
from each sector, equation (30) becomes equivalent with three independent equations

sat
1 + ∂µb

tµ
1 = 0, samat

1 + ∂µb
matµ
1 = 0, sat−mat

1 + ∂µb
t−matµ
1 = 0. (54)

The first equation has been analyzed in Ref. [55] in the context of the same deformation
method and general assumptions employed here, where it has been shown that we can
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stop the first-order deformation at
1 in antighost number 1 and the current btµ

1 in antighost
number 0

at
1 = at

1,1 + at
1,0, btµ

1 = btµ
1,0, (55)

γat
1,1 = 0, δat

1,1 + γat
1,0 + ∂µb

tµ
1,0 = 0, (56)

at
1,1 = cδk2k̄δ

D
4k̄εµ1...µ4k̄

t∗µ1...µ2k̄−1

(1)

F
µ2k̄...µ4k̄

, (57)

at
1,0 = −cδk2k̄δ

D
4k̄

(2k̄−1)(2k̄+1)

(2k̄)!8k̄2 εµ1...µ4k̄
F µ1...µ2k̄F µ2k̄+1...µ4k̄ , (58)

btµ
1,0 = cδk2k̄δ

D
4k̄

2k̄−1
(2k̄)!

εν1...ν4k̄
F µν1...ν2k̄−1

(1)

F
ν2k̄...ν4k̄

(59)

= −cδk2k̄δ
D
4k̄

2k̄−1
(2k̄)!

2k̄+1
2k̄

εν1...ν4k̄
F ν1...ν2k̄

(1)

F
µν2k̄+1...ν4k̄

. (60)

Starting with formula (55), the second lower index of the quantities involved in the various
orders of perturbation theory signifies their antighost number. In the above c signifies
an arbitrary real constant and the supplementary factors δk

2k̄
and δD

4k̄
were introduced in

order to highlight that relations (57)–(60) are valid solely for even values of k, equal to
2k̄, and only in D = 4k̄ spacetime dimensions. We mention that in a previous step, the
general expression of the component in agh = 1, at

1,1, can be shown to read as [55]

at
1,1 = cδD2kεµ1...µ2k

t∗µ1...µk−1

(1)

F
µk...µ2k

, (61)

but the consistency of the first-order deformation at
1 in agh = 0, i.e., the existence of

at
1,0 as solution to the latter equation from (56), finally requires that k = 2k̄ (and hence
D = 4k̄) and leads to expressions (57) and (58).

Related to the second equation from (54), we proceed standardly by developing the
nonintegrated density of the first-order deformation and the associated current along
the antighost number. Since by assumption the matter theory has no nontrivial gauge
symmetry, it follows that the matter sector contains no BRST generator of strictly positive
pure ghost number, such that amat

1 coincides with its component of antighost number 0,
which automatically depends only on the matter fields and their spacetime derivatives up
to a finite order

amat
1 ≡ amat

1,0

([
φ∆
])
. (62)

Definitions (21) with respect to the matter fields show that amat
1 satisfies the homogeneous

equation (bmatµ
1 = 0)

samat
1,0

([
φ∆
])

= 0. (63)

The only restrictions imposed on the matter Lagrangian density in order one of per-
turbation theory, amat

1,0

([
φ∆
])

, are given by the working hypotheses combined with the
nontriviality of the resulting action

Smat
1

[
φ∆
]
≡
∫
amat

1,0

([
φ∆
])
dDx, amat

1,0 6=
δRLmat

δφ∆
F∆
(
φ∆′
)

+ ∂µm
µ. (64)

Next, we pass to the construction of solutions to the equation checked by the cross-
coupling first-order deformation

sat−mat
1 + ∂µb

t−matµ
1 = 0 (65)
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by means of the cohomological analysis exposed in Section 4. Due to the fact that the
matter theory is not involved either in the elements of ghost basis from the cohomology
H(γ) for pgh > 0 or in the invariant characteristic cohomology for agh ≥ 2, while each
term from at−mat

1 mandatorily depends on at least one BRST generator from each sector,
from the analogue of Proposition 10 given in [57] we conclude that this deformation
may stop earliest in agh = 1. Moreover, the validity of Corollary 3 from [56] adapted
to the present context allows us to choose the current bt−matµ

1 to display nonvanishing
components only in agh = 0. Also taking into account decomposition (20) of the BRST
differential, we immediately find the equations satisfied by the pieces of fixed antighost
number of the cross-coupling first-order deformation. The last statements are translated
into the formulas

at−mat
1 = at−mat

1,0 + at−mat
1,1 , bt−matµ

1 = bt−matµ
1,0 , (66)

γat−mat
1,1 = 0, δat−mat

1,1 + γat−mat
1,0 + ∂µb

t−matµ
1,0 = 0. (67)

The solution to the former equation in (66) results from formula (45) for j = l = 1

at−mat
1,1 = ᾱ1

(
[t∗],

[
φ∗∆
]
, [K],

[
φ∆
])
e1
((1)

F
)
, (68)

where the invariant polynomial ᾱ1 displays agh = 1, such that it is constrained to be a
monomial of order one in both types of antifields and their derivatives up to a finite order,

and e1 coincides with
(1)

F given in (43). The derivative order hypothesis at the level of
at−mat

1,0 forbids the dependence of ᾱ1 on the curvature tensor or on its derivatives as well
as on the derivatives of the antifield t∗. In addition, the piece linear in t∗ cannot involve
the derivatives of the matter fields, but is forced to depend on the undifferentiated matter
fields in order to render cross-couplings. Regarding the terms linear in the derivatives of
the matter antifields, we can always move the derivatives on the matter fields (by some

integrations by parts) and eliminate the terms containing the derivatives of
(1)

F together
with the accompanying divergences as all these quantities are trivial in H(γ) due to the
relation

∂ρ1

(1)

F µ1...µk+1
= γ

(
(−)k+1

k
Fµ1...µk+1|ρ1

)
(69)

completed with the γ-invariance of both the matter fields and their antifields (see the first
two definitions from (21)). In other words, so far we argued that at−mat

1,1 may contain just
two nontrivial classes of representatives, both linear in the undifferentiated antifields of
the original fields

at−mat
1,1 :

{
t∗

(φ)



(1)

F , φ∗∆
([φ])



(1)

F
}
, (70)

where by (φ) and respectively ([φ]) we symbolized the allowed dependence on the matter

fields of the functions that “glue” the two kinds of antifields to the element
(1)

F . Related to
the second class of cross-couplings, the allowed dependence is only of the undifferentiated
matter fields in the case of scalar bosons and respectively at most linear in the first-order
derivatives of the matter fields for leptons and quarks. Lorentz covariance and Poincaré
invariance arguments, completed by the mixed symmetry (k, 1) of the antifield t∗ as well
as by the requirements D ≥ k + 2, k ≥ 4, further lead to two types of eligible terms

at−mat
1,1 = δD2kεµ1...µ2k

f(φ)t∗µ1...µk−1

(1)

F
µk...µ2k

+ φ∗∆Z
∆
µ1...µk+1

(φ, ∂φ)
(1)

F
µ1...µk+1

(71)
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≡ at−mat
1,1 (f) + at−mat

1,1 (Z). (72)

The bosonic character of at−mat
1,1 is ensured provided that

ε(f(φ)) = 0, ε
(
Z∆

µ1...µk+1
(φ, ∂φ)

)
= ε∆. (73)

Starting from (71), we investigate the solutions at−mat
1,0 to the latter equation from (67).

In order to simplify the arguments, it is useful to remark that the first piece from (71)
contains two BRST generators from the (k, 1) sector and the second a single one. The
action of the operator δ on t∗ is linear in the second-order derivatives of t, that on φ∗∆
contains maximum two derivatives of the matter fields, while the first-order derivatives

of
(1)

F read as γ acting on quantities linear in the first-order derivatives of t. Under these
circumstances, it follows that, if consistent in agh = 0, then the two terms from at−mat

1,1

produce in at−mat
1,0 two kinds of functionally independent vertices (irrespective of the matter

field content and without taking into consideration the additional fact that the former
class of terms breaks the PT invariance and is nonvanishing only for D = 2k): the first
type contains two spacetime derivatives and two fields (k, 1), while the latter comprises
maximum two spacetime derivatives and a single tensor field t. As a consequence, the
consistency of the cross-coupling first-order deformation in agh = 0 must take place
separately for each component

δat−mat
1,1 (f) + γat−mat

1,0 (f) + ∂µb
t−matµ
1,0 (f) = 0, (74)

δat−mat
1,1 (Z) + γat−mat

1,0 (Z) + ∂µb
t−matµ
1,0 (Z) = 0. (75)

Comparing the first term from the right-hand side of (71), denoted by at−mat
1,1 (f), with

(61), we observe that it is obtained by multiplying the piece of agh = 1 that describes the
selfinteractions of the tensor field t for c = 1, at

1,1|c=1, with the function f(φ)

at−mat
1,1 (f) = f(φ)at

1,1|c=1. (76)

On the other hand, in [55] it was showed that (61) is consistent in agh = 0 if and only if

k = 2k̄, D = 4k̄. (77)

Implementing the previous conditions in (76) by means of formula (57), we conclude that

at−mat
1,1 (f) = f(φ)at

1,1|c=1 ≡ f(φ)δk2k̄δ
D
4k̄εµ1...µ4k̄

t∗µ1...µ2k̄−1

(1)

F
µ2k̄...µ4k̄

. (78)

At this stage, we act with δ on at−mat
1,1 (f) and employ the latter equation from (56), where

at
1,0 is given in (58) and the current btµ

1,0 is considered like in (59) or (60), which further
yields

δat−mat
1,1 (f) = −γ

[
f(φ)at

1,0|c=1

]
− ∂µ

[
f(φ)btµ

1,0|c=1

]
+
[
∂µf(φ)

]
btµ

1,0|c=1, (79)

also due to the fact that γf(φ) = 0. By means of (79) and (74) we get the necessary
condition (which in this case turns out to be also sufficient) for the existence of at−mat

1,0 (f)

btµ
1,0|c=1 = −γatµ

1,0 − ∂νb
tνµ
1,0 , btνµ

1,0 = −btµν
1,0 , (80)

ε(atµ
1,0) = 0, agh(atµ

1,0) = 0 = pgh(atµ
1,0), (81)

ε(btνµ
1,0 ) = 1, pgh(btνµ

1,0 ) = 1, agh(btνµ
1,0 ) = 0. (82)
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Indeed, supposing that (80) takes place, where the antisymmetry of the ‘current’ btνµ
1,0 is

essential, relation (79) becomes

δat−mat
1,1 (f) = −γ

[
f(φ)at

1,0|c=1 +
(
∂µf(φ)

)
atµ

1,0

]
− ∂µ

[
f(φ)btµ

1,0|c=1 +
(
∂νf(φ)

)
btµν

1,0

]
, (83)

such that the solution to equation (74) is given by

at−mat
1,0 (f) = f(φ)at

1,0|c=1 +
(
∂µf(φ)

)
atµ

1,0. (84)

It can be shown by direct computation, starting from any of the expressions (59) or (60),
that equation (80) cannot hold, such that (79) is compatible with the consistency equation
of the cross-coupling first-order deformation in agh = 0, (74), iff

∂µf(φ) = 0⇒ f = c̃ ∈ R. (85)

Inserting the constant solution (85) back in (78) and (79) we find no cross-couplings
between the matter fields and the field with the mixed symmetry (k, 1), but instead simply
revert to the first-order deformation responsible for the selfinteractions of the tensor (k, 1)

at−mat
1,1 (f)→ c̃δk2k̄δ

D
4k̄εµ1...µ4k̄

t∗µ1...µ2k̄−1

(1)

F
µ2k̄...µ4k̄

, (86)

at−mat
1,0 (f)→ −c̃δk2k̄δ

D
4k̄

(2k̄−1)(2k̄+1)

(2k̄)!8k̄2 εµ1...µ4k̄
F µ1...µ2k̄F µ2k̄+1...µ4k̄ . (87)

This result is not eligible here, in the context of computing at−mat
1 , and must therefore be

eliminated by setting c̃ = 0, which annihilates the component at−mat
1,1 (f) from (72).

As a result of the previous discussion, it follows that the only eligible term from (71)
is that linear in the antifields of the matter fields

at−mat
1,1 = at−mat

1,1 (Z) ≡ φ∗∆Z
∆
µ1...µk+1

(φ, ∂φ)
(1)

F
µ1...µk+1

. (88)

Let us analyze now the piece of agh = 0 of the nonintegrated density at−mat
1 as solution

to the latter equation from (67). We may represent the general solution at−mat
1,0 under the

form
at−mat

1,0 = at−mat
1,0 (Z) + āt−mat

1,0 , (89)

where at−mat
1,0 (Z) signifies the solution to equation (75) and āt−mat

1,0 the general solution to
the “homogeneous” equation

γāt−mat
1,0 + ∂µb̄

t−matµ
1,0 = 0. (90)

The inquire of a similar class of solutions, which does not modify the initial gauge transfor-
mations, has been approached for instance in the framework of computing the consistent
deformations for a single massless tensor field (k, 1) [55]. Compared with the analysis
therein, here we require that āt−mat

1,0 describes cross-couplings, so each term includes the
field t as well as the matter fields. We act with δ on (88) and employ definition (21)
together with property (22), which lead to

δat−mat
1,1 (Z) =

δRLmat

δφ∆
Z∆

µ1...µk+1
(φ, ∂φ)

(1)

F
µ1...µk+1

. (91)
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Since the object
(1)

F is not γ-exact, but its derivatives are so (see formula (69)), from (91)
we notice that equation (75) possesses solutions if the necessary condition (in this setting
also sufficient as the matter fields are γ-invariant) holds

δRLmat

δφ∆
Z∆

µ1...µk+1
(φ, ∂φ) + ∂µj

µ
µ1...µk+1

(φ, ∂φ) = 0, ε(jµ µ1...µk+1
) = 0. (92)

From the last relation and taking into account formula (10), we infer that the previous
condition is nothing but Noether’s Theorem corresponding to the invariance of the matter
action under the global symmetry

δξφ
∆ = Z∆

µ1...µk+1
(φ, ∂φ)ξµ1...µk+1 (93)

of the type (8), where the rigid parameters ξµ1...µk+1 stand for the components of a con-
stant, bosonic, antisymmetric tensor of order (k + 1), such that the associated conserved
current, jµ µ1...µk+1

, is also real and antisymmetric with respect to all its lower indices.
The main difference with respect to the general context where we introduced relations
(8) and (10) is that here we are constrained to enforce the Poincaré invariance, such that
neither the generators Z nor the conserved currents are allowed to depend explicitly on
the spacetime coordinates xµ. The maximum derivative order of the associated conserved
current is equal to one as the generators Z may depend at most linearly on the derivatives
of the matter fields ∂φ only for spin 1⁄2 (quarks/leptons). We recall that each generator of
this rigid symmetry displays the Grassmann parity of the corresponding matter field φ∆

(see the latter formula from (73)). As we have highlighted before (see the paragraph con-
taining formula (49)), condition (92) is equivalent to the requirement that the invariant
polynomial from (88)

ᾱµ1...µk+1
≡ φ∗∆Z

∆
µ1...µk+1

(φ, ∂φ), ᾱµ1...µk+1
= ᾱ[µ1...µk+1], (94)

ε(ᾱµ1...µk+1
) = 1, agh(ᾱµ1...µk+1

) = 1, pgh(ᾱµ1...µk+1
) = 0, (95)

for each set of fixed indices {µ1, · · · , µk+1}, constitutes an element of the characteristic
cohomology in agh = 1, HD

1 (δ|d), specific to the matter theory

δᾱµ1...µk+1
= ∂µj

µ
µ1...µk+1

. (96)

The nontriviality of the invariant polynomial ᾱµ1...µk+1
dDx in HD

1 (δ|d) is translated into
the nontriviality of the global symmetry (93)

Z∆
µ1...µk+1

6= δRLmat

δφ∆′
Z∆′∆

µ1...µk+1
([φ]), Z∆′∆

µ1...µk+1
= (−)1+ε∆′ε∆Z∆∆′

µ1...µk+1
(97)

and therefore also of the associated conserved current. On behalf of relations (91) and (69)
we are able to generate the cross-coupling Lagrangian density in order one of perturbation
theory as solution to equation (75) in the form

at−mat
1,0 (Z) = (−)k

k
jµ µ1...µk+1

(φ, ∂φ)F µ1...µk+1|
µ, (98)

where F is linear in the first-order derivatives of t (formula (4)). Regarding the solutions to
the “homogenous” equation (90) that does not deform the gauge symmetries of the original
Lagrangian action, if we invoke all the hypotheses that must be fulfilled by āt−mat

1,0 , like
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the maximum derivative order, the Poincaré invariance, or the cross-coupling condition,
then we find no acceptable solutions in D ≥ k + 2 ≥ 6

āt−mat
1,0 = 0. (99)

By means of results (88), (89), (98), and (99) we can state that the most general expres-
sion of the cross-coupling first-order deformation that verifies all the imposed restrictions
reduces to

at−mat
1 = φ∗∆Z

∆
µ1...µk+1

(φ, ∂φ)
(1)

F
µ1...µk+1

+ (−)k

k
jµ µ1...µk+1

(φ, ∂φ)F µ1...µk+1|
µ. (100)

According to the relationship between the pieces of fixed antighost number from the
deformed solution to the master equation and the specific features of the accompanying
interacting gauge theory [31], we observe that (100) on the one hand generates the cross-
coupling Lagrangian density at order one of perturbation theory in the standard conserved
current–gauge field form

S0(1)

[
tµ1...µk|α, φ

∆
]

= (−)k

k

∫
jµ µ1...µk+1

(φ, ∂φ)F µ1...µk+1|
µd

Dx (101)

and, on the other hand, endows the matter fields (at the same perturbation order) with
nontrivial gauge transformations obtained by gauging the rigid ones, (93), where the rigid
parameters are replaced by the (antisymmetric) first-order derivatives of the antisymmet-

ric gauge parameters
(1)
ε from the (k, 1) sector

δ
(1)
(1)

θ ,
(1)
ε

φ∆ = Z∆
µ1...µk+1

(φ, ∂φ)∂
[µ1 (1)
ε
µ2...µk+1]

. (102)

So far, we argued that it is possible to couple a massless tensor field with the mixed
symmetry (k, 1) to a matter theory if and only if the latter one possesses a bosonic,
nontrivial rigid symmetry of the form (93), with the rigid parameters identified with the
components of a constant, fully antisymmetric tensor or order (k + 1). Nevertheless, the
matter field spectrum considered here (of spin 0 and/or 1⁄2) does not allow the existence
of such rigid symmetries for any possible value k ≥ 4, which renders

Z∆
µ1...µk+1

= 0, jµ µ1...µk+1
= 0. (103)

As a consequence, the cross-coupling first-order deformation (100) as well as the cross-
coupling Lagrangian action together with the gauge transformations (102) of the matter
fields are annihilated, so the overall first-order deformation of the solution to the master
equation (51) simply reduces to the sum between its first two pieces

S1 = St
1 + Smat

1 , (104)

with Smat
1 like in (64). Due to the fact that all the antibrackets between the BRST matter

generators and those from the (k, 1) sector vanish, by means of solving the higher-order
deformation equations present in (26), it follows that the fully deformed solution to the
classical master equation for the model under consideration, (25), that is consistent to all
orders in the coupling constant and satisfies all the working hypotheses, reduces to

S̄ = S̄t + Smat
0

[
φ∆
]

+ λSmat
1

[
φ∆
]
. (105)
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In the above S̄t governs the selfinteractions of the massless tensor field with the mixed
symmetry (k, 1) [55], Smat

0 is the original action of the matter theory, and Smat
1 is subject

to condition (64), so it gathers all the allowed cross-couplings among the matter fields
that comply with the working hypotheses and are not included in Smat

0 . The deformation
procedure developed here does not allow the matter fields to be endowed with nontrivial
gauge transformations, as happens for instance in the case of couplings between a matter
theory and a single vector field, a collection of such fields, or a BF theory [58–61].

6 Conclusion

The final conclusion of this paper is that, under the standard hypotheses on interacting
gauge field theories, no trivial cross-couplings between a massless tensor field with the
mixed symmetry (k, 1) and a matter theory with spin 0 and/or 1⁄2 fields can be intro-
duced, irrespective of k ≥ 4. The sole consistent deformations of the solution to the
classical master equation are those leading to selfinteractions within the (k, 1) sector,
accompanied by possible nontrivial couplings among the matter fields considered here.
Unfortunately, the matter fields cannot be empowered with (nontrivial) gauge transfor-
mations. It is nevertheless possible that the extension of the matter field spectrum might
generate nontrivial cross-couplings with the tensor (k, 1) and might introduce nontrivial
gauge symmetries in the matter sector.
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