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Abstract

In this paper some nonlinear ODEs without Lie symmetries will be analyzed
from the perspective of the independent method of λ−symmetry reduction. The
first integrals and the conserved form of the concerned ODEs are pointed out.
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1 Introduction

The notion of λ-symmetry has been introduced in [1] with the main purpose of obtaining
this reduction even in the absence of standard Lie symmetries. For the first time, in
[2] was established the connection between λ-symmetries and first integrals for ODEs of
any arbitrary order. The main result states that any λ-symmetry yields an invariant for
ODE under consideration..The extension of λ−symmetries to partial differential equations
symmetries have been reported in [3, 4] (and called in that context µ-symmetries). A
generalization of the concept of variational symmetry, based on λ- and µ-symmetries,
has been studied in [5, 6]. This allows us to construct new methods of reduction for
Euler–Lagrange equations.

The paper is organized as follows. In Sect. 2, we outline preliminary discussions re-
garding the notion of λ−symmetry. The determining equations for λ-functions associated
to second order ODEs and the algorithmic way to construct the first integrals from known
λ−symmetries of ODEs, are illustrated. In Sect. 3, the new method of λ−symmetry re-
duction is applied to some ODEs without Lie symmetries.The first integrals and conserved
forms of these equations are pointed out. Finally, we present the conclusion in Section 4.

2 λ−Symmetries and Associated First Integrals

Consider an nth order ODE:
∆(x, u(n)) = 0, (1)

with (x, u) ∈ M, for some open subset M ⊂ X × U ' R2. We denote by M (k) the
corresponding k−jet space M (k) ⊂ X ×U (k), for k ∈ N. Their elements are (x, u(k)) = (x,
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u, ux, ...ukx), where uix, i = 1, k denotes the derivative of order i of u with respect to x.
Eq. (1) can be locally written in the explicit form:

unx = ω
(
x, u(n−1)

)
. (2)

The vector field
A(x, u) = ∂x + ux∂u + ...+ ω

(
x, u(n−1)

)
∂u(n−1)x

(3)

represents the vector field associated with Eq. (2).
Definition: Let X = ξ(x, u)∂x + η(x, u)∂u be a vector field on M, and let λ ∈

C∞(M (k)) be an arbitrary function. The λ−prolongation of order n of X, denoted by
X [λ,(n)] is the vector field defined by:

X [λ,(n)] = ξ(x, u)∂x +
n∑
i=0

η[λ,(i)](x, u(i+k−1))∂uix , (4)

where η[λ,(0)] = η(x, u) and

η[λ,(i)](x, u(i+k−1)) = Dx(η
[λ,(i−1)](x, u(i+k−2)))− (Dxξ(x, u))uix +

λ(η[λ,(i−1)](x, u(i+k−2)))− ξ(x, u)uix. (5)

for i = 1, n.
Assuming that we know a first integral I, the determining equation for λ ∈ C∞(M (k)),

k = 0, n− 1 is any solution of the PDE:

X [λ,(n−1)]I = 0, (6)

where

X [λ,(n−1)] =
n−1∑
i=0

(A+ λ)i(1)∂uix

denotes the (n − 1)th-order λ-prolongation of the symmetry generator X = ∂u, so that
the characteristic Q := η − ξux = 1.

On the other hand, the symmetry condition of (2) is given by

X [λ,(n)](unx − ω) = 0 on unx = ω. (7)

This leads to the linearized symmetry condition:

(A+ λ)n(1) =
n−1∑
i=0

(A+ λ)i(1)∂uixω (8)

When n = 2 this condition assumes the form

A(λ) + λ2 = ωu + λωux . (9)

Following [7] for second-order ODE, the procedure to construct the integral directly
from λ-symmetry involves four steps:

1). Find a first integral w(t, u, ux) of X [λ,(1)], that is a particular solution of the
equation

wu + λwux = 0; (10)

2) Evaluate A(w) and express A(w) in terms of (t, w) as A(w) = F (t, w);
3). Find a first integral G of ∂x + F (t, w)∂w;
4) Evaluate I(t, u, ux) = G(t, w(t, u, ux)).
In the following sections, we will apply the algorithm presented above to some second-

order ODEs which do not admit any Lie symmetry.
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3 Nonlinear ODEs without Lie Symmetries

i) The Painlevé-type second-order ODE:

u2x =
u2x
u

+
(
u+

x

u

)
ux − 1. (11)

In this case, the determining equation for λ is (9) where A and ω are now expressed
by:

A = ∂x + ux∂u + u2x∂ux , ω(x, u, ux) =
u2x
u

+
(
u+

x

u

)
ux − 1. (12)

We look for λ as a linear function in ux, λ = a(x, u)ux + b(x, u). Inserting this expres-
sion into determining equation, we get that the functions a(x, u) and b(x, u) satisfy the
following differential system:

au + a2 − a

u
+

1

u2
= 0,

ax + bu + 2ab− 2b

u
+

x

u2
− 1 = 0,

bx − a− bu−
bx

u
= 0. (13)

Solving this system with Maple Program, we find that the vector field X = ∂u is a
λ-symmetry of Painlevé Eq. (21) with λ given by:

λ(x, u, ux) =
1

u
ux +

x+ u2

u
. (14)

The first integral I(x, u, ux) of our model will be found by solving the equation:

X [λ,(1)]I = 0 ⇔ Iu +

(
1

u
ux +

x+ u2

u

)
Iux = 0. (15)

It can be checked that two functionally indendent invariants of X [λ,(1)] are:

z = x, ζ =
ux − u2 + x

u
. (16)

In terms of these invariants, the original equation is written as:

Dzζ = 0, (17)

the general solution of which is given by:

ζ = k = const., k ∈ R. (18)

We observe that the method we have followed provides not only the first integrals, but
also the conserved form of the equation without additional computation. In this example
the conserved form of the resulting equation is given by:

Dx

(
ux − u2 + x

u

)
= 0. (19)
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Following the λ−symmetry reduction procedure, the Painlevé Eq. (21) is reduced to a
first order ODE of Riccati type:

ux = ku+ u2 − x, (20)

which can be integrated and does generate solution in terms of Airy functions.
ii) Consider the nonlinear ODE [8]:

u2x +
x2

4u3
+ u+

1

2u
= 0. (21)

which does not admit Lie point symmetries.
As in the previous example, we look for λ−symmetries of (21) with function λ(x, u, ux) =

m(x, u)ux + p(x, u). In this case, the determining equation for λ is equivalent with the
differential system:

mu +m2 = 0,

mx + pu + 2mp = 0,

px + p2 −m
(
x2

4u3
+ u+

1

2u

)
− 3x2

4u4
− 1

2u2
+ 1 = 0. (22)

Solving this system, we find that the vector field X = ∂u is a λ-symmetry of Eq. (22)
with λ given by:

λ(x, u, ux) =
1

u
ux +

x

u2
. (23)

The first integral I(x, u, ux) of our model will be found by solving the equation:

X [λ,(1)]I = 0 ⇔ Iu +

(
1

u
ux +

x

u2

)
Iux = 0. (24)

Thereby, we find for X [λ,(1)] two functionally indendent invariants:

z = x, w =
ux
u

+
x

2u2
. (25)

In terms of these invariants, the original equation becomes:

Dxw + w2 + 1 = 0, (26)

The general solution of the reduced equation (17) is given in implicit form by:

arctan(w) + x = C,C ∈ R. (27)

Consequently, the concerned equation (21) can be express in the conserved form:

Dx

(
arctan

(ux
u

+
x

2u2

)
+ x
)

= 0. (28)
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4 Conclusions

In this paper, reductions of several second-order ODEs through λ-symmetry approach are
presented. Because this technique provides an algorithm to construct the first integral
directly from λ-symmetry, it represents an alternative approach to the problem of deter-
mining first integrals and associated integrating factors. The method may simplify the
computations derived by other methods.

Several examples show how the method works in practice. They includ two models (11)
and (21) that have no Lie point symmetries. For the mentioned models we determine the
λ-symmetries linear in ux, more exactly (14) and (23) and the corresponding first integrals
(16) and (25) respectively. The conserved forms of the models under consideration are
also highlighted.
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