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Abstract

This paper presents the results of testing an artificial neuronal network as au-
tomatic images analyses for optical coherence tomography investigations of brain
injuries. Although optical coherence tomography is a very promising tool for many
brain lesions studies, lack of statistical/mathematical models for automatic inter-
pretation and detection could be a large inconvenient. Our setup is providing a
feasible model for showing accurate detection of stroke injuries inside the frame of
rodent experiments.
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1 Introduction

Optical coherence tomography (OCT) was developed as an optical method for imaging on
micron resolution scale [1-3]. The method, which was introduced into medical research in
the last two decades, is based on the optical concept of low coherence interference imaging
[4-6] and can be considered similar with the B-mode ultrasound detection design, with
the differences that is using light instead of ultrasounds. Considering its features, OCT
devices are able to provide high-speed analysis, microns range resolution and non-invasive
investigations of different tissues [7]. OCT was primary used for characterize structural
and functional investigations in ophthalmology field [8-10] but the developments enlarge
the applications area to gastroenterology [11-14], dermatology [15] and neurology [16-20],
where OCT was already reported by several groups as a potential tool for brain imaging
[21]. Cerebral ischemia generating stroke represents one of the most important causes of
death and disability in western countries [22], but is still suffering of a lack of imaging
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investigations and monitoring of injured area being under a continuous search for new
technologies. Hence this kind of injury can be considered a good candidate for OCT in-
vestigations, especially due to the impossibility of physical biopsies and because the brain
cortex is situated next to the skin surface. The OCT investigations of the experimental
brain injuries were already implemented by our group [21, 23]. In our previous exper-
iments we report not only that OCT represents a promising, fast developing method,
which due to its characteristics fills the gap between already classical imaging investiga-
tions (MRI and ultrasounds) and new methods like two-photons microscopy but shows
also potential for quantitative evaluation of the brain injuries in general [21, 23]. Never-
theless, using only synthetic statistical parameters of the detected pixel intensity as mean
value, skewness and kurtosis, help us to identify the full extent of injuries but provided
no comprehensive scheme for automatic detection. For this reason and taking into ac-
count the importance of these types of brain injures we try to establish the feasibility of
using a much powerful mathematical tool for image analyses: artificial neural networks.
In the last years, artificial neural networks show potential for diagnosis of different type
of lesions, mainly because of their adaptability and excellent problem solving-oriented
architecture and have been used in medical image analysis tasks with various degrees
of success, with many applications in gastroenterology and tumor pathology associated
with the digestive tract [24]. Our aim here is to establish the role and feasibility of OCT
analysis parameters in a complex system of neural networks.

2 Material and Methods

Animals. In order to perform the study, we selected a number of 15 adult male com-
mon Sprague-Dawley rats, from the Animal Facility of the University of Medicine and
Pharmacy of Craiova, aged between 19-20 months, with weights between 500-650 g. The
animals were held in standard conditions of light, temperature and humidity, and had
unlimited access to food and water. The environment parameters were kept constant by
using an air-conditioning system. The vivarium has a cyclical lighting of 12 hours and the
cages were standard sizes accommodating each two rats. For performing the experiment,
we obtained the approval of the Ethics Board of the University of Medicine and Pharmacy
of Craiova, according to the European Council Directive 11.24.1986 (86/609/CEE), the
European Convention regarding vertebrate animal protection (2005) and Govern Ordi-
nance No. 37/02.02.2002.
Surgery. In order to perform stroke experimental model, we induced anesthesia using
a intraperitoneally administration of a mixture of xylazine hydrochloride (Narcoxyl vet,
20 mg/mL solution, Intervet, Netherlands), 10 mg/kg BW and ketamine hydrochloride
(Ketamine powder 100 mg, Franciuos, the Netherlands), 90 mg/kg BW. We have used
transcranial reversible (90 minutes) occlusion of the middle cerebral artery (MCAO) ex-
perimental model, which requires transient interruption of blood flow through this artery,
as previously described [23] together with the bilateral, reversible clipping of the both
common carotid arteries. As a result we obtain a drop of 20% from the MCA blood flow
in middle cerebral artery, with the possibility to induce brain ischemia. The body tem-
perature was maintained as close as possible to 37oC, and arterial blood pressure, blood
gas (oxygen and carbon dioxide) and serum glucose levels were determined throughout
the intervention. Perfusion. After a period of four weeks, the animals were anesthetized
with the same method and after heart was exposed, a flexure was introduced into the left
ventricle, pumping 200 ml of saline solution (0.9% NaCl) with a pressure of 140 mmHg.
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Figure 1: Optical coherence tomography image of a rat brain, 28 days after middle cere-
bral artery occlusion induced stroke, coronal sections 2 mm depth and 5 mm width, at
frontoparietal level. Necrotic cortex tissue is easily identified (to the left of the red line)
comparing with the normal tissue (to the right to the red line)

The perfusion with saline solution was immediately followed by perfusion with a solution
of 4% paraformaldehyde (PFA) 5x in phosphate buffer (5xPB) for fixing tissues. After
perfusion, brain was collected and placed in paraformaldehyde solution prior to OCT in-
vestigations.
Optical coherence tomography imaging. For OCT imaging we used a system pro-
vided by THORLABS (OCT1300SS), powered by a swept laser source with central wave-
length of 1325 nm and a spectral bandwidth of 100 nm, with an average power of 12
mW. We investigate the affected ischemic hemisphere, including both, healthy and in-
jured tissue, sampling coronary pictures in width of 5 mm, a distance of 3 mm and a
depth of 2 mm. Acquisition was performed over a volume of 5 mm x 3 mm x 2 mm for
each sample. Intact brains were investigated with optical coherence tomography and the
obtained images were analyzed.

Image analysis. We have divided each stroke image into two sections; one area of in-
terest comprised the stroke zone and one corresponded to the normal texture of the image
(Figure 1). For a better characterization and discrimination of normal texture from stroke
area we also used picture only with unaffected tissue (Figure 2). We then performed the
imaging test in parallel and trained a neural network with the parameters provided by
the test. The artificial neural network (ANN) was developed in MATLAB (MathWorks,
USA) and consists of input and output layers with one hidden layer of neurons in-between
for processing functions (Figure 3). The training phase used the feed-forward back prop-
agation algorithm, already implemented in the software. The extensive image set was
randomly divided between training, testing and validation. The neural network analyzed
each image pixel by pixel using an automated method for comparing the similarity of two
neighboring pixels (near-pixel approximation). This method has good results for grayscale
images, where it can establish the intensity of an area depending on adjacent ones. For
image analysis, we used a model based on the Gray Level Co-occurrence Matrix (GLCM)
model proposed by Haralick [25], the correlation parameter being adjusted as described
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Figure 2: Optical coherence tomography image of a rat normal brain, coronal sections 2
mm depth and 5 mm width, at frontoparietal level. Normal cortex is identified

Figure 3: Graphical representation of an ANN. The variables are imputed to correspond-
ing neurons in the first layer of the ANN, which in turn send the data to all neurons of
the hidden layer. The neurons in this intermediate layer establish an importance value
for the output layer, which presents the user with a result, classifying the image into one
category (stroke or normal tissue)
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by Walker [26]. This model was implemented in the ”Texture analyzer” plug-in (Cabr-
era, USA) developed for the freeware software application ImageJ (Bethesda, USA). We
calculated three texture descriptors: contrast, the correlation coefficient and the coeffi-
cient of entropy, for each set of textures chosen as positive classifiers (stroke areas), as
well as normal areas of interest (AOIs). Contrast is used as a measure for evaluating the
difference in brightness and grayscale between adjacent pixels in each image; correlation
coefficient measures the correlation pairs of pixels according to the grayscale levels, and
entropy is a parameter that evaluates how random is the distribution grayscale levels in
the picture. The texture of four axes analyzed from a pixel as the center (0o, 45o, 90o

and 135o, respectively), forming the matrix adjacent to each. Mathematical and statisti-
cal analyses were performed using ORIGIN 8 and GraphPad 5 software. The ANN was
trained as to which image corresponds to stroke and which is normal, then blinded to the
testing and validation sets.

3 Results and Discussions

There were reported a series of morphological and pathophysiological changes that occurs
after ischemia, in the adult brain of rodents, which are complex [23], including fragmen-
tation and condensation of chromatin, apoptosis [27] or different types of necrosis [28,
29]. All these changes were observed first in the core of the stroke, as well as in the
surrounding tissue, if reperfusion is not restored efficiently (strokes penumbra). As was
reported previously [23, 30], it is now accepted that cerebral ischemia can generate the
death of all cells (neurons, microglia, astrocytes, endothelial cells) presented in the af-
fected area of brain. All these changes can modify the normal architecture of the nervous
tissue, which can be observed with histological and imaging techniques, including OCT,
consequently of the modifications of scatter properties of the incoming light. As early
reported [23], a clear distinction between the normal and affected regions inside the rat
ischemic brain is possible. Nevertheless, for an easy, more accurate and rapid diagnosis,
a recognition assisted by ANN can be more efficient. Also, distinguishing characteristics
between different regions evaluated with the help of ANN inside the stroke area may offer,
in connection with other types of investigation, valid information regarding the undergo-
ing physiological and physiopathological processes. Analyzing the images, using arrays
of GLCMs, we obtained a low variability within each group of values for each particular
situation (p < 0.05; coefficients variation < 0.3). Thus, we have validated the repro-
ducibility of the method for all cases studied. For contrast images we obtained lower
ranges, compared to normal aspects, where gray scale differences were more pronounced
(p < 0.001). Entropy values were different for each individual pair of AOIs (p < 0.001).
The degree of disorganization of the texture was different for all pairs of ROIs (p < 0.05).
The ANN model correctly classified 92% of the testing set, after successful training of 12
epochs. The system misidentified 4% of the images as being strokes whereas the areas
corresponded to normal aspects; 4% of all images were incorrectly identified as normal
cortex.

4 Conclusion

In conclusion, neural network analysis of stroke OCT images seems to be a promising
technique for fast and reliable recognition of the stroke areas. Future studies and better
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correlation of the structure and mathematical models of the ANN with ongoing processes
and mechanisms inside the injured area are needed to fully validate this study. Never-
theless it is important to underline that our implementation could discriminate in a high
rate between normal and ischemic tissue and we believe that association between OCT
investigations and ANN has a potential to be applied in the experimental and clinical
field of neuroscience.
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