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Abstract

Guiding centers moving in a combination of a shearless stochastically perturbed
confining magnetic field and a fluctuating two-dimensional electrostatic field is con-
sidered. The motion in such a type of stochastic field is of general interest (e.g.,
particle and energy transport in magnetically confined plasmas) and various ap-
proximations of it have been considered previously. Our interest lies in two limiting
cases, that of high values of the magnetic and electrostatic Kubo numbers in which
case the charged particles explore (statistically) the topology including the trapping
regions of both stochastic fields before they have time to change, and that of the
opposite case of weak Kubo numbers where the fields are varying sufficiently fast so
that almost no trapping of trajectory occurs. The scope of the study is to determine
the change of behavior of DCT trajectories while varying the main parameters of
the problem.

PACS numbers: 52.35 Ra, 52.25 Fi, 05.40.-a, 02.50.-r.

1 Introduction

The motion of charged particles, driven by stochastic velocity fields, is representative of a
large class of physical processes (i.e., particle and energy transport in plasma) and various
approximations or geometrical configurations of the problem have been studied previously
([1]-[4]). A model is proposed similar to a Langevin type system of equations describing
the motion of a guiding center through the highest significant order in the drift parameter
[2]. By assuming that the time necessary for the particle to traverse the parallel correlation
length is much longer than the transverse correlation time it is possible by scale separation
to consider to first order the statistical properties of projected trajectories onto a two-
dimensional plane transverse to the constant longitudinal magnetic field. The method for
analyzing the dynamics which will be used is the “decorrelation trajectory method”, which
accounts in a statistical way for the trapping effects of the trajectories in the structures
of the fluctuating electric and magnetic fields. The strongest trapping effects appear
in the limiting case of large electrostatic and magnetic Kubo numbers. Results will be
compared to the other limiting case of small Kubo numbers where trapping effects are
weak. Because two Kubo numbers are in action, an interesting class of behaviors can be
analyzed: the decorrelation trajectories, the velocities, the solutions and the hodographs.
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2 The properties of the electric and magnetic fluctu-

ating fields

The geometry considered is that of a shearless slab for the confining magnetic field per-
turbed by fluctuating perpendicular components

B(X, t) = B0 {ez + βbx (X, t) ex + βby (X, t) ey} (1)

Here β is a dimensionless parameter measuring the amplitude of the magnetic fluctuations
in the plane X ≡ (X, Y ) relative to the main magnetic field B0=B0ez. The magnetic field
fluctuations are described by the dimensionless Gaussian statistical processes bi (X, t) for
i = (X, Y ) [5]. The stochastic electric field is considered to have the form:

E(X, Y, t) = Ex (X, Y, t) ex + Ey (X, Y, t) ey + Ez (X, Y, t) ez (2)

3 The system of equations

The system of equations for the guiding center coordinates X are (neglecting all the
magnetic gradients) [2]:

·
X ' U

B

B
+
c

B2
(E×B) (3)

Using the eqs.(1, 2, 3) and the corresponding electric drift which has the expression
obtained using eqs. (1, 2):

c (E×B)

B2
=

c

B0

{ex (−Ezβby + Ey)− ey (Ex − Ezβbx) + ez (Exβby − Eyβbx)} (4)

the dimensional guiding center equations takes the form:

dX (t)

dt
= Uβbx (X, Y, t) +

c

B0

Ey (X, Y, t) (5)

dY (t)

dt
= Uβby (X, Y, t)− c

B0

Ex (X, Y, t) (6)

This form of the system is justified by the following reasonable approximation: βbiEj � 1,
i 6= j where i = x, y and j = x, y, z that is valid because both the electrostatic and the
perpendicular magnetic field are fluctuating. We introduce the coordinates x = (x, y) , τ
which are dimensionless quantities related to the dimensional ones X = (X, Y ) , t by the
relations:

X

λel
= x; ;

t

τel
= τel (7)

where λel, λm are the electrostatic and magnetic correlation lengths in the perpendicular
direction to the main magnetic field B0ez, T is the ratio between the correlation times
and is defined in eq.(8) (τm is the correlation time for the purely magnetic fluctuations
and τel is corresponding to the electrostatic fluctuations) and ε is a parameter measuring
the electrostatic fluctuations. The ratio of the correlation times is:

T =
τel
τm

(8)
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where τm is the correlation time for the purely magnetic fluctuations and τel is correspond-
ing to the electrostatic fluctuations. The parallel guiding center velocity U is considered
constant :

U = const. ≡ U0 (9)

Taking into account (7), the dimensionless system of equations corresponding to the
dimensional system (5)-(6) becomes:

dx (τ)

dτ
=
U0βτel
λel

bx (x, y, τ) +
cτel
λelB0

Ey (x, y, τ) (10)

dy (τ)

dτ
=
U0βτel
λel

by (x, y, τ)− cτel
λelB0

Ex (x, y, τ) (11)

The fluctuating components of the electrostatic and the magnetic field can be obtained
from appropriate stochastic potentials:

Ex (x, y, τ) = −ε∂Φ (x, y, τ)

λel∂x
; Ey (x, y, τ) = −ε∂Φ (x, y, τ)

λel∂y
(12)

where Φ is the dimensionless electrostatic potential and ε is a dimensional quantity mea-

suring the electrostatic fluctuations [Φ(X, Y, t)→ εΦ
(

X
λel
, t
τel

)
] and

bx (x, y, τ) =
∂ψ (x, y, τ)

∂y
; by (x, y, τ) = −∂ψ (x, y, τ)

∂x
(13)

where ψ is the magnetic dimensionless potential. Introducing eqs. (12) and (13) in the
system (10) - (11) one obtain:

dx (τ)

dτ
=
U0βτel
λel

∂ψ (x, y, τ)

∂y
− εcτel
λ2
elB0

∂Φ (x, y, τ)

∂y
(14)

dy (τ)

dτ
= −U0βτel

λel

∂ψ (x, y, τ)

∂x
+

cετel
λ2
elB0

∂Φ (x, y, τ)

∂x
(15)

The coefficients from the r.h.s. of the system (14-15) can be expressed as:

U0βτc
λel

=
U0βτm
λm

· τel
τm
· λm
λel
≡ TΛKm; T =

τel
τm
≤ 1; Λ =

λm
λel
≥ 1 (16)

where we have defined the magnetic Kubo number:

Km =
U0βτm
λm

(17)

and
Kel =

εcτel
λ2
elB0

(18)

which is the electrostatic Kubo number. Taking into account on eqs.(16- 18) the system
(14-15) becomes:

dx (τ)

dτ
= TΛKm

∂ψ (x, y, τ)

∂y
−Kel

∂Φ (x, y, τ)

∂y
(19)

dy (τ)

dτ
= −TΛKm

∂ψ (x, y, τ)

∂x
+Kel

∂Φ (x, y, τ)

∂x
(20)

The system will be solved with the initial condition x (0) = 0. This is the Langevin sys-
tem of equations for the collisionless particle in the electrostatic and magnetic stochastic
configuration and will be the starting point of our analysis.
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4 The DCT method for the combined electrostatic

and magnetic turbulence

The system (19) - (20) becomes in the absence of the magnetic fluctuations (Km ≡ 0)
the system analyzed in [1] for electrostatic turbulence. We deal in our case with two
fluctuating stochastic potentials ψ and Φ. We will suppose that these two potentials are
stochastically independent (i.e., 〈ψΦ〉 = 0) and the fluctuations (both the electrostatic
and the magnetic) are characterized by different correlation lengths λel, λm and different
correlation times τel, τm such that: 〈Φ (0,0) Φ (x, t)〉 ≈ 0, 〈ψ (0,0)ψ (x, t)〉 ≈ 0 when
|x| � λel, λm and/or t� τel or correspondingly t� τm.

The two dimensionless parameters defined in (16) and (18) characterize the combined
electrostatic and magnetic stochastic fields. and in the forthcoming analysis we will
consider both the small (Km, Kel < 1) and high (Km, Kel > 1) Kubo numbers regimes.
In this way the trapping process which plays an essential role in the strongly turbulent
phenomena will be analyzed.

The study of the transport problem implies the evaluation of the Lagrangian correla-
tions. The system (19) - (20) can be written as:

dx (τ)

dτ
= Vx (x (τ) , τ)

dy (τ)

dτ
= Vy (x (τ) , τ) (21)

where

Vx (x (τ) , τ) = TΛKm
∂ψ (x, y, τ)

∂y
−Kel

∂Φ (x, y, τ)

∂y
≡ TΛKmbx (x, y, τ) +Kelvx (x, y, τ)

(22)

Vy (x (τ) , τ) = −TΛKm
∂ψ (x, y, τ)

∂x
+Kel

∂Φ (x, y, τ)

∂x
≡ TΛKmby (x, y, τ) +Kelvy (x, y, τ)

(23)
are the fluctuating velocities. We can easily verify that the∇ ·V =0 and as a consequence
it can be derived from the following ”mixed” potential:

Φem (x (τ) , τ) = −TΛKmψ (x (τ) , τ) +KelΦ (x (τ) , τ) (24)

The velocities defined in eqs.(22,23) can then be written as:

Vx (x (τ) , τ) = −∂Φem (x, y, τ)

∂y
, Vy (x (τ) , τ) =

∂Φem (x, y, τ)

∂x
(25)

Assuming stationary turbulence, the Lagrangian correlations depend only on the differ-
ence of two times and the following Lagrangian correlation tensor can be defined:

Lij(τ) =

∫
dx 〈Vi(0; 0)Vj [x(τ); τ ] δ (x− x (τ))〉 (26)

where 〈...〉 denotes the average over the realizations of the fluctuating velocities Vi (i =
x, y).

In our paper we use the the DCT approximation, a significant step beyond the well-
known Corrsin approximation [7] which includes the quasilinear and the Bohm approx-
imations. In the framework of DCT method general expressions of the running (and
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consequently asymptotic) diffusion coefficients can be derived. We briefly recall the main
ideas of the DCT approximation (see Refs. [1], [4]). The space of realizations of the
potential fluctuations is subdivided into subensembles S, characterized by given values
of the ”mixed” potential and of the fluctuating velocities at the starting point of the
trajectories. The exact expression of the Lagrangian correlation can be written as a su-
perposition of Lagrangian correlations in the various subensembles. In each subensemble
a deterministic decorrelation trajectory is defined by the following criterion: the Eulerian
average of the potential calculated along this deterministic trajectory should equal the
Lagrangian average of the potential in S:

ΦS[xS(t), t] = 〈Φ[x(t), t]〉S ; ψS[xS(t), t] = 〈ψ[x(t), t]〉S ; ΦS
em[xS(t), t] = 〈Φem[x(t), t]〉S

(27)
Implementing this approximation in the exact formulae for the Lagrangian fields cor-

relations yields an approximation that is valid, in principle, for arbitrarily large values
of Km and Kel. The main reason for this statement is that the DCT method takes into
account the trapping processes, which are neglected in previous theories based on the
Corrsin approximation. These processes are an essential ingredient of strong turbulence
theories. The validity of the approximation involved in DCT method can be assessed by
a posteriori comparison with experiment and simulations, as is done in all theories of
strong turbulence.

In order to apply the DCT method we note that the fluctuating quantities bi, vi are
derived from the potentials ψ and Φ. In all theories based on Langevin equations the
Eulerian potential autocorrelation represents the starting point and is defined a priori.
We assume that the Eulerian autocorrelations of the dimensionless potentials have the
following factorized form:

〈ψ (0,0)ψ (x, τ)〉 = Em (x)Tm (τ) ≡ Em (x, τ) (28)

〈Φ (0,0) Φ (x, τ)〉 = Eel (x)T el (τ) ≡ Eel (x, τ) (29)

where Em (x) and Eel (x) are dimensionless functions of position and Tm (τ) and T el (τ)
are functions of time.We stress again that we consider that the two potentials are stochas-
tically independent, i.e. 〈ψΦ〉 = 0.

We define the following notations for the Eulerian correlations [see Refs. [1], [4]]:

〈ψ (0,0) bj (x, τ)〉 = Em
ψj (x)Tm (τ) (30)

〈bi (0,0) bj (x, τ)〉 = Em
ij (x)Tm (τ) (31)

〈Φ (0,0) vj (x, τ)〉 = Eel
Φj (x)T el (τ) (32)

〈vi (0,0) vj (x, τ)〉 = Eel
ij (x)T el (τ) (33)

All these Eulerian correlations can be derived by appropriate derivatives from the primary
potential autocorrelations given in (28) and (29):

Em
ψx (x) = −Em

xψ (x) =
∂Em (x)

∂y
(34)

Em
ψy (x) = −Em

yψ (x) = −∂E
m (x)

∂x
(35)
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Em
xx (x) = −∂

2Em (x)

∂y2
; Em

yy (x) = −∂
2Em (x)

∂x2
; Em

xy (x) = Em
yx (x) =

∂2Em (x)

∂x∂y
(36)

Eel
Φx (x) = −Eel

xΦ (x) = −∂E
el (x)

∂y
(37)

Eel
Φy (x) = −Eel

yΦ (x) =
∂Eel (x)

∂x
(38)

Eel
xx (x) = −∂

2Eel (x)

∂y2
; Eel

yy (x) = −∂
2Eel (x)

∂x2
; Eel

xy (x) = Eel
yx (x) =

∂2Eel (x)

∂x∂y
(39)

The correlations defined in Eqs. (34-39) can be written in a compact form using the
antisymmetric tensor εij (ε12 = −ε21 = 1, ε11 = ε22 = 0) as:

Em
ij (x) = −εinεjp

∂2Em (x)

∂xn∂xp
; Em

ψi (x) = −Em
iψ (x) = εin

∂Em (x)

∂xn
; i, j, p, n = x, y (40)

and

Eel
ij (x) = −εinεjp

∂2Eel (x)

∂xn∂xp
; Eel

Φi (x) = −Eel
iΦ (x) = −εin

∂Eel (x)

∂xn
; i, j, p, n = x, y (41)

The Eulerian correlations corresponding to the ”mixed” potential are calculated using the
eqs.(30 - 41) and the definitions (22-25) and their expressions are:

〈Φem (0,0) Φem (x, τ)〉 = (TΛ)2K2
mE

m (x)Tm (τ) +K2
elE

el (x)T el (τ) ≡ Eem (x, τ) (42)

〈Φem (0,0)Vj (x, τ)〉 = − (TΛ)2K2
mE

m
ψj (x)Tm (τ) +K2

elE
el
Φj (x)T el (τ) ≡ Eem

Φemj (x, τ)
(43)

〈Vj (0,0) Φem (x, τ)〉 = − (TΛ)2K2
mE

m
jψ (x)Tm (τ) +K2

elE
el
jΦ (x)T el (τ) ≡ Eem

jΦem (x, τ)
(44)

〈Vi (0,0)Vj (x, τ)〉 = (TΛ)2K2
mE

m
ij (x)Tm (τ) +K2

elE
el
ij (x)T el (τ) ≡ Eem

ij (x, τ) (45)

We now develop the DCT method closely folowing the main line given in [1]. The idea
consists in the decomposition of the ensemble of realizations of the turbulent ensemble
into subensembles. This decomposition is slightly different from that used in [1] because
of the existence of two stochastic potentials instead one. We define the subensemble S as
the set of realizations in which Φem and Vi (i = x, y) have given values at time 0:

S : Φem (0,0) = Φ0
em, Vi (0,0) = V 0

i ; i = x, y (46)

In this case the probability distribution of the initial values can be defined as:

P em
0 (V0,Φ0

em) = P (V 0
x )P (V 0

y )P (Φ0
em) =

= (2π)−3/2 (Eem (0, 0)Eem
xx (0, 0)Eem

yy (0, 0)
)−1/2

exp

[
− (Φ0

em)
2

2Eem (0, 0)
− (V 0

x )
2

2Eem
xx (0, 0)

−
(
V 0
y

)2

2Eem
yy (0, 0)

]
(47)

where:

Eem (0, 0) ≡
[
(TΛ)2K2

mE
m (0)Tm (0) +K2

elE
el (0)T el (0)

]1/2
Eem
xx (0, 0) ≡

[
(TΛ)2K2

mE
m
xx (0)Tm (0) +K2

elE
el
xx (0)T el (0)

]1/2
Eem
yy (0, 0) ≡

[
(TΛ)2K2

mE
m
yy (0)Tm (0) +K2

elE
el
yy (0)T el (0)

]1/2
(48)
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The Lagrangian correlation tensor is:

Lemij (τ) =

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

i (0, 0; 0) 〈Vj [x(τ); τ ]〉S (49)

where 〈...〉S denotes the average in the subensemble. The averaged velocity from the
integrand can be written (see Refs. [3], [4], [1]) as:

〈Vj [x(τ); τ ]〉S =
Φ0
em

Eem (0, 0)
Eem

Φemj (x, τ) +
V 0
x

Eem
xx (0, 0)

Eem
xj (x, τ) +

V 0
y

Eem
yy (0, 0)

Eem
yj (x, τ)

(50)
We define next in a subensemble S a deterministic trajectory by the following equations
of motion:

dxS (τ)

dτ
= V S

x

(
xS (τ) , τ

)
≡ 〈Vx [x(τ); τ ]〉S (51)

dyS (τ)

dτ
= V S

y

(
xS (τ) , τ

)
≡ 〈Vy [x(τ); τ ]〉S (52)

xS (0) = 0 (53)

where the velocities are defined in eq.(50). The system (51-53) determines the motion
of the fictitious quasiparticle characteristic to the DCT method. The deterministic DCT
are introduced in the Lagrangian correlations tensor (49) and these quantities evaluated
in the DCT approximation are:

Lemij (τ) =

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

i (0; 0) 〈Vj [x(τ); τ ]〉S =

=

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

i (0; 0)×

×
{

Φ0
em

Eem (0, 0)
Eem

Φemj (x, τ) +
V 0
x

Eem
xx (0, 0)

Eem
xj (x, τ) +

V 0
y

Eem
yy (0, 0)

Eem
yj (x, τ)

}
(54)

In order to make explicit calculations we need to choose the dimensionless functions
Em (x) and Eel (x). We consider the following functions (see Refs. [1], [4], [6]):

Em (x) = exp

(
−x2

2

)
(55)

and
Eel (x) =

(
1 + x2

)−α
;α ∈ [0.5 , 2] (56)

The magnetic correlation is a localized space-function while the electrostatic one is an
extended function with algebraic behaviour at large distances; these have a strong impact
on the scaling of the diffusion coefficient. This effect is left for a future paper. For now the
role of α will be studied based on DCT trajectories. The time dependence is considered
to be different for the correlations of the magnetic and electric fields:

Tm
(
t

τm

)
= exp (−Tτ) ≡ Tm (τ, T ) (57)

T el
(
t

τel

)
= exp (−τ) ≡ T el (τ) (58)
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where the parameter T was defined in eq.(16). Using (55, 56, 43, 45), we obtain for the
components of the fluctuating velocities (see Ref. [1]) the following expressions:

V S
x

(
xS, τ

)
=

Φ0
em

Eem (0, 0)
Eem

Φemx

(
xS, τ

)
+

V 0
x

Eem
xx (0, 0)

Eem
xx

(
xS, τ

)
+

V 0
y

Eem
yy (0, 0)

Eem
yx

(
xS, τ

)
=

=
Φ0
em

Eem (0, 0)

[
− (TΛ)2K2

mE
m
ψx

(
xS
)
Tm (τ) +K2

elE
el
Φx

(
xS
)
T el (τ)

]
+

+
V 0
x

Eem
xx (0, 0)

[
(TΛ)2K2

mE
m
xx

(
xS
)
Tm (τ) +K2

elE
el
xx

(
xS
)
T el (τ)

]
+

+
V 0
y

Eem
yy (0, 0)

[
(TΛ)2K2

mE
m
yy

(
xS
)
Tm (τ) +K2

elE
el
yy

(
xS
)
T el (τ)

]
(59)

V S
y

(
xS, τ

)
=

Φ0
em

Eem (0, 0)
Eem

Φemy

(
xS, τ

)
+

V 0
x

Eem
xx (0, 0)

Eem
xy

(
xS, τ

)
+

V 0
y

Eem
yy (0, 0)

Eem
yy

(
xS, τ

)
=

=
Φ0
em

Eem (0, 0)

[
− (TΛ)2K2

mE
m
ψy

(
xS
)
Tm (τ) +K2

elE
el
Φy

(
xS
)
T el (τ)

]
+

+
V 0
x

Eem
xx (0, 0)

[
(TΛ)2K2

mE
m
xy

(
xS
)
Tm (τ) +K2

elE
el
xy

(
xS
)
T el (τ)

]
+

+
V 0
y

Eem
yy (0, 0)

[
(TΛ)2K2

mE
m
yy

(
xS
)
Tm (τ) +K2

elE
el
yy

(
xS
)
T el (τ)

]
(60)

The specific magnetic and electrostatic Eulerian correlations are calculated using (55, 56)
and the general definitions given in (40, 41) and they have the following expressions:

Em
ψx

(
xS
)

= −ySEm
(
xS
)

Eel
Φx

(
xS
)

= ASySEel
(
xS
)

Em
xx

(
xS
)

=
(

1−
(
yS
)2
)
Em

(
xS
)

Eel
xx

(
xS
)

=
[
AS −BS

(
yS
)2
]
Eel
(
xS
)

Em
yy

(
xS
)

=
(

1−
(
xS
)2
)
Em

(
xS
)

(61)

Eel
yy

(
xS
)

=
[
AS −BS

(
xS
)2
]
Eel
(
xS
)

Em
ψy

(
xS
)

= xSEm
(
xS
)

Eel
Φy

(
xS
)

= −ASxSEel
(
xS
)

Em
xy

(
xS
)

= xSySEm
(
xS
)

Eel
xy

(
xS
)

= xSySBSEel
(
xS
)

where we have introduced the functions AS and BS as:

AS =
2α

1 + (xS)2 (62)
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and

BS =
4α (α + 1)(
1 + (xS)2)2 (63)

Using the eqs. (54) and (61-63) the explicit components of the Lagrangian correlations
tensor are:

Lemxx (τ) =

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

x (0; 0)

×
{

Φ0
em

Eem (0, 0)
Eem

Φemx (x, τ) +
V 0
x

Eem
xx (0, 0)

Eem
xx (x, τ) +

V 0
y

Eem
yy (0, 0)

Eem
yx (x, τ)

}
(64)

Lemxy (τ) =

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

x (0; 0)

×
{

Φ0
em

Eem (0, 0)
Eem

Φemy (x, τ) +
V 0
x

Eem
xx (0, 0)

Eem
xy (x, τ) +

V 0
y

Eem
yy (0, 0)

Eem
yy (x, τ)

}
(65)

Lemyx (τ) =

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

y (0; 0)

×
{

Φ0
em

Eem (0, 0)
Eem

Φemx (x, τ) +
V 0
x

Eem
xx (0, 0)

Eem
xx (x, τ) +

V 0
y

Eem
yy (0, 0)

Eem
yx (x, τ)

}
(66)

Lemyy (τ) =

∫
dΦ0

emdV
0P em

0 (V0,Φ0
em)V 0

y (0; 0)

×
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x

Eem
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yy (0, 0)

Eem
yy (x, τ)

}
(67)

Next we choose different subensembles S and study the decorrelation trajectories for
different values of the involved parameters, T, Λ, α, Kel, Km.

5 Results

We have analyzed the influence of the Kubo numbers, of the exponent of the Lorentzian
and, of the specific parameters that characterize the subensemble, on the solutions of the
system (21. As a consequence a set of DCT trajectories and hodographs is obtained. We
have considered in all the analysis two values of the Lorentzian exponent: in red α = 0.5
and in blue α = 2. Moreover we have considered in all the cases that Λ = 1, T = 1.

In all the figures, in subplots (a) are represented the radial solutions of the system (21),
in subplots (b) the poloidal solutions of the system (21), in subplots (c) are represented
the trajectories and in subplots (d) are represented the hodographs.

In Figure 1, the subensemble S is defined by the parameters: Φem (0,0) = Φ0
em =

3.5, Vx (0,0) = 1, Vy (0,0) = 0.1. The values for the level of the electromagnetic
turbulence are given by the following Kubo numbers: Km = Kel = 0.5. It is observed
that in the case of the higher Lorentzian exponent, i.e. α = 2 the trajectory form a closed
loop. Keeping the same Kubo numbers, but looking at smaller value for α (here α = 0.5)
we observe the DCT trajectory comes to a stop before completing a full cycle.

In Figure 2, the same values as in Fig. 1 of the parameters determining the subensem-
ble S are taken except that higher Kubo numbers namely Km = Kel = 3 are considered.
The increase of the turbulence level given by the higher values of the Kubo numbers
(but accordingly slower time evolution) modifies the shapes of the solutions of Eqs. (21),
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Figure 1: Solutions of the system (5), trajectories and the hodographs for Km = Kel = 0.5
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Figure 2: Solutions of the system (5), trajectories and the hodographs for Km = Kel = 3
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Figure 3: Solutions of the system (5), trajectories and the hodographs for Km = Kel = 5
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the trajectories and the hodographs. The trajectories form closed loops for any values
of the Lorentzian exponent but cover different areas. The greater area the smaller the
Lorentzian exponent is.

Figure 3 shows the solution of Eqs. (21), the DCT trajectories, the DCT velocities and
the hodographs for the following parameters specific to the subensemble S: Φem (0,0) =
Φ0
em = 1.5, Vx (0,0) = Vy (0,0) = 1. The asymptotic regimes specific to a subensemble

(i.e. the stopping of the trajectory of the quasiparticle) are reached in poloidal and radial
directions practically at the same asymptotic moment tas = 7. It can then be concluded
that the level of turbulence, the subensembles parameters and the Lorentzian exponents
have no influence on the asymptotic time. As in the previous case, the trajectories are
closed for both exponents α = 0.5 and α = 2 but their radius are smaller the greater
exponent is.

Even higher level of turbulence than considered in the previous cases are used here
i.e. Km = Kel = 5. The trapping phenomena remains but the high level of electromag-
netic turbulence leads to an increased number of oscillations in the solutions both in the
radial and the poloidal directions. For α = 2 (Lorentz exponent) the trapping is more
pronounced than in the case α = 0.5. We can conclude our analysis by the following
statement: for very small values of Kubo numbers the particle motion is very quickly
damped, before the end of a cycle and one could say that it is not influenced by the
landscape of the stochastic potential. On the contrary, for large values of Kubo numbers
the particle goes many times around the cycle before stopping; it thus explores efficiently
the correlated region, and fully feels the effect of trapping. This is the interpretation of
the set of oscillations in Figures 2 and 3.

6 Conclusions

In the present study it has been established that the stochastic magnetic and electrostatic
turbulence provide a decorrelation mechanism for the particle dynamics. It has also been
shown that the trapping effect is more pronounced for larger Kubo numbers. The solutions
of the DCT system begin with an oscillating part, defining a trapping regime always
followed by a stopping asymptotic one. The role of the global trapping is evidenced by
the DCT method. The trapping effect is more pronounced the larger Λ, are, (Km, Kel)
and an influence of the Lorentz exponent on the trapping effect has also been shown.
Physically speaking the trapping of the particles in very slowly fluctuating potentials
necessarily leads to a decrease in the diffusionas compared to rapidly varying potentials.
The larger the intensity of the fluctuations, the longer is the time spent by the particles
around the vortex (trap). An asymptotical vanishing of the diffusion coefficient means that
in the limit of very large Kubo numbers and alpha exponent the system generates a real
particle dynamics of the subdiffusive type. In the ”frozen” state, the majority of particles
is trapped in a rigid, static potential and have no possibility of diffusing. Additional work
is needed to determine the scaling to the low value of the particle diffusion coefficient from
time dependent fields to this kind of “frozen” electric and magnetic fields. A numerical
code has been prepared which will allow the calculation of the diffusion coefficients. The
system of equations is numerically integrated using a fourth order Runge Kutta, adaptive
step-size method.
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