
Balescu Kinetic Equation with Exchange Interaction

V V Belyi 1∗and Yu A Kukharenko2
1
IZMIRAN Russian Academy of Sciences, Troitsk, Moscow,142190, Russia

and Service de Physique Statistique et des Plasmas, CP 231, ULB, 1050 Bruxelles, Belgium

2
UIPTP Russian Academy of Sciences, Moscow, Russia

Abstract

Starting with the quantum BBGKY-hierarchy for the distribution functions, we

have obtained the quantum kinetic equation including the dynamical screening of

the interaction potential, which exactly takes into account the exchange scattering

in the plasma. The collision integral is expressed in terms of the Green function

of the linearized Hartree-Fock equation.The potential energy takes into account the

polarization and exchange interaction too.

1 Introduction

The exchange interaction and dynamical screening are important in the cases of degener-

ate gases and liquids, electrons in metals and in degenerate semiconductors, in quantum

dots. The non-linear kinetic equation taking dynamical screening due to plasma polar-

ization into account for weakly coupled plasma was derived the first time by Balescu

[1] using Prigogine’s diagram techniques and a little bit later by Lenard [2] who solved

the Bogoliubov equation for the pair correlation function in the plasma approximation.

Before Balescu and Lenard the plasma kinetic description was restricted to the Vlasov

equation for distribution function (p r ) with self-consistent field (r ) [3]




(p r ) + v



r
(p r ) + (r )



p
(p r ) = 0 (1)

or to the Landau equation [4]
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(p r ) + v



r
(p r ) + (r )


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=
X


22
2






Z


k4
(kv− kv0)

µ



− 

0

¶
(p r )(p

0 r )kp0 (2)

with a collision integral, which was derived from the Boltzmann equation by expansion

in powers of small momentum transfer. In these conditions, the presence of the long range

Coulomb potential interaction 4
2 leads to divergence of the collision integral for
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small wave-numbers:  ≈ R∞
0

 To avoid this divergence Landau introduced ad hoc

a cut-off at the Debye wave number:  ≈ R max




By contrast, Balescu and Lenard took into account collective interaction of particles in

the collision integral, taking dynamical screening due to plasma polarization into account:

− =
X


22
2






Z


k4
(kv− kv0)
|(kvk)|2

µ



− 

0

¶
(p r )(p

0 r )kp0 (3)

Due to polarization in the collision integral there appears the screened interaction po-

tential 4
2

1

|(kvk)|2 which in the static approximation has the following form
4
2

2

2

1+2

2

. Therefore the divergence in this collision integral for small wave-numbers disappeared.

This kinetic equations are fundamental for plasma physics and are comparable with the

Boltzmann equation for diluted gas.

These results were generalized to the quantum case by Balescu [5] and one year later

by Guernsey [6].




(p ) = 4

X


Z
kq

2
2


k4
(∆(q)−∆(p))

|(∆(p)~k)|2

{(p+ ~k2)(q− ~k2)[1− (p− ~k2)][1− (q+ ~k2)]

−(p− ~k2)(q+ ~k2)[1− (p+ ~k2)][1− (q− ~k2)] (4)

where

∆(p) = (p+~k2)−(p−~k2) (5)

and

(k) = 1 +
X


42
k2

Z
p
(p+ ~k2)− (p− ~k2)

~ −∆(p)

= 1 +
X


42
k2

Z
p
(p+ ~k2)[1− (p− ~k2)]− (p− ~k2)[1− (p+ ~k2)]

~ −∆(p)

(6)

is the dielectric function of the quantum plasma. In that expression they only added

and subtracted the products of the distribution functions, and actually did not take into

account the exchange interaction. Thus in the quantum Balescu-Lenard kinetic equations

the exchange interaction of particles was retained only in the distribution functions. But it

is also necessary to take into account the exchange interaction in the scattering amplitude

and in the dielectric function.

The Balescu-Lenard kinetic equations (classical as well as quantum) take into account

the polarization of the system only in the collision integral, while the thermodynamics cor-

responds to the ideal gas; so the dissipative and non-dissipative phenomena are not treated

on equal footing. This discrepancy can be avoided if non-Marcov effects are considered.

In the plasma approximation we solved the equation for the pair correlation function con-

sidering the first non-Markovian correction. In this way, we obtained a nonlinear kinetic

equation which generalizes the Balescu equation for spatially uniform [7] and spatially

non-uniform [8] weakly non-ideal polarizable plasma. This equation, which included the
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dynamical screening of the interaction potential, described correctly the conservation of

the total energy in a non-trivial way.

Starting with the BBGKY-hierarchy for the quantum distribution functions, we have

obtained the quantum kinetic equation including the dynamical screening of the interac-

tion potential, which exactly takes into account the exchange scattering in a non-trivial

way. The potential energy takes into account the polarization and exchange interaction

too.

2 The quantum BBGKY-hierarchy

The quantum hierarchy for a multicomponent plasma in the operator techniques takes

the form




(1) = [(1) (1)] +

X


(2) [(12) (12)]  (7)




(12) = [(12) (12)] +

X


(3) [(13) + (23) (123)]  (8)

where (1) and (12) are one- and two- particle density matrices, [] is the Poisson

bracket.

(1) =
2(1)

2

(9)

is the kinetic energy,

(12) =
2(1)

2

+
2(2)

2

+ (12) (10)

is the two-particle Hamiltonian, and (12) is the two-particle interaction potential.

Let us introduce the new operators [9]:

(12) = (12) b(12) (11)

(123) = (123) b(123) (12)

where the symmetrization operators are

(12) = 1 +  (12) (13)

(123) = (12) {1 +  (13) +  (23)}  (14)

 = 1()−1();  (12) is the permutation operator. Therefore,




(1) = [(1) (1)] +

X


(2)

h
(12) (12) b(12)i  (15)




b(12) = h(12) b(12)i

+
X


(3)

h
(13) + (23) (1 +  (13) +  (23)) b(123)i  (16)
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The symmetrization operators (13), (14) are convenient in that they give the possibility

to partially transmitting the permutation operator  (12) from the density matrix to the

interaction potentials. The density matrices (12) etc possess the quantum symmetry

properties:  (12)(12) = (12) (12) etc, whereas the density matrices b(12) etc
possess only the classical symmetry properties:  (12) b(12) (12) = b(12) etc. For
the classically symmetric density matrices the usual conditions for disentanglement of

equations hold, which are the same as those in the classical statistics. Specifically, in the

plasma approximation [10], when the triple correlation function is neglected,

b(12) = (1)(2) + b(12) (17)b(123) = (1)(2)(3) + b(12)(3) + b(13)(2) + b(23)(1) (18)

where b(12) is the pair correlation function. By substituting (11), (12), (17) and (18)
into (7) and (8) one obtains a closed set of equations for the one-particle distribution

function and two-particle correlation function.




(1) = [

0
(1) (1)] +

X


(2) [
0
(12) (12)b(12)]  (19)




b(12) = [ 0

(1) + 0
(1)b(12)] +0(12)

+
X


(3){[ 0
(23) (2)b(13)] + [ 0

(13) (1)b(23)]} (20)

where

 0
(1) =

2(1)

2

+ (1) (21)

(1) =
X


(2) [
0
(12) (2)] ≡ 

 (1) + 
 (1) (22)

 0
(12) = (12)(12) (23)

0(12) = [1 + (1)][1 + (2)](12)(1)(2)

−(1)(2)(12)[1 + (1)][1 + (2)] (24)


 (1) =

X


(2) [(12) (2)] (25)

is the Hartree field, i.e. mean self-consistent field [11] and


 (1) =

X


(2) (12) [(12) (2)] (26)

is the Fock field, mean field, taking into account only exchange interaction (Pauli’s prin-

ciple) [11].

In the plasma approximation in (20) the term [ 0
(12)b(12)] which describes the

direct interaction of two particles (1,2) is not taken into account.
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Let us consider the homogeneous case,  
 (1) = 0. Assume (1) to be diagonal with

respect to spin variables. In the p-representation (19) and (20) take the form




(1) =

2

~


X


Z
2(){h1 + 1 2 − 2|b |11 22i

+ h2 − 2 1 + 1|b |11 22i} = (1) (27)




h1 2 |b| 01 02i = [(1) + (2)−(

0
1)−(

0
2)] h1 2 |b| 01 02i

+
X


Z
3

0
3{h2 3 | 0

| 02 03i (02) h1 03 |b)| 01 3i
− h1 3 |b| 01 03i (02) h2 03 | 0

| 02 3i+ h1 3 | 0
| 01 03i (01) h2 03 |b| 02 3i

− h2 3 |b| 02 03i (1) h1 03 | 0
| 01 3i}+ ~ h1 2 |0| 01 02i (28)

where  ≡ (p ) R  ≡P


R
p

(1) = (1) + 

Z
2(

p1 − p2
~

)(2) (29)

is the energy of the quasiparticle,

h1 2 | 0
| 01 02i

= [(
p1 − p01
~

) + (
p1 − p2
~

)](2~)3101202(1 + 2 − 01 − 02) (30)

~ h1 2 |0| 01 02i = h1 2 || 01 02i {(01)(02)[1 + (1)][1 + (2)]

−(1)(2)[1 + (
0
1)][1 + (

0
2)]} (31)

In the Wigner representation the kinetic equation (27) takes the form:




(p) = (p) = 2~2

X


Z
p0k[(k)+(p

0 − p)]b(pp0k) (32)

Here the spin variables are omitted for simplicity.

3 The collision integral for quantum plasma with po-

larization and exchange interaction

The expressions for the collision integral and the internal energy take the forms

()

= −2~
X




Z
Φ(k)p0kq[Φ(k) + Φ(

p0−p
~
)](q+

~k
2
)[1 + (q−~k

2
)]
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{Ψ
(1)
 (p+

~k
2
)

 (k)
[
Γ(p

0 +~k
2
q)

~ −∆(q)
+

Φ(k)

 ( k)
Ψ
(1)

 (p
0+
~k
2
)Ψ(2)

 (q)]
∗

−Ψ
∗(1)
 (p0+~k

2
)

∗ (k)
[
Γ(p+

~k
2
q)

~ −∆(q)
+

Φ(k)

 (k)
Ψ(1)
 (p+

~k
2
)Ψ(2)

 (q)]} (33)



= 2
X


Z


~
p p0kqΦ(k)[Φ(k)+Φ(

p0−p
~
)](q+

~k
2
)[1 + (q−~k

2
)]

1

∗ (k)
Ψ
∗(1)
 (p0)[

Γ(pq)

~ −∆(q)
+

Φ(k)

 (k)
Ψ(1) (p)Ψ

(2)
 (q)] (34)

where the functions Ψ
(1)

0 (p
0), Ψ(2)

0 (p
0),  (k), Γ(pp

0) are determined by (53), (54),
(55), (56) (see the appendix). The complete description of the exchange interaction of

particles is reduced to the solution of the linear integral equation (56)).

The collision integral (33) and the internal energy (34) are expressed by the amplitude

of the scattering interaction Γ(pp
0) which satisfies the linear integral equation (56). The

solution of this equation in the case of Coulomb interaction of the particles is difficult and

requires an appropriate approximation. The simplest approximation is the replacement

of the expression under the integral of (56) by the averaged over the impulse value

Φ(k)(k) =

Z
p00Φ(

p− p00
~

)Γ(p
00p0) (35)

Then, the dielectric function taking into account exchange interaction particles, takes

the form:

 (k) = 1−  (k)[1 +  (k)(k)]−1 (36)

where

 (k) = Φ(k)
X


2

Z
p

∆(p)

~ −∆(p)
(37)

is the polarization.

One form of (k) was found using a variation procedure in the problem of dielectric

function of Hhelium [12]

(k) =
824~4

2
1

 2(k)

Z
pp0

∆k(p)∆k(p
0)

|p− p0|2

× 1

~ −∆(p)
[

1

~ −∆(p0)
− 1

~ −∆(p)
] (38)

Using the expression for the pair correlation function, we find the Markovian collision

integral

(p) = 4
24
Z

Φ2(k)[1−(∆(q)~k)]kq
(∆(q)−∆(p))¯̄̄ e(∆(q)~k)

¯̄̄2
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{(p+~k
2
)(q−~k

2
)[1− (p−~k

2
)][1− (q+

~k
2
)]− (39)

− (p−~k
2
)(q+

~k
2
)[1− (p+

~k
2
)][1− (q−~k

2
)]} (40)

and the internal energy of particles

 = 4
Z
pp0k

Φ2(k)

∆(q)−∆(p)

1¯̄̄ e(∆(q)~k)
¯̄̄2

{(p+~k
2
)(p0−~k

2
)[1− (p−~k

2
)][1− (p0+

~k
2
)]− (41)

− (p−~k
2
)(p0+

~k
2
)[1− (p+

~k
2
)][1− (p0−~k

2
)]} (42)

where

e(k) = 1− (1−(k)) (k) (43)

From the expressions for the internal energy of the particles (41) and for the colli-

sion integral (39) follows that
¯̄̄ e(k)¯̄̄2 plays the role of the screening of the interaction

potential Φ(k). It is interesting to note that (39) and (41) are different from the cor-

responding Balescu expressions in taking into account the exchange interaction in this

screening. Moreover the collision integral (39) contains the additional renormalization of

the interaction (1−(k)). However e(k) does not serve as linear response function,
in contrast to the Hartree-Fock dielectric function  (k) in (36).

In the equilibrium state, expression (41) satisfies the fluctuation-dissipation theorem

since


 (k)¯̄̄ e(k)¯̄̄2 = 

 (k)

 (k)
 (44)

4 Conclusion

Using the operator technique within BBGKY hierarchy we obtained a closed set of equa-

tions for the one- and two- particle density matrices, referring to the plasma approximation

which considers also the exchange interaction. The equation for the pair correlation func-

tion is solved with the help of the resolvent of the Hartree-Fock equation. The expression

obtained for the pair correlation function takes into account the exchange interaction. The

latter is described in the terms of the scattering amplitude which is subject to the integral

equation formulated above. The expression for the collision integral and the internal en-

ergy are obtained with the exchange interaction and polarization taken into account. The

kinetic equation obtained is free of divergencies both at small and large wave numbers.

It completely incorporates the exchange interaction between particles both in the renor-

malization of the potential and of the dielectric permeability. The latter is particularly

important in systems with finite number of electrons.
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Appendix 1

The solution of the equation for the pair correlation function b(pp0k) in the Wigner
form can be expressed in the spatially homogeneous case in terms of the resolvent (28)

and its source (31): b( 0k)
=
X
00

Z
qq000(pp

0qq0k )
0
00(qq

0k)b=0 (45)

 =  + ∆,

~0(pp
0k ) = (k){(p)(p0)[1 + (p+

~k
2
)][1 + (p

0 − ~k
2
)]

−(p+ ~k
2
)(p

0 − ~k
2
)[1 + (p)][1 + (p

0)]} (46)

with the resolvent 00(pp
0qq0k ) in (45) being a product of two resolvents

00(pp
0qq0k − 0 0) = 0(pqk − 0 0)0(p

0q0k − 0 0) (47)

which satisfy the linearized Hartree-Fock equation

[~ +∆(p)]0(pqk  ) = 0(p− q)

+∆(p)
X




Z
p0[Φ(k) + Φ(

p−p0
~
)]0(p

0qk  ) (48)

where

(k) = Φ(k) (49)

∆(p) = (p+
~k
2
)− (p−~k

2
) (50)

(p) =
p2

2

+ 

Z
p0(

p− p0
~

)(p
0) (51)

The solution of (48) takes the form

0(pp
0k  ) =

Γ(pp
0)0

~ −∆0(p0)
+

Φ(k)

 (k)
Ψ(1)
 (p)Ψ

(2)

0 (p
0) (52)

where we introduced the notations

Ψ(1)
 (p) = 

Z
p00

Γ(pp
00)∆(p

00)
~ −∆(p00)

 (53)

Ψ
(2)

0 (p
0) = 0

Z
p00

Γ0(p
00p0)

~ −∆0(p0)
 (54)

and
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 (k) = 1−Φ(k)
X


2

Z
pp0

Γ(pp
0)∆(p

0)
~ −∆(p0)

(55)

is the dielectric function with exchange interaction.

The exchange scattering amplitude Γ(pp
0) for (52-55) satisfies an integral equation,

which contains only the exchange interaction potential:

Γ(pp
0) = (p− p0) + 2

∆(p)

~ −∆(p)

Z
p00Φ(

p− p00
~

)Γ(p
00p0) (56)

Γ(pp
0) depends on k and  as on parameters and is similar to the vertex-function,

well-known in many-particle perturbation theory.

The formulae (52-56) yield the general expression for the pair correlation function with

complete description of the polarization and the exchange interaction of the particles:

0(pp
0k ) = − 

~
Φ(k)

X




Z
q(q+

~k
2
)[1 + (q−~k

2
)]

{ Ψ
(1)
 (p)

 (k)
[
Γ(p

0q)
~ −∆(q)

+
Φ(k)

 (k)
Ψ
(1)

 (p
0)Ψ(2)

 (q)]
∗

− 1

∗ (k)
Ψ
∗(1)
 (p0)[

Γ(pq)

~ −∆(q)
+

Φ(k)

 (k)
Ψ(1)
 (p)Ψ

(2)
 (q)]} (57)
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