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Abstract

Auxiliary plasma heating by radio-frequency waves is a usual procedure in the

modern tokamaks. The entropy production in plasma due to radio-frequency heating

is evaluated in kinetic model. The different terms of the entropy production are

analyzed to reveal the rate of entropy change due to different process in plasma.

The evaluation of the entropy production is very useful in comparing the kinetic

description with the fluid models.

1 Introduction

Applied radio-frequency (rf) waves, especially in the ion cyclotron range of frequencies

(ICRF) could, in principle, provide a flexible and practical means of external transport

barrier control. Experimental results suggest ICRF or ion Bernstein wave-induced trans-

port modifications and/or sheared plasma flows.

Usually short-wavelength modes are required for efficient coupling of wave momentum

to the plasma. To treat short-wavelength modes, a finite Larmor radius, nonlinear kinetic

theory is required.

The framework of our calculation is that of gyrokinetic theory (⊥ ∼ 1 where  is
the gyroradius) and ion-cyclotron frequency waves ( ∼ Ω) with resonant wave—particle

interactions ( − Ω ∼ k) and electromagnetic plasma response. The problem of the

transport in magnetically confined plasma in the presence of radio-frequency waves was

largely discussed in the literature, see for example [1], [2], [3] (only few of many papers).

The problem of the entropy production was also largely discussed, in particular for

plasma turbulence - see for example [4], [5], [6]. The problem of force-flux pairs and the

closing condition in the fluid model was also analyzed. In the present paper we evaluate

the entropy production for magnetically confined plasma in the presence of radio-frequency

waves, but we not discuss here the implications of the turbulence (analyzed previously in

[5]). The plan of the paper is as follows: In section I from the kinetic equation is written

the solution for the distribution function in first two leading orders: one corresponding

to the secular behavior and the second corresponding to more rapid scale time variation

determined by the radio-frequency wave. In the section II, from the kinetic definition of

the entropy and kinetic equation will be obtained the different terms contributing to the

entropy production.
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2 The kinetic equation

We consider a non-ohmic multi-component plasma heated at the ion cyclotron resonance

for species  .

The kinetic equation for the particles of species  ( =  ) that applies in such

conditions is written in conservative form as :


 +∇ · (v ) + 

0
 = 

¡
   

¢− 
   (1)

where the force operator has been split into two contributions: one, 
0 , due to the

equilibrium electric and magnetic field


0 ≡





µ
E0 +

1


v×B0

¶
· 

v
(2)

and the second one, 
 , arising from the RF electromagnetic field


 ≡





µ
E +

1


v×B

¶
· 

v
(3)

with  and  the charge and mass of the particles of species . The non-canonical

phase-space variables are the particle’s position x and velocity v. The operator  is the

collision operator.

The distribution function is splitted into two contributions: one,  corresponding to

the time averaged part (secular behavior) and the second one, , corresponding to the

rapid varying part of the distribution (due to rf waves):

 =  +  (4)

2.1 Solution for perturbed distribution function in presence of

RF waves

The solution for  resulting from (1) in zero order approximation


 +∇ · [v] + 

0
 = 0

and first order


 +∇ · [v] = −

 

is given as :

 = − 



Z
−∞

0
µ
E +

1


v×B

¶
· 




v

= − 



Z
−∞

0
Z

k

Z
E


k ·

∙
I
µ
1− v

0 · k


¶
+
v0k


¸
exp (k ·r0 −  ) · 




v
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where Maxwell’s induction equation

B

k = (k)×E

k

was used and I is the unit dyadic.
We introduce the fixed local reference frame (FLRF)-intrinsically determined by the

geometry of the equilibrium magnetic field- and defined by (e2,e3,b) with b = e2 × e3.
Then

v⊥ = ⊥n1 = ⊥ (e2 cos− e3 sin)
we have

 = − exp (k ·r−  )

∞Z
0

 exp () { cos (+ Ω)

+ sin (+ Ω) +

∙
1




0

k
−  cos (−  + Ω)

¸¾
where

 = k · (r0 − r)−  (
0 − )

= −⊥⊥
Ω

[sin (−  + Ω)− sin (− )] +
¡
 − kk

¢


In the following assume  = 0, and

 =
⊥⊥
Ω

so

exp () = exp (− [sin (+ Ω)− sin]) exp £ ¡ − kk
¢

¤

With 
0 Maxwellian


 = 0

¡
 2



¢−32
exp

Ã
−

2k
 2


− 2⊥
 2


!
(5)

and - see [7] pg 252 -

 =
1



∙




⊥
+

k


µ
⊥




k
− k




⊥

¶¸
= − 2⊥


2



 = −⊥





 =
1



⊥


µ
⊥




k
− k




⊥

¶
= 0

 =

µ
1− Ω



¶
1




0

k
+

Ω



k
⊥

1




0

⊥
= − 2



k
 2





we obtain

k = −





∞Z
0

 exp
£

¡
 − kk

¢

¤
exp (− [sin (+ Ω)− sin])

×
n
−⊥

h

 cos (+ Ω) +


 sin (+ Ω)

i
− k



k

o
where  is the gyrophase angle.
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2.2 Gyrophase averaging

The gyrophase averaging is defined as

­
k

®

=
1

2

2Z
0

 k

that means we must evaluate

­
k

®

= − 1

2




2





∞Z
0

 exp
£

¡
 − kk

¢

¤

×
⎧⎨⎩−2⊥ 



2Z
0

 exp (− [sin (+ Ω)− sin]) cos (+ Ω)

−2⊥


2Z
0

 exp (− [sin (+ Ω)− sin]) sin (+ Ω)

−2k

k

2Z
0

 exp (− [sin (+ Ω)− sin])
⎫⎬⎭

Using the relations, see for example [8]

2Z
0

 exp (− [sin (+ Ω)− sin]) cos (+ Ω) = 2

∞X
=−∞

exp (−Ω) 

2

2Z
0

 exp (− [sin (+ Ω)− sin]) sin (+ Ω) = 2

∞X
=−∞

exp (−Ω)  0
 

2Z
0

 exp (− [sin (+ Ω)− sin]) = 2
∞X

=−∞
exp (−Ω)2

results

­
k

®

=

2


2





∞X
=−∞

n
⊥ 






2 + ⊥


  0

  + k


k 2

o
·

·
∞Z
0

 exp
£

¡
 − kk − Ω

¢

¤

Here

 = () = 

µ
⊥⊥
Ω

¶
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With ∞Z
0

 exp
£

¡
 − kk − Ω

¢

¤
=



 − kk − Ω

and

 2
 =

2



we obtain

­
k

®

=







∞X
=−∞

n³
⊥ 






+ k



k

´
2 + ⊥


  0

 

o 

 − kk − Ω

Restricts the calculus only to  = −1 0 1 results

­
k

®

≈ 







⊥

 12 + k



k (
2
0 + 2

2
1 )

 − kk − Ω

3 Entropy production

A natural definition of the kinetic form of entropy per unit volume of species  of a plasma

is in terms of the gyrophase averaged distribution function 

,

 = −
Z

v 

ln 


(6)

With  the distribution function of species  in absence of rf waves and  the

distribution function of species  interacting with rf waves,

 =  + 

The rate of change of the entropy is

·



≡ −
Z

v
³
1 + ln 


´
 


(7)

Using the kinetic equation (1) in (7) result

·



≡
·



1 +
·



2 +
·



3 +
·



4

with

·



1 ≡ −
Z

v
³
1 + ln 


´


·



2 ≡
Z

v
³
1 + ln 


´
∇ · (v )

·



3 ≡
Z

v
³
1 + ln 


´

0



·



4 ≡
Z

v
³
1 + ln 


´

  
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3.0.1 Evaluation of
·



1

·



1 ≡ −
Z

v
³
1 + ln 


´


Conservation of the particles number leads toZ
v = 0

so
·



1 ≡ −
Z

v ln 

 = −

Z
v ln

¡
 + 

¢


This will describe collisional rate of heat and momentum exchange.

If we put

 = 
   = 

 (8)

then

·



1 ≡ −
Z

v ln
¡

 + 



¢
= −

Z
v ln 

 −
Z

v ln (1 + )

The collisional rate of heat exchange is

−
Z

v

2
(v− u)2 = 



and the collisional rate of momentum exchange is

F
 =

Z
vv



So,

11 = −
Z

v ln 
 =

1


(

 + u
 · F

 )

with X


11 =
X


(
 + u

 · F
 ) = 0

because of energy conservation in the collisions.

The entropy production

12 = −
Z

v ln (1 + )

is due to collisional process and the rf waves.

3.0.2 Evaluation of
·



2

Integrating by parts we obtain

·



2 ≡
Z

v
³
1 + ln 


´
∇ · (v )
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= ∇ ·
Z

v
³
1 + ln 


´
v  −

Z
v v·∇ ln 



= −∇· [J + u] + 2

where

J = −
Z

v (v− u)  
³
1 + ln 


´

represents the conductive entropy flux and

u = −u
Z

v
³
1 + ln 


´
 

is the convective entropy flux. Let us evaluate the entropy source 2 :

2 = −
Z

v v·∇ ln 

= −

Z
vv·∇ ln ( + )

With (8) 2 can be rewritten as

2 = −
Z

vv·∇ ln [
 (1 + )] = 21 + 22

where

21 = −
Z

v  v·∇ ln
 (9)

22 = −
Z

v  v·∇ ln (1 + )

With

∇ ln
 = − 1



∙

1 +

2

µ


2

2
− 5
2


¶¸
∇ (10)

where  is the particle energy and thermodynamic forces 
1 , 


2 are defined as


1 = −

1

0




− 

Φ0


 

2 ≡ −
 ln


(11)

So, from (9) with (10) and (11) result

21 =

Z
v  v· 1



∙

1 +

2

µ


2

2
− 5
2


¶¸
∇

=
1



1

µZ
v  v

¶
·∇

+
1



2

∙Z
v


2

2
 v

¸
·∇

+
1



2

Z
v  v·

µ
−5
2


¶
∇

respective

21 =
1



1 Γ·∇ + 1



2Q

·∇ + 1



2

µ
−5
2


¶
Γ·∇
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21 =
1



∙

1 Γ +

2
 +

2

µ
−5
2


¶
Γ

¸
(12)

where the particle flux in the radial direction is

Γ = Γ·∇ =
µZ

v  v

¶
·∇

and the energy flux in radial direction is

 = Q·∇ =
∙Z

v


2

2
 v

¸
·∇

With forces 
1 , 


2 and fluxes 


1 , 


2 defined as


1 ≡ Γ (13)


2 =  − 5

2
Γ

 (14)

we can write the entropy production 21 in thermodynamic form as

21 =
1



2X
=1


 


 (15)

3.0.3 Evaluation of
·



3

Integrating by parts in
·



3 ≡
Z

v
³
1 + ln 


´

0



we obtain
·



3 = −
Z

v  
0 ln 



Because 
0 do not depend on time can be neglected in the zero order approximation.

3.0.4 Evaluation of
·



4

Integrating by parts in
·



4 ≡
Z

v
³
1 + ln 


´

  

we obtain

·



4 = −
Z

v   



µ
E +

1


v×B

¶
· 

v
ln 



= 41 + 42 + 43

where

41 = − 



Z
v E · 

v
ln 



42 = − 



1



Z
v v×B · 

v
ln 



22



In leader order approximation

41 = − 



Z
v 

µ



⊥



⊥
ln 

 +


k


k
ln 



¶
=

2


2


Z
v 

³
⊥


⊥ + k



k

´
=

2


2


µZ
v ⊥

¶



⊥ +

2


2


µZ
v k

¶




k

=



Γ ·E

and

42 = 0

Some other corrections terms can be appear from

43 = −




Z
v 

µ
E +

1


v×B

¶
· 

v
ln (1 + )

with  defined by (8).

4 Conclusions

In this work we have evaluated in the first significant order the entropy production due

to plasma particles interaction with radio-frequency waves in the magnetically confined

plasma. Both the ‘flux—force’ and ‘dissipation’ expressions are present. The second order

non-linear terms must be also included to describe the influence of the radio-frequency

waves on the transport.
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