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Faculty of Physics, University of Craiova

13 Al. I. Cuza Str., Craiova 200585, Romania
scsararu@central.ucv.ro

Abstract

Massive 2- and 3-forms are analyzed from the point of view of the Hamiltonian quantization
using the gauge-unfixing approach. For both models the gauge-unfixing method finally output a
manifestly Lorentz covariant path-integral.

1 Introduction

The purpose of this paper is to present the problem of the Hamiltonian quantization of the massive
2- and 3-forms in the framework of the gauge-unfixing (GU) approach [1]–[2] based on path integral.
The main idea is to associate with the original second-class theory an equivalent first-class system.
The associated first-class system has to satisfy the following requirements: its number of physical
degrees of freedom coincides with that of the original second-class theory, the algebras of classical
observables are isomorphic and the first-class Hamiltonian restricted to the original constraint surface
reduces to the original canonical Hamiltonian. The above isomorphism renders the equivalence of the
two systems also at the level of the path integral quantization and hence allows the replacement of the
Hamiltonian path integral for the original second-class theory with that of the equivalent first-class
system.

This paper is organized in five sections. In Section 2 we start from a bosonic second-class con-
strained system and briefly expose the GU method [1]–[2] of constructing first-class system equivalent
with the original theory. In Section 3 we apply GU methods to massive 2-forms and meanwhile obtain
the path integrals corresponding to the first-class systems associated with this model. After inte-
grating out the auxiliary fields and performing some field redefinitions, we discover nothing but the
manifestly Lorentz covariant path integrals corresponding to the Lagrangian formulation of the first-
class systems, which reduce to the Lagrangian path integral for Stückelberg-coupled 1- and 2-forms.
In Section 4 we exemplify the GU method in the case of massive 3-forms. Section 5 ends the paper
with the main conclusions.

2 Gauge unfixing method

The starting point is a bosonic dynamic system with the phase-space locally parameterized by n
canonical pairs za =

(
qi, pi

)
, endowed with the canonical Hamiltonian Hc, and subject to the purely

second-class constraints
χα0 (za) ≈ 0, α0 = 1, 2M0, (1)

Assume that one can split the second-class constraint set (1) into two subsets

χα0 (za) ≡
(
Gᾱ0 (za) , C β̄0 (za)

)
≈ 0, ᾱ0, β̄0 = 1,M0. (2)

such that [
Gᾱ0 , Gβ̄0

]
= Dγ̄0

ᾱ0β̄0
Gγ̄0 . (3)
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Relations (3) yield the subset
Gᾱ0 (za) ≈ 0 (4)

to be first-class. The second-class behaviour of the overall constraint set ensures that

Cᾱ0 (za) ≈ 0 (5)

may be regarded as some gauge-fixing conditions for this first-class set.
We introduce an operator X̂ [3] that associates with every smooth function F on the original

phase-space an application X̂F , which is in strong involution with the functions Gᾱ0

X̂F = F − Cᾱ0 [Gᾱ0 , F ] + 1
2Cᾱ0C β̄0

[
Gᾱ0 ,

[
Gβ̄0

, F
]]− · · · , (6)[

X̂F, Gᾱ0

]
= 0. (7)

With the help of this operator we construct a first-class Hamiltonian X̂Hc with respect to (4).
The original second-class theory and respectively the gauge-unfixed system are classically equiva-

lent since they possess the same number of physical degrees of freedom NO = 1
2 (2n− 2M0) = NGU

and the corresponding algebras of classical observables are isomorphic. Consequently, the two systems
become also equivalent at the level of the path integral quantization, which allows one to replace the
Hamiltonian path integral of the original second-class theory

ZO =
∫
D (za, λα0) det

([
Gᾱ0 , C

β̄0

])
×

× exp
[
i
∫

dt
(
q̇ipi −Hc − λα0χα0

)]
, (8)

with that of the gauge-unfixed first-class system

ZGU =
∫
D (

za, λᾱ0
)
(∏

ᾱ0

δ
(
Cᾱ0

)
) (

det
([

Gᾱ0 , C
β̄0

]))
×

× exp
[
i
∫

dt
(
q̇ipi − X̂Hc − λᾱ0Gᾱ0

)]
. (9)

3 Massive 2-forms

We start from the Lagrangian action of massive 2-forms in D ≥ 3 [4]–[5]

SL
0 [Aµν ] =

∫
dDx

(
− 1

12FµνρF
µνρ − m2

4 AµνA
µν

)
. (10)

By performing the canonical analysis of this model [6]-[7], there result the constraints

χ(1)i ≡ π0i ≈ 0, (11)

χ
(2)
i ≡ 2∂jπji −m2A0i ≈ 0, (12)

along with the canonical Hamiltonian

Hc =
∫

dD−1x
(
−πijπ

ij + 1
12FijkF

ijk + m2

4 AµνA
µν − 2A0i∂jπ

ji
)

. (13)

The constraints (11) and (12) are second-class and irreducible.
According to the GU method we consider (12) as the first-class constraint set and the remaining

constraints (11) as the corresponding canonical gauge conditions [8]-[9] and redefine the first-class
constraints as

Gi ≡ − 1
m2

(
2∂jπ

ji −m2A0i
) ≈ 0. (14)
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The first-class Hamiltonian with respect to (14) follows from relation (6)

X̂Hc = Hc −
∫

dD−1yχ
(1)
i (y)

[
Gi (y) ,Hc(y0)

]

+1
2

∫
dD−1ydD−1zχ

(1)
i (y)χ

(1)
j

(
y0, z

) [
Gi (y)

[
Gj

(
y0, z

)
,Hcy

0
]]− · · ·

= Hc −
∫

dD−1y
[
π0i∂jA

ji − 1
2m2 ∂iπj0∂

[iπj]0
]
. (15)

An irreducible set of constraints can always be replaced by a reducible one by introducing constraints
that are consequences of the ones already at hand [10]. In view of this, we supplement (14) with one
more constraint, G ≡ −m2∂iG

i ≈ 0, such that the new constraint set

Gi ≡ − 1
m2

(
2∂jπ

ji −m2A0i
) ≈ 0, (16)

G ≡ −m2∂iA
0i ≈ 0 (17)

remains first-class and, moreover, becomes off-shell first-order reducible, with first-order reducibility
functions

(Zκ) =
(

∂i
1

m2

)
. (18)

At this stage, it is useful to make the canonical transformation

A0i −→ − 1
m2 Πi, π0i −→ m2Bi, (19)

The constraints (16) and (17) become

Gi ≡ − 1
m2

(
2∂jπ

ji + Πi
) ≈ 0, (20)

G ≡ ∂iΠi ≈ 0, (21)

while the first-class Hamiltonian (15) takes the form

HGU =
∫

dD−1y
[
−πijπ

ij + 1
12FijkF

ijk + m2

4 AijA
ij + m2

2 Aij∂
[iBj]

+m2

4 ∂[iBj]∂
[iBj] − 1

2m2 ΠiΠi + 1
m2 Πi

(
2∂jπ

ji + Πi
)]

. (22)

Due to the equivalence between the first-order reducible first-class system and the original second-class
theory, one can replace the Hamiltonian path integral of massive 2-forms with that associated with
the reducible first-class system. The argument of the exponential from the Hamiltonian path integral
of the reducible first-class system read as

SGU =
∫

dDx
[
(∂0Aij) πij + (∂0Bi)Πi + πijπ

ij − 1
12FijkF

ijk

−m2

4 AijA
ij − m2

2 Aij∂
[iBj] − m2

4 ∂[iBj]∂
[iBj] + 1

2m2 ΠiΠi

− 1
m2 Πi

(
2∂jπ

ji + Πi
)

+ 1
m2 λi

(
2∂jπ

ji + Πi
)− λ

(
∂iΠi

)]
. (23)

If we perform the transformation

Πi −→ Πi, λi −→ λ̄i = λi −Πi (24)

in the path integral, the argument of the exponential becomes

S′GU =
∫

dDx
[
(∂0Aij)πij + (∂0Bi)Πi + πijπ

ij − 1
12FijkF

ijk

−m2

4 AijA
ij − m2

2 Aij∂
[iBj] − m2

4 ∂[iBj]∂
[iBj] + 1

2m2 ΠiΠi

+ 1
m2 λ̄i

(
2∂jπ

ji + Πi
)− λ

(
∂iΠi

)]
. (25)
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We enlarge the original phase-space with the Lagrange multipliers
{
λ̄i, λ

}
and with their canonical

momenta
{
pi, p

}
and we add the constraints

pi ≈ 0, p ≈ 0. (26)

The argument of the exponential from the Hamiltonian path integral for the first-class theory with the
phase-space locally parameterized by the fields/momenta

{
Aij , Bi, λ̄i, λ, πij , Πi, pi, p

}
and subject

to the first-class constraints (20), (21), and (26) reads as

S′′GU =
∫

dDx
[
(∂0Aij) πij + (∂0Bi)Πi +

(
∂0λ̄i

)
pi + (∂0λ) p

+πijπ
ij − 1

12FijkF
ijk − m2

4 AijA
ij − m2

2 Aij∂
[iBj]

−m2

4 ∂[iBj]∂
[iBj] + 1

2m2 ΠiΠi

+ 1
m2 λ̄i

(
2∂jπ

ji + Πi
)− λ

(
∂iΠi

)− Λip
i − Λp

]
. (27)

Performing in (27) the integration over
{
πij , Πi, pi, p, Λi,Λ

}
and making the notations

1
m2 λ̄i ≡ −Āi0, λ ≡ −B0, (28)

then (27) can be written as

S′′′GU =
∫

dDx
[
− 1

12FijkF
ijk − 1

4 F̄0ijF̄
0ij − m2

4 AijA
ij − m2

2 Āi0Ā
i0

−m2

2 AijF
ij −m2Āi0F

i0 − m2

4 FijF
ij − m2

2 F0iF
0i

]
, (29)

where

F̄0ij = ∂0Aij + ∂[iĀj]0, Fij = −∂[iBj], F0i = − (∂0Bi − ∂iB0) . (30)
Fij = −∂[iBj], F0i = − (∂0Bi − ∂iB0) . (31)

The functional (29) associated with the reducible first-class system takes now a manifestly Lorentz
covariant form

S̃GU

[
B̄µ, Āµν

]
=

∫
dDx

[− 1
12 F̄µνρF̄

µνρ − 1
4

(
Fµν −mĀµν

) (
Fµν −mĀµν

)]
,

with

Āµν = −Āνµ, Āµν ≡
(
Ā0j , Ajk

)
, F̄µνρ = ∂[µĀνρ], (32)

B̄µ = − 1
mBµ, Fµν = ∂[µB̄ν], (33)

and describes precisely the (Lagrangian) Stückelberg coupling [11] between the one-form B̄µ and the
two-form Āµν .

4 Massive 3-forms

We start from the Lagrangian action of massive 3-forms in D ≥ 4 [4]–[5]

SL
0 [Aµνρ] =

∫
dDx

(
− 1

48FµνρλFµνρλ − m2

12 AµνρA
µνρ

)
. (34)

By performing the canonical analysis of this model [6]-[7], there result the constraints

χ(1)ij ≡ π0ij ≈ 0, (35)

χ
(2)
ij ≡ 3∂kπkij − m2

2 A0ij ≈ 0, (36)
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along with the canonical Hamiltonian

Hc =
∫

dD−1x
(
−3πijkπ

ijk + 1
48FijkF

ijk + m2

12 AµνρA
µνρ + ∂[kAij]π

kij
)

. (37)

According to the GU method we consider (36) as the first-class constraint set and the remaining
constraints (35) as the corresponding canonical gauge conditions [8]-[9] and redefine the first-class
constraints as

Gij ≡ − 1
m2

(
3∂kπ

kij − m2

2 A0ij
)
≈ 0. (38)

The first-class Hamiltonian with respect to (38) follows from relation (6)

X̂Hc = Hc −
∫

dD−1yχ
(1)
ij (y)

[
Gij (y) , Hc(y0)

]

+1
2

∫
dD−1ydD−1zχ

(1)
ij (y) χ

(1)
kl

(
y0, z

) [
Gij (y) ,

[
Gkl

(
y0, z

)
,Hc

(
y0

)]]− · · ·

= Hc −
∫

dD−1y
[

1
2π0ij∂kA

kij − 1
4m2 ∂iπjk0∂

[iπjk]0
]
. (39)

An irreducible set of constraints can always be replaced by a reducible one by introducing constraints
that are consequences of the ones already at hand [10]. In view of this, we supplement constraints
(38) with one more constraint, Gi ≡ −m2

2 ∂jG
ji ≈ 0, such that the new constraint set

Gij ≡ − 1
m2

(
3∂kπ

kij − m2

2 A0ij
)
≈ 0, (40)

Gi ≡ −m2

2 ∂jA
0ji ≈ 0 (41)

remains first-class and, moreover, becomes off-shell second-order reducible. At this stage, it is useful
to make the canonical transformation

A0ij −→ − 1
m2 Πij , π0ij −→ m2Bij , (42)

The constraints (40) and (41) become

Gij ≡ − 1
m2

(
3∂jπ

ji + 1
2Πij

) ≈ 0, (43)

Gi ≡ 1
2∂jΠji ≈ 0, (44)

while the first-class Hamiltonian (39) takes the form

HGU =
∫

dD−1y
[
−3πijkπ

ijk + 1
48FijklF

ijkl + m2

12 AijkA
ijk

+m2

6 Aijk∂
[iBjk] + m2

12 ∂[iBjk]∂
[iBjk]

− 1
4m2 ΠijΠij + 1

m2 Πij

(
3∂kπ

kij + 1
2Πij

)]
. (45)

Due to the equivalence between the first-order reducible first-class system and the original second-class
theory, one can replace the Hamiltonian path integral of massive 3-forms with that associated with
the reducible first-class system. The argument of the exponential from the Hamiltonian path integral
of the reducible first-class system read as

SGU =
∫

dDx
[
(∂0Aijk) πijk + (∂0Bij)Πij + 3πijkπ

ijk

− 1
48FijklF

ijkl − m2

12 AijkA
ijk − m2

6 Aijk∂
[iBjk]

−m2

12 ∂[iBjk]∂
[iBjk] + 1

4m2 ΠijΠij − 1
m2 Πij

(
3∂kπ

kij + 1
2Πij

)

+ 1
m2 λij

(
3∂kπ

kij + 1
2Πij

)
− 1

2λi

(
∂jΠji

)]
. (46)
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If we perform the transformation

Πij −→ Πij , λij −→ λ̄ij = λij −Πij (47)

in the path integral, the argument of the exponential becomes

S′GU =
∫

dDx
[
(∂0Aijk) πijk + (∂0Bij)Πij + 3πijkπ

ijk − 1
48FijklF

ijkl

−m2

12 AijkA
ijk − m2

6 Aijk∂
[iBjk] − m2

12 ∂[iBjk]∂
[iBjk]

+ 1
4m2 ΠijΠij + 1

m2 λ̄ij

(
3∂kπ

kij + 1
2Πij

)
− 1

2λi

(
∂jΠji

)]
. (48)

We enlarge the original phase-space with the Lagrange multipliers
{
λ̄ij , λi

}
and with their canonical

momenta
{
pij , pi

}
and we add the constraints

pij ≈ 0, pi ≈ 0. (49)

The argument of the exponential from the Hamiltonian path integral for the first-class theory with
the phase-space locally parameterized by {Aijk, Bij , λ̄ij , λi, πijk, Πij , pij , pi} and subject to the
first-class constraints (20), (44), and (49) reads as

S′′GU =
∫

dDx
[
(∂0Aijk) πijk + (∂0Bij)Πij +

(
∂0λ̄ij

)
pij + (∂0λi) pi

+3πijkπ
ijk − 1

48FijklF
ijkl − m2

12 AijkA
ijk − m2

6 Aijk∂
[iBjk]

−m2

12 ∂[iBjk]∂
[iBjk] + 1

4m2 ΠijΠij + 1
m2 λ̄ij

(
3∂kπ

kij + 1
2Πij

)

−1
2λj

(
∂jΠji

)− Λijp
ij − Λip

i
]
. (50)

Performing in (50) the integration over
{
πijk, Πij , pij , pi, Λij ,Λi

}
and making the notations

1
m2 λ̄ij ≡ Āij0,

1
4λi ≡ Bi0, (51)

then (50) can be written as

S′′′GU =
∫

dDx
[
− 1

48FijklF
ijkl − 1

12 F̄0ijkF̄
0ijk − m2

12 AijkA
ijk − m2

4 Āij0Ā
ij0

−m2

6 AijkF
ijk − m2

2 Āij0F
ij0 − m2

12 FijkF
ijk − m2

4 F0ijF
0ij

]
, (52)

where

F̄0ijk = ∂0Aijk − ∂[iĀjk]0, (53)
Fijk = ∂[iBjk], F0i = 2

(
∂0Bij + ∂[iBj]0

)
. (54)

The functional (52) associated with the reducible first-class system takes now a manifestly Lorentz
covariant form

S′′′GU

[
B̄µν , Āµνρ

]
=

∫
dDx

[
− 1

48 F̄µνρλF̄µνρλ

− 1
12

(
Fµνρ −mĀµνρ

) (
Fµνρ −mĀµνρ

)]
, (55)

with

Āµνρ ≡ (
Ā0ij , Aijk

)
, F̄µνρλ = ∂[µĀνρλ], (56)

B̄µν = − 1
mBµν , Fµνρ = ∂[µB̄νρ], (57)

and describes precisely the (Lagrangian) Stückelberg coupling [11] between the 2-form B̄µν and 3-form
Āµνρ.
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5 Conclusion

In this paper we realized the path-integral quantization of the massive 2- and 3-forms using GU
method. In the framework of GU approach, starting from the original canonical Hamiltonian, we
generated a first-class Hamiltonian with respect to the first-class constraint subset. We built the
Hamiltonian path integral of the GU first-class system and then eliminated the auxiliary fields and
performed some variable redefinitions such that the path integral finally takes a manifestly Lorentz
covariant form. It is interesting to remark that this approaches require an appropriate extension of
the phase-space in order to render a manifestly covariant path integral. In the case of massive 2-forms
the GU method allowed the identification of the Lagrangian path integral for Stückelberg-coupled 1-
and 2-forms and for massive 3-forms the GU approach allowed the identification of the Lagrangian
path integral for Stückelberg-coupled 2- and 3-forms.
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