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Abstract

The cross-couplings between one Weyl graviton [described in the free limit by the linearized Weyl
actions] and various type of massless spinor-vectors are studied with the help of the deformation
theory based on local BRST cohomology. Under the hypotheses of locality, analyticity of the
interactions in the coupling constant, Poincaré invariance, (background) Lorentz invariance, and
the preservation of the number of derivatives on each field, we prove that there are no consistent
cross-interactions one Weyl graviton and a massless spin-3/2 particle.

PACS number: 11.10.Ef

1 Introduction

The study of Weyl gravitons is important in view of the remarkable properties of conformal super-
gravity [1], as well as by the renewed interest in Weyl gravity [2] in connection with the ADS/CFT
correspondence. On the other hand, the construction of conformal SUGRA models [3, 4, 5, 6], re-
quires the investigation of consistent couplings that can be introduced between one Weyl graviton and
a gauge spinor-vector.

The aim of this paper is to analyze the non-trivial cross-couplings that can be introduced between
one Weyl graviton [described in the free limit by the linearized Weyl action] and one gauge spinor-
vector [described in the free limit either by the Rarita-Schwinger action or by a Lagrangian action with
three spacetime derivatives]. Thus, under the hypotheses of locality, analyticity of the interactions in
the coupling constant, Poincaré invariance, (background) Lorentz invariance, and the preservation of
the number of derivatives on each field, we prove that there are no consistent cross-interactions between
one Weyl graviton and one Rarita-Schwinger/ Q-gravitino. Our results are obtained in the context of
the deformation technique [7] combined with the local BRST cohomology [8]. The announced results
strongly prove that a minimal conformal SUGRA model requires, besides a Weyl field and a gauge
spinor-vector, other gauge/matter fields.

This paper is organized in five sections. In Section 2 briefly addresses the deformation procedure
based on BRST symmetry. Section 3 is dedicated to the construction of the BRST symmetries of the
free theories analyzed: i) one Weyl field and one massless Rarita-Schwinger field and ii) one Weyl field
and one Q-gravitino field. In Section 4 we prove that there are no consistent cross-interactions between
one Weyl graviton and one Rarita-Schwinger/ Q-gravitino. Section 5 exposes the main conclusions of
the paper.
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2 Construction of consistent interactions

2.1 Setting the problem

We begin with a “free” gauge theory, described by a Lagrangian action S0 [Φα0 ], which is assumed to
be invariant under some gauge transformations

δεΦα0 = Zα0
α1

(Φ) εα1 ,
δS0

δΦα0
Zα0

α1
(Φ) = 0, (1)

such that the gauge algebra reads as

Zβ0
α1

(Φ)
δZα0

β1
(Φ)

δΦβ0
− Zβ0

β1
(Φ)

δZα0
α1

(Φ)
δΦβ0

=

Cλ1
α1β1

(Φ)Zα0
λ1

(Φ) + Mα0β0

α1β1
(Φ)

δS0

δΦβ0
. (2)

We consider the problem of constructing consistent interactions among the fields Φα0 such that the
couplings preserve the field spectrum and the number of the independent gauge symmetries. In view
of this, we deform the original action S0

S0 −→ S̄0 = S0 + λ
(1)

S0 + λ2
(2)

S0 + · · · (3)

and the original gauge symmetries,

Zα0
α1
−→ Z̄α0

α1
= Zα0

α1
+ λ

(1)

Z

α0

α1
+ λ2

(2)

Z

α0

α1
+ · · · (4)

in such a way that the new gauge transformations δ̄εΦα0 = Z̄α0
α1

εα1 are indeed gauge symmetries of
the full action (3)

δ

(
S0 + λ

(1)

S0 + λ2
(2)

S0 + · · ·
)

δΦα0

(
Zα0

α1
+ λ

(1)

Z

α0

α1
+ λ2

(2)

Z

α0

α1
+ · · ·

)
= 0. (5)

By projecting the equation (5) on the various powers in the deformation parameter [also known as
coupling constant] we obtain an equivalent tower of equations that simultaneously involves the objects
(k)

S0 and
(k)

Z

α0

α1
.

As it will be seen below, a more convenient way to construct the consistent interactions relies on
the cohomological approach, based on the BRST symmetry. The cohomological approach systematizes
the recursive construction to co-cycles of the BRST differential. Finally, by reformulating the problem
of consistent interactions at a cohomological level, one can bring in the powerful tools of homological
algebra.

2.2 Cohomological reformulation

At the level of the BRST formalism, the entire gauge structure of a theory is completely captured by
the BRST differential, s. The main features of s are its nilpotency, s2 = 0, and canonical action [in a
structure named antibracket]. Denoting by (, ) the antibracket, and by S the canonical generator of
the Lagrangian BRST symmetry

sF = (F, S) (6)

the nilpotency of s is equivalent to the classical master equation

(S, S) = 0. (7)
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In agreement with the structure (1)–(2) of the gauge algebra, the solution to the master equation (7)
starts like

S = S0 + Φ∗α0
Zα0

α1
ηα1 +

1
2

(
η∗λ1

Cλ1
α1β1

− 1
2
Φ∗α0

Φ∗β0
Mα0β0

α1β1

)
ηα1ηβ1 + · · · , (8)

where Φ∗α0
represent the antifields associated with the original fields, ηα1 are the ghosts corresponding

to the gauge parameters εα1 , and η∗λ1
denote the antifields of the ghosts.

Due to the fact that the solution to the master equation contains all the information on the gauge
structure of a given theory, we can reformulate the problem of introducing consistent interactions as a
deformation problem of the solution to the master equation corresponding to the “free” theory. If an
interacting gauge theory can be consistently constructed, then the solution S to the master equation
associated with the “free” theory can be deformed into a solution S̄

S → S̄ = S + λS1 + λ2S2 + · · ·
= S + λ

∫
dDx a + λ2

∫
dDx b + λ3

∫
dDx c · · · , (9)

of the master equation for the deformed theory
(
S̄, S̄

)
= 0, (10)

such that both the ghost and antifield spectra of the initial theory are preserved. The equation (10)
splits, according to the various orders in λ, into

(S, S) = 0, (11)
2 (S1, S) = 0, (12)

2 (S2, S) + (S1, S1) = 0, (13)
...

If we denote by ∆ the nonintegrated density of the antibracket (S1, S1) then the local expressions
of the equations (12)–(13) are

sa = ∂µmµ, (14)
2sb + ∆ = ∂µnµ, (15)

...

were mµ and nµ are some local currents.
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3 BRST symmetries of the free models

3.1 Linearized Weyl graviton and massless Rarita-Schwinger gravitino

The Lagrangian action of the ”free” theory is written as the sum between the linearized Weyl gravity
action [9] and the massless Rarita-Schwinger action [10]

SW,RS
0 [hµν , ψµ] = 1

2

∫
d4x

(
WµναβWµναβ − iψ̄µγµνρ∂νψρ

)
, (16)

where Wµναβ is the linearized Weyl tensor in four space-time dimensions, given in terms of the lin-
earized Riemann tensor Rµναβ and of its traces by

Wµναβ = Rµναβ − 1
2

(
σµ[αRβ]ν − σν[αRβ]µ

)
+ 1

6Rσµ[ασβ]ν . (17)

Throughout the paper we work with the flat metric of ‘mostly minus’ signature σµν = (+ − −−).
The notation [µ . . . ν] signifies full antisymmetry with respect to the indices between brackets without
normalization factors [i.e. the independent terms appear only once and are not multiplied by overall
numerical factors]. The linearized Riemann tensor is expressed by

Rµναβ = 1
2 (∂µ∂βhνα + ∂ν∂αhµβ − ∂ν∂βhµα − ∂µ∂αhνβ)

≡ 1
2∂[µhν][α,β], (18)

while its simple and respectively double traces read as

Rµν = σαβRµανβ, R = σµνRµν . (19)

The linearized Weyl tensor can be also expressed in terms of the symmetric tensor Kµν like

Wµναβ = Rµναβ −
(
σµ[αKβ]ν − σν[αKβ]µ

)
, (20)

where
Kµν = 1

2

(Rµν − 1
6σµνR

)
. (21)

The spinor-vector ψµ has [Majorana] real components and the γ-matrices are in the Majorana repre-
sentation

γ∗µ = −γµ, γT
µ = −γ0γµγ0,

(
µ = 0, 3

)
, (22)

where ∗ and T in (22) signifies the operations of complex conjugation and respectively of transpo-
sition. The theory described by (16) possesses an irreducible and abelian generating set of gauge
transformations

δε,θhµν = ∂(µεν) + 2σµνε, (23)
δε,θψµ = ∂µθ, (24)

where the gauge parameters εµ [responsible for so-called linearized version of the diffeomorphisms]
and ε [corresponding for the so-called conformal invariance of Weyl theory] are bosonic and θ is a
fermionic spinor with real components. The notation (µν) signifies symmetry with respect to the
indices between parentheses without the factor 1/2.

The BRST generators together with their degrees and behavior under the complex involution are
listed below

hµν ψµ ηµ ξ C h∗µν ψ∗µ η∗µ ξ∗ C∗

ε 0 1 1 1 0 1 0 0 0 1
agh 0 0 0 0 0 1 1 2 2 2
pgh 0 0 1 1 1 0 0 0 0 0
? + + + + − − − − − +
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Since the gauge generators of the free theory are field independent, it follows that the BRST
differential simply reduces to

s = δ + γ, (25)

where δ represents the Koszul-Tate differential and γ stands for the exterior derivative along the gauge
orbits. In our case the solution to the master equation reads as

SW,RS = SW,RS
0 [hµν , ψµ] +

∫
d4x

[
h∗µν

(
∂(µην) + 2σµνξ

)
+ ψ∗µ∂µC

]
. (26)

3.2 Linearized Weyl graviton and massless Q-gravitino

The Lagrangian action of the ”free” theory is written as the sum between the linearized Weyl gravity
action [9] and the massless Q-gravitino action [1]

SW,Q
0 [hµν , ψµ] = 1

2

∫
d4x

(
WµναβWµναβ − 8iφ̄µγµνρ∂νφρ

)
, (27)

where Wµναβ are expressed in (17) and φµ are the components of a Majorana spinor-vector

φµ =
i
3

(
γρ∂[ρψµ] +

1
2
γµνρ∂

νψρ

)
. (28)

The action (27) is invariant under the irreducible and abelian generating set of gauge transforma-
tions consisting in (23) and

δε,θψµ = ∂µθ + iγµε, (29)

where θ and ε are fermionic spinors with real components.
The BRST generators together with their degrees and behavior under the complex involution are

listed below

hµν ψµ ηµ ξ C χ h∗µν ψ∗µ η∗µ ξ∗ C∗ χ∗

ε 0 1 1 1 0 0 1 0 0 0 1 1
agh 0 0 0 0 0 0 1 1 2 2 2 2
pgh 0 0 1 1 1 1 0 0 0 0 0 0
? + + + + − − − − − − + +

Since the gauge generators of the free theory are field independent, it follows that the BRST
differential simply reduces to (25). In the present situation, the solution to the master equation reads
as

SW,Q = SW,Q
0 [hµν , ψµ] +

∫
d4x

[
h∗µν

(
∂(µην) + 2σµνξ

)
+ ψ∗µ (∂µC + iγµχ)

]
. (30)

4 Results

4.1 Case I: Weyl and Rarita-Schwinger fields

4.1.1 First-order deformation

The non-integrated density of the first-order deformation [the solution to (14)] can be naturally de-
composed as

a = aRS + aW + aW−RS. (31)

The first term in the right hand side of (31) depends only on the BRST generators due to the Rarita-
Schwinger field, the second one contains only BRST generators due to the Weyl field and the last term
in the right hand side on (31) effectively mixes both sectors. Each of the terms in the right hand side
of (31) satisfies an individual equation of the type (14) [obtained by the projection of (14) on various
sectors].
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The piece aRS is known [11] that can be chosen to be trivial

aRS = 0 (32)

and aW [9] reads as

aW = η∗µ
(

1
2
ην∂[µην] + ηµξ

)
− ξ∗ηµ∂µξ

−1
2
h∗µνηρ

(
∂(µhν)ρ − 2∂ρhµν

)

+2h∗µνhµνξ +
1
2
h∗µνhρ(µ∂ν)η

ρ + aW
0 (33)

where aW
0 is the cubic vertex of the Weyl Lagrangian density.

It can be shown that the last term in the right hand side of (31) can be decomposed accordingly
antighost number as

aW−RS =
2∑

i=0

aW−RS
i , agh

(
aW−RS

i

)
= pgh

(
aW−RS

i

)
= i, i = 0, 2, (34)

where the terms in (34) are subject to the equations

γaW−RS
2 = 0, (35)

δaW−RS
i + γaW−RS

i−1 = ∂µ(i−1)
m µ, i = 1, 2. (36)

The results concerning the pieces of the non-integrated density of the first-order deformation in
the interacting sector are summarized in the following theorems [12].

Theorem 1 Without any derivative assumption, the decomposition (34) reduces to

aW−RS = aW−RS
0 , (37)

where aW−RS
0 satisfies the equation

γaW−RS
0 = ∂µ(0)

mµ. (38)

Theorem 2 The general solution to the equation (38) that satisfies the assumptions made in the
beginning [including the derivative order hypothesis] reduces to the trivial one

aW−RS
0 = 0. (39)

4.1.2 Higher-order deformations

On behalf of the outcomes concerning first-order deformations, it results that the second order-
deformation reduces to

b = bW (40)

and consequently the higher-order deformations depend only on the BRST generators in the Weyl.
These imply that the deformed solution of the master equation reduces to

S̄W,RS = S̄W +
∫

d4x

(
− i

2
ψ̄µγµνρ∂νψρ + ψ∗µ∂µC

)
, (41)

where S̄W represents the solution of the master equation corresponding to Weyl gravity, written in
terms of

gµν = σµν + λhµν . (42)
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4.2 Case II: Weyl and Q-gravitino fields

4.2.1 First-order deformation

As in the first case, the non-integrated density of the first-order deformation reduces to

a = aQ + aW + aW−Q. (43)

The first term in the right hand side of (43) depends only on the BRST generators due to the Q-
gravition field, the second one contains only BRST generators due to the Weyl field and the last term
in the right hand side on (43) effectively mixes both sectors. As in the previous situation, each of the
terms in the right hand side of (43) satisfies an individual equation of the type (14).

The first-term in the right-hand side of the decomposition (43), that comply with the assumptions
made in the beginning, reads as

aQ = q1FµνFµν + q2Fµνγ
µνρλFρλ (44)

where q1 and q2 are arbitrary real constants and the objects Fµν are

Fµν = ∂[µψν] + iγ[µφν]. (45)

The second term in (43) is expressed by (33).
The results concerning the pieces of the non-integrated density of the first-order deformation in

the interacting sector are summarized in the following theorem.

Theorem 3 The general solution of the equation (14) in the interacting sector that satisfies the as-
sumptions made in the beginning [including the derivative order hypothesis] is parametrized by a real
constant and its concrete form is reads as

aW−Q = k

{
i
2
η∗µC̄γµC − ξ∗C̄χ + C∗

[
Cξ +

1
4
γµνC∂[µην] + 2 (∂µC) ηµ

]

+χ∗
[
iγµC∂µξ − χξ + 2 (∂µχ) ηµ +

1
4
γµνχ∂[µην]

]

+ψ∗µ
[
ψν∂[µην] + 2 (∂νψµ) ην − ψµξ − (∂νC) hµν

−1
4
γαβ

(
C∂[αhβ]µ − ψµ∂[µην]

)]− h∗µνC̄γ(µψν)

−2iWµανβ
[
ψ̄µ

(
γα∂[νψβ] + 2γβ∂νψα

)− ψ̄µγαFνβ

]

+
[(

∂[αhβ]ν

)
ψ̄µγαβ + 4hµρ

(
∂ρψ̄ν

)− 2h
(
∂[µψ̄ν]

)− 2
(
∂[µhν]ρ

)
ψρ

+2hF̄µν

]
F̂µν − 2

[
2iKνρψ̄µγρ − 1

2
(
∂[αhβ]µ

)
φ̄νγ

αβ +
(
∂[µhν]ρ

)
φ̄ρ

+2 (∂νh− ∂ρhνρ) φ̄µ

]Fµν − 4φ̄ν (∂ρFµν) hµρ

}
. (46)

4.2.2 Higher-order deformations

The nonintegrated density of the second-order deformation admits a decomposition similar to (43)

b = bQ + bW + bW−Q. (47)

The terms in the right-hand side of (47) are subject to the equations

2sbQ + ∆Q = ∂µnQ
µ , (48)

2sbW + ∆W = ∂µnW
µ , (49)

2sbW−Q + ∆W−Q = ∂µnW−Q
µ . (50)
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In (48)–(50) ∆Q, ∆W and ∆W−Q represent the projections of ∆ on various sectors. By direct compu-
tation it infers that ∆Q admits the development [according with antighost number]

∆Q = ∆Q
0 + ∆Q

1 + ∆Q
2 (51)

that induces a similar decomposition for bQ

bQ = bQ
0 + bQ

1 + bQ
2 . (52)

Inserting (51) and (52) in (48) and projecting the obtained equation on various antighost numbers,
we derive the tower of equations

2γbQ
2 + ∆Q

2 = ∂µ(2)
n

Q

µ , (53)

2δbQ
2 + 2γbQ

1 + ∆Q
1 = ∂µ(1)

n
Q

µ , (54)

2δbQ
1 + 2γbQ

0 + ∆Q
0 = ∂µ(0)

n
Q

µ . (55)

According to (53), ∆Q
2 has to be γ-exact modulo d. But, by direct computation we get

∆Q
2 = γ

{
ik2

[
C∗ (

2ψµC̄γµC − γµνCC̄γµψν

)

+2χ∗γµC
(
χ̄ψµ − C̄φµ

)
+ χ∗

(
2φµC̄γµC − γµνχC̄γµψν

)]}

+
3k2

4
[
C∗ (

2γµχC̄γµC + γµνχC̄γµνC
)

+χ∗ (γµCχ̄γµχ + γµνCχ̄γµνχ) . (56)

Comparing (56) with (53) we infer that k must vanishes

k = 0. (57)

Replacing the result (57) into (46) we conclude

aW−Q = 0. (58)

The last result together with (44) reduce the decomposition (47) to

b = bW (59)

and consequently the higher-order deformations depend only on the BRST generators in the Weyl.
These imply that the deformed solution of the master equation reduces to

S̄W,Q = S̄W +
∫

d4x
[−4iφ̄µγµνρ∂νφρ + ψ∗µ (∂µC + iγµχ)

+λ
(
q1FµνFµν + q2Fµνγ

µνρλFρλ

)]
, (60)

where S̄W has the same significance as in the above.

5 Conclusion

To conclude with, in the above we have investigated the cross-couplings that can be introduced be-
tween the Weyl graviton and the massless spin-3/2 fields from the BRST formalism point of view.
Thus, under the general conditions of locality, smoothness, (background) Lorentz invariance, Poincaré
invariance and preservation of the number of derivatives with respect to each field [the last hypothesis
was made only in antighost number zero], we have proved that there are no such cross-couplings. This
represents an elegant proof of the fact that a minimal conformal SUGRA model requires, besides a
Weyl field and a gauge spinor-vector, other gauge/matter fields.

287



References

[1] E. S. Fradkin, A. A. Tseytlin, Phys. Rept. 119 (1985) 233.

[2] V. Balasubramanian, E. Gimon, D. Minic, J. Rahmfeld, Phys. Rev. D63 (2001) 104009, hep-
th/0007211.

[3] E. Cremmer, S. Ferrara, L. Girardello, A. van Proeyen, Phys. Lett. B116 (1982) 231.

[4] E. Cremmer, S. Ferrara, L. Girardello, A. van Proeyen, Nucl. Phys. B212 (1983) 413.

[5] S. Deser, J. H. Kay, K. S. Stelle, Phys. Rev. D16 (1977) 2448.

[6] S. Deser, A. Waldron, Phys. Lett. B501 (2001) 134, hep-th/0012014.

[7] G. Barnich, M. Henneaux, Phys. Lett. B311 (1993) 123.

[8] G. Barnich, F. Brandt, M. Henneaux, Phys. Rept. 338 (2000) 439–569.

[9] N. Boulanger, M. Henneaux, Annalen Phys. 10 (2001) 935, hep-th/0106065.

[10] W. Rarita, J. Schwinger, Phys. Rev. D60 (1941) 61.

[11] N. Boulanger, M. Esole, Class. Quantum Grav. 19 (2002) 2107, gr-qc/0110072.

[12] C. Bizdadea, E. M. Cioroianu, A. C. Lungu, S. C. Sararu, Annalen Phys. 15 (2006) 416, arXiv:
0704.2658 [hep-th]

288




