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Abstract

The paper will investigate a special type of nonlinear equation, the transfer equation with power
law nonlinearities. We shall start with the Lie symmetry problem and then we shall try to generalize
the equation towards a whole class of nonlinear equations with the same type of symmetries. We
shall apply the so-called inverse problem and we shall see that from the symmetry point of view
the transfer equation belongs to the class of nonlinear heat equations. The importance of our
investigation is connected with the possibility of reducing the initial equation to a simpler one by
using the similarity reduction procedure and, by that, of obtaining particular solutions which can
not be deduced directly.
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1 Introduction

The aim of the paper consists in the investigation of the classical symmetries of the 2D nonlinear
mass/heat transport equation:

ut = ∂x(αxsux) + ∂y(βypuy) + f(u) (1)

This equation has always played an important role in the formation of a correct understanding of
qualitative features of various transport processes in chemical engineering, thermophysics, and power
engineering. In non-homogeneous media, the diffusion coefficients may depend on coordinates and
even on temperature. There are numerous approximation formulas (among them linear, power-low and
exponential) describing the dependence of the transfer coefficients on temperature or concentration.
This equation was intensively studied and particular class of solutions have been noted. In the case
s 6= p 6= 2, in ”Handbook of Nonlinear Partial Differential Equations” (A. D. Polyanin and V. F.
Zaitsev, Chapman & Hall/CRC Press, Boca Raton, (2004), ISBN I-58488-355-3) was shown that the
equation (1) can be brought by similarity reduction to the following 1D equation:

ut = u2ζ +
M

ζ
uζ + f(u), M =

4− sp

(2− s)(2− p)
(2)

We shall add to these results an equivalent 1D equation corresponding to the case s = p = 2. Moreover,
we shall obtain for various particular cases of s, p, f(u) different symmetry groups, invariants and
particular solutions. This will be done in the next section, and the inverse symmetry problem for the
model will be investigated in the third section. Some concluding remarks will end the paper.

2 The Lie symmetry problem

Let us consider the 2D transfer equation with power-law nonlinearities (1) with α = β = 1, that is an
equation of the form:

ut = ∂x(xsux) + ∂y(ypuy) + f(u) (3)

with s, p arbitrary constants and f(u) an arbitrary function.
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The general expression of the classical Lie operator which leaves (3) invariant is:

U(x, y, t, u) = ϕ(x, y, t, u)
∂

∂t
+ ξ(x, y, t, u)

∂

∂x
+ η(x, y, t, u)

∂

∂y
+ σ(x, y, t, u)

∂

∂u
(4)

Following the Lie symmetry theory, the invariance condition of the equation (3) is given by the relation:

0 = U (2)[ut − ∂x(xsux) + ∂y(ypuy) + f(u)] (5)

where U (2) is the second order extension of the operator (4).
The latter relation has the equivalent expression:

sx(s−1)ξu2x + s(s− 1)x(s−2)ξux + py(p−1)ηu2y + p(p− 1)y(p−2)ηuy+

+ḟ(u)σ − σt + sx(s−1)σx + py(p−1)σy + xsσ2x + ypσ2y = 0 (6)

The coefficient functions σt, σx, σy, σ2x, σ2y appear in the second extension U (2) and their general
expressions are given by the general formulas:

σt = Dt[σ − ϕut − ξux − ηuy] + ϕu2t + ξuxt + ηuyt

σx = Dx[σ − ϕut − ξux − ηuy] + ϕutx + ξu2x + ηuxy

σy = Dy[σ − ϕut − ξux − ηuy] + ϕuty + ξuxy + ηu2y (7)
σ2x = D2x[σ − ϕut − ξux − ηuy] + ϕutxx + ξuxxx + ηuxxy

σ2y = D2y[σ − ϕut − ξux − ηuy] + ϕutyy + ξuxyy + ηuyyy

By replacing the expressions (7) in condition (6) and asking for the vanishing of the coefficients of
each monomial in the derivatives of u(t, x), we obtain the following partial differential system:

ϕx = 0
ϕy = 0
ϕu = 0
ξu = 0
ηu = 0
σ2u = 0 (8)

ypξy + xsηx = 0
−xϕt + 2xξx − sξ = 0
−yϕt + 2yηy − pη = 0

py(p−1)[ηy − ϕt] + sx(s−1)ηx − p(p−1)y(p−2)η − ηt + xsη2x + yp[η2y − 2σuy] = 0

sx(s−1)[ξx − ϕt] + py(p−1)ξy − s(s− 1)x(s−2)ξ − ξt + ypξ2y + xs[ξ2x − 2σux] = 0

f(u)ϕt − σt − f(u)σu + sx(s−1)σx + py(p−1)σy + ḟ(u)σ + xsσ2x + ypσ2y = 0

with the unknown functions ϕ(x, y, t, u), ξ(x, y, t, u), η(x, y, t, u), σ(x, y, t, u), f(u).
For solving the previous system, let us choose for the source function f(u) the following expressions:
Case(1) : f(u) = ur. In this case, the solution is:

ϕ = at + b, ξ =
a

2− s
x, η =

a

2− p
y, σ =

a

1− r
u (9)

with a, b, s 6= 2, p 6= 2, r 6= 1 arbitrary constants.
The Lie symmetry operator becomes:

U (1)(x, y, t, u) = (at + b)
∂

∂t
+

(
a

2− s

)
∂

∂x
+

(
a

2− p

)
∂

∂y
+

(
a

1− r
u

)
∂

∂u
(10)
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Case(2) : f(u) = equ. This case generates the solution:

ϕ = at + b, ξ =
a

2− s
x, η =

a

2− p
y, σ = −a

q
(11)

with a, b, s 6= 2, p 6= 2, q 6= 0 arbitrary constants.
The Lie generator (4) takes the expression:

U (2)(x, y, t, u) = (at + b)
∂

∂t
+

(
a

2− s

)
∂

∂x
+

(
a

2− p

)
∂

∂y
−

(
a

q

)
∂

∂u
(12)

Case(3) : f(u) = u, s = p = 2. The analyzed model is now described by the evolutionary equation:

ut = x2u2x + y2u2y + 2xux + 2yuy + u (13)

By a computational way, the solution has a more complicated expression:

ϕ =
c1

2
t2 + c2t + c3

ξ =
x

2
[(2c6 + 4c5 + c2) ln y + (c1t + c2) ln x + 2c6t + 2c7]

η = −2y
[(c2

4
+

c6

2
+ c5

)
lnx +

(
−c1

4
t− c2

4

)
ln y +

(c1

2
− c2

2
+ c4 +

c6

2

)
t− c12

2

]

σ =
1√
xy

[
c9c11e

(1+c1+c2)t
(
c7x

( 1
2

√
1+4c1) + c8x

(− 1
2

√
1+4c1)

)
y( 1

2

√
1+4c2)+ (14)

+c10c11e
(1+c1+c2)t

(
c7x

( 1
2

√
1+4c1) + c8x

(− 1
2

√
1+4c1)

)
y(− 1

2

√
1+4c2) +

+u
√

xy

(
−1

8
c1 ln2 y +

((
1
2
− t

4

)
c1 − c2 + c4 − c5

)
ln y − 1

8
c1 ln2 x+

+
(

c5 − c1t

4

)
ln x + c6 +

c1t
2

4
+ c4t

)]

The solution (14) generates 8 nonvanishing independent Lie operators as follows:

U1 =
t2

2
∂t +

x

2
t lnx∂x + yt

(
1
2

ln y − 1
)

∂y +
u

8
(
ln2 y + ln2 x + 2 (t− 2) ln y + 2t ln x− 2t2

)
∂u

U2 = t∂t +
x

2
(lnx + ln y) ∂x − y

2
(lnx− ln y − 2t) ∂y − (ln y)u∂u, U3 = ∂t

U4 = −2ty∂y + u (ln y + t) ∂u, U5 = 2x ln y∂x − 2y ln x∂y + u (lnx− ln y) u∂u (15)
U6 = x(ln y + t)∂x − y(lnx + t)∂y + u∂u

U7 = x∂x, U8 = y∂y

All the invariants associated to each of these Lie operators could be obtained.
For example, for operator U4, the invariants could be found by integrating the following charac-

teristic equations:
dt

0
=

dx

0
=

dy

−2ty
=

du

u (ln y + t)
(16)

They are the expressions:
I

(4)
1 = t, I

(4)
2 = x, I

(4)
3 = uy

1
2
(1+ 1

2t
ln y) (17)

Following a similar way, the invariants generated by each of the the remaining Lie operators could
be obtained. Let us pointed out the invariants associated to another interesting operators U5 and
U6.Their expressions are:

I
(5)
1 = t, I

(5)
2 =

(
xln xyln y

)1/2
, I

(5)
3 = ux

1
2

(
1− ln x

ln y

)
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I
(6)
1 = t, I

(6)
2 = x(t+ ln x

2 )y(t+ ln y
2 ), I

(6)
3 = yu(ln x+t)

Remark 1: It is important to note that, by a computational way, the equation (13) admits a
separable solution which has the form:

u = q1e
mt

(
q2x

−1+
√−1+4v
2 + q3x

−1−√1+4v
2

)(
q4y

−1+
√
−3+4(m−v)

2 + q5y
−1−

√
−3+4(m−v)

2

)
(18)

with qi, i = 1, 5 and m, v arbitrary constants.
Remark 2: By similarity reduction method another separable solutions for evolutionary equation

(13) could be obtained.

For example, let us review the invariants generated by U4. Taking into account the last invariant
, we assume a similarity solution of the form:

u = h(t, x)y−
1
2
(1+ 1

2t
ln y) (19)

By replacing it into equation (13) is obtained that h(t, x) is a solution for the following 1D partial
differential equation:

4tht − 4tx2h2x − 8txhx + 2(1 +
9
2
t)h = 0 (20)

By a computational way, the previous reduced equation has the solution:

h(t, x) = ρ1t
− 1

2 e
kt
2

(
ρ2x

(−1+
√

10+2k)/2 + ρ3x
(−1−√10+2k)/2

)
(21)

with ρi, i = 1, 3 and k arbitrary constants.

3 The inverse symmetry problem

We start with an general differential equation from which the analyzed equation (3) could be obtained.
It has the form:

ut = C(x, y, t, u)u2x + D(x, y, t, u)u2y + E(x, y, t, u)ux + F (x, y, t, u)uy + G(u) (22)

with C(x, y, t, u), D(x, y, t, u), E(x, y, t, u), F (x, y, t, u), G(u) arbitrary functions of their arguments.
Following the symmetry theory, the invariance condition under the action of the Lie operator (4),

will have the form:

0 = U (2)[ut − C(x, y, t, u)u2x −D(x, y, t, u)u2y −E(x, y, t, u)ux − F (x, y, t, u)uy −G(u)] (23)

The latter condition has the equivalent expression:

0 = −Ctϕu2x −Dtϕu2y − Ftϕuy − Etϕux −Gtϕ− Cxξu2x −Dxξu2y − Fxξuy (24)
−Exξux − Cyηu2x −Dyηu2y − Fyηuy − Eyηux − Cuσu2x

−Duσu2y − Fuσuy − Euσux −Guσ + σt − Cσ2x −Dσ2y −Eσx − Fσy

−Guσ + σt − Cσ2x −Dσ2y − Eσx − Fσy

Following the algorithm exposed in the first section, a more general differential system is generated:

ϕx = 0, ϕy = 0, ϕu = 0, ηu = 0, ξu = 0, σ2u = 0, Dξy + Cηx = 0

−Cϕt − ϕCt + 2Cξx − ξCx − ηCy − Cuσ = 0

0 = −Dϕt − ϕDt + 2Dηy − ηDy − ξDx −Duσ = 0 (25)
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−Fϕt − ηt + Eηx + Fηy − Ftϕ− Fxξ − Fyη − Fuσ + Cη2x + Dη2y − 2Dσyu = 0

−Eϕt − ξt + Eξx + Fξy −Etϕ−Exξ − Eyη −Euσ + Cξ2x + Dξ2y − 2Cσxu = 0

−Gϕt + σt + Gσu −Eσx − Fσy −Guσ − Cσ2x −Dσ2y = 0

Another approach for solving this system is given by the inverse symmetry problem. It allows us to
find all the equations which are equivalent from the point of view of the symmetry group they admit.

As an application, let us impose the Lie symmetries generated by the operator U4 obtained in the
first section. In other words, in the system (25) we know the functions:

ϕ = ξ = 0, η = −2ty, σ = u (ln y + t) (26)

and we shall determine the coefficient functions C(x, y, t, u), D(x, y, t, u), E(x, y, t, u), F (x, y, t, u),
G(u).

In these conditions, by solving the system (25) is obtained the general solution:

C(x, y, t, u) = A
(
x, t, uy1/2e

1
4t

ln2 y
)

D(x, y, t, u) = (1 + n1t)y2

E(x, y, t, u) = B
(
x, t, uy1/2e

1
4t

ln2 y
)

(27)

F (x, y, t, u) = (2 + 2n1t + n1 ln y)y
G(u) = (n2 − n1 ln u)u

where n1, n2 are arbitrary constants and A,B are arbitrary functions of their arguments.
Remark 3: By choosing:

C(x, y, t, u) = x2, D(x, y, t, u) = y2, E(x, y, t, u) = 2x, F (x, y, t, u) = 2y, G(u) = u (28)

the nonlinear 2D nonlinear transfer equation (13) has been discovered.

4 Conclusions

The 2D mass/heat transport equation is an important equation in mathematical physics, both be-
cause of their practical applications and of a model of nonlinear differential equation which can be
investigated using the Lie symmetry properties.

We made a double investigation:(i) the direct approach, that is the determination of the symmetry
group and of the associated invariant quantities.

(ii) the inverse approach, which consists in determining of the general class of evolutionary equa-
tions with the same symmetry group.

In the first case we concluded that for the equation corresponding to s = p = 2 there are 8
independent symmetry operators which generate an open algebra. For s 6= p 6= 2 we found two
interesting cases with 5-parameters Lie group of symmetry.

The inverse problem leads us to a general class of equations with a similar symmetry group with
those generated by one of the symmetry operator of the nonlinear transport equation with power-law
nonlinearities.
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