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Abstract

The propagation of light pulses in weakly nonlinear dielectric media is discussed in two opposite
limits.Firstly, when the width of the pulse is large enough, the relevant equation is the well known
cubic nonlinear Schrödinger (NLS) equation. It is a generic equation describing the propagation of
quasi-monochromatic waves in weakly nonlinear media, irrespective of the physical problem under
study. The second case corresponds to a short pulse containing only a few oscillations of the
carrier wave. Its evolution is described by the short pulse equation (SPE) which is derived in more
restrictive conditions. Both NLSE and SPE are completely integrable although through different
inverse scattering transform methods. An interesting equivalence between SPE and sine-Gordon
equation (SGE) is noted which was used to find solutions of SPE starting from well known solutions
of SGE.

1 Introduction

A fundamental problem in nonlinear optics is the study of the propagation of a light (laser) pulse
through a (nonlinear) dielectric medium. From Maxwell’s equations, without free electric charges nor
current densities and with constants magnetic permeability µ = µ0 = (ε0c2)−1, the basic equation
describing the electric field evolution writes

∇2 ~E − 1
c2
∂2 ~E

∂t2
−∇

(
∇ · ~E

)
=

1
ε0c2

∂2 ~P

∂t2
, (1)

where ~P is the polarization vector of the medium which can be separated into a linear and a nonlinear
part, ~P = ~PL + ~PNL. We consider an isotropic medium and ~E and ~P linearly polarized ~E = ~eE,
~P = ~eP , with ~e the polarization vector. In general the expression of P is of the form

1
ε0
P =

∫ +∞

−∞
χ(1)(t− τ)E(τ) dτ+

+
∫∫∫

χ(3)(t− τ1, t− τ2, t− τ3)E(τ1)E(τ2)E(τ3) dτ1 dτ2 dτ3,
(2)

where according to the causality principle, the susceptibilities χ(i) are vanishing for t < τi (i = 1, 3). In
this expression the term with quadratic dependence on the electrical field was omitted, as it vanishes
due to the inversion symmetry, and higher order terms were neglected. A medium, thus approximated,
is known as the (nonlinear) Kerr medium and it will be used through-out the present paper. Moreover
we shall assume that the electrical field depends only on one space coordinate, let it be z, ~E(z, t), and
then (1) becomes

∂2E

∂z2
− 1
c2
∂2E

∂t2
− 1
c2
∂2

∂t2

∫ +∞

−∞
χ(1)(t− τ)E(z, τ) dτ =

1
ε0c2

∂2

∂t2
PNL(E). (3)
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A general property of this equation, in the case of a weak nonlinearity, |χ(3)||E|3 � |χ(1)||E|, is easily
obtainable if one looks for solutions of the following form

E(z, t) = E0(z, t) + E1(z, t), (4)

where |E1| � E0 and E0(z, t) is a plane wave

E0(z, t) = A exp [i(kz − ωt)] + cc. (5)

Then, considering the linear equation in the left-hand side of (3) we get

k(ω) =
1
c

√
1 + χ̂(1)(ω)ω, (5’)

where χ̂(1)(ω) is the Fourier transform of χ(1)(t)

χ̂(1)(ω) =
∫ +∞

−∞
χ(1)(t)eiωt dt.

The linear equation satisfied by E1(z, t) is

∂2E1

∂z2
− 1
c2
∂2E1

∂t2
− 1
c2
∂2

∂t2

∫ +∞

−∞
χ(1)(t− τ)E1(τ) dτ =

1
ε0c2

∂2

∂t2
PNL(E0). (6)

Using the expression (5) for E0, the right-hand side of (6) becomes

− 9ω2

c2
χ̂(3)(ω, ω, ω)A3ei(3kz−ωt) − 9ω2

c2
χ̂(3)(−ω,−ω,−ω)(A∗)3e−i(3kz−ωt)

− 3ω2

c2
χ̂(3)(−ω, ω, ω)|A|2Aei(kz−ωt) − 3ω2

c2
χ̂(3)(ω,−ω,−ω)|A|2A∗e−i(kz−ωt),

where χ̂(3)(ω1, ω2, ω2) is the Fourier transform of the cubic susceptibility

χ̂(3)(ω1, ω2, ω2) =
∫ +∞

−∞
χ(3)(t1, t2, t3)ei(ω1t1+ω2t2+ω3t3) dt1 dt2 dt3.

This expression suggests us to look for solutions of (6) of the form [1]

E(z, t) = F1(z)e−iωt + F ∗1 e
iωt + Fe(z)e−3iωt + F ∗3 e

3ωt (7)

Introducing (7) in (6) we find

d2F3

dz2
+

1− χ̂(1)(3ω)
c2

9ω2F3 = −9ω2

c2
χ̂(3)(ω, ω, ω)A3e3ik(ω)z (8)

d2F1

dz2
+

1− χ̂(1)(ω)
c2

ω2F1 = −3ω2

c2
χ̂(3)(−ω, ω, ω)|A|2Aeik(ω)z (9)

But
k(3ω) =

3ω
c

√
1 + χ̂(1)(3ω) 6= 3k(ω) =

3ω
c

√
1 + χ̂(1)(ω) (9’)

and consequently F3 is bounded (no resonance with the right-hand side exists). On the other hand
because of the presence of the exponential term exp (ik(ω)z) in the right-hand side of (9), a solution
of the inhomogeneous equation is

F1(z) = i
3ω
c

χ̂(3)(−ω, ω, ω)√
1 + χ̂(1)(ω)

z|A|2Aeik(ω)z (10)

and the asymptotic expansion (4) will fail at distances z ∼
(
χ̂(3)|A|2

)−1
. Such terms are called

“secular terms”, and their appearance invalidates the simple expansion (4), so better asymptotic
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methods must be applied (we shall use in the next section the asymptotic method of the “multiple
scales”). Momentarily let us try to eliminate these such terms by allowing the amplitude A (constant
up to this point) to slowly variate along z and consider a supplemental term in the right-hand side of
(6) of the form

−2ik
dA
dz
ei(kz−ωt) − 2ik

dA∗

dz
e−i(kz−ωt). (11)

We also choose the dependence A(z) in such a way as to suppress the resonance term. Writing
χ̂(3)(−ω, ω, ω) = χ̂(3)(ω) we get

dA
dz

= i
3ω
2c

χ̂(3)(ω)√
1 + χ̂(1)(ω)

|A|2A (12)

which integrated gives

A = A0 exp

(
i
3ω
2c

χ̂(3)(ω)√
1 + χ̂(1)(ω)

|A|2z

)
(13)

and thus a “new” wave number may be introduced

c

ω
k(ω; |A|2) =

√
1 + χ̂(1)(ω) +

3
2

χ̂(3)(ω)√
1 + χ̂(1)(ω)

|A|2. (14)

Using the relation between the wave number k and the refractive index, k = nωc , the equation (12)-(14)
allow us to define a nonlinear refractive index

n(ω; |A|2) = n0(ω) + n2(ω)|A|2,

n0(ω) =
√

1 + χ̂(1)(ω), 2n0n2 = 3χ̂(3)(ω).
(15)

These general considerations show that even for a weak nonlinearity the propagation of a finite
amplitude wave train in the medium is associated with a nonlinear refractive index and a nonlinear
dispersion relation. We have to stress the importance of the frequency dependence of the linear
susceptibility χ̂(1)(ω). Indeed, if χ̂(1) doesn’t depend on ω, one can see from (9) that k(3ω) = 3k(ω)
and the right-hand side of (7) is also resonant so the wave train would have a more complicated
evolution. Usually χ̂(ω) is a complex quantity, χ̂(ω) = χ̂′(ω) + iχ̂′′(ω) for ω = ωr + iωi with ωi > 0 to
ensure the exponential decay of χ(t) when t→∞ – χ(t) ∼ e−ωit, and the real and imaginary part of
χ̂(ω) are related through the Kramers-Krönig relation (causality condition)

χ̂′(ω) =
1
π
P

∫ +∞

−∞

χ̂′′(ω′)
ω′ − ω

dω′, χ̂′′(ω) = − 1
π
P

∫ +∞

−∞

χ̂′(ω′)
ω′ − ω

dω′.

One assumes that the corresponding imaginary part of n0(ω) is small and neglects altogether any
imaginary part of n2(ω).

2 Nonlinear Schrödinger Equation

At first let us consider the one-dimensional propagation of a quasi-monochromatic wave u(x, t) in a
weak nonlinear medium

Lu = N (u), (16)

where L
(
∂
∂x ,

∂
∂t

)
is a linear differential operator with constant coefficients and N (u) a nonlinear

operator of u and its derivatives. We assume that the linear problem Lu = 0 has plane wave solutions

u = A exp(iθ) + cc., θ = kx− ω(k)t.

Here ω(k) is given by the dispersion relation, solution of the algebraic equation

`(ik,−iω) = 0, (17)

265



where `(ik,−iω) represents the action of L on exp(iθ), namely

L
(
∂

∂x
,
∂

∂t

)
exp(iθ) = exp(iθ)`(ik,−iω). (18)

We assume as well, that for any integer n ≥ 2

`(ink,−inω) 6= 0

(no resonance condition). The quasi-monochromatic wave is written as

u(x, t) =
∫ +∞

−∞
A(k, t) exp [i(kw − ωt)] dk + cc., (19)

where A(k, t) is different than zero on a small compact support around a wave vector k0

A(k) ≡ 0 iff |k − k0| > εk0

The dispersion relation ω(k) can be expanded in a Taylor series around the point k0

ω(k) = ω(k0 + εk0ν) = ω0 +
∑
n=1

εnkn0 ν
nωn, |ν| ≤ 1

ωn =
1
n!

dnω(k)
dkn

∣∣∣∣
k=k0

(20)

and the expression (19) writes

u(x, t) = εk0 exp [i(k0x− ω0t)]
∫ +1

−1
dνA(k0 + εk0ν)·

· exp
{
i
[
k0(εx− ω1εt)ν − k2

0ω2ε
2tν2 − k3

0ω3ε
3tν3 + . . .

]}
+ cc.

(21)

This discussion allows us to introduce in a natural way the so-called “slow variables”

x1 = εx, t1 = εt, t2 = ε2t, . . . (22)

The solution can also be written as

u(x, t) = exp [i(k0x− ω0t)]U(x1, t1, t2, . . .),

where U(x1, t1, t2, . . .) depends only on the slow variables and therefore can be expanded in a power
series of ε

U(x1, t1, t2, . . .) =
∑
n=1

εnΨn(x1, t1, t2, . . .).

This procedure, applied to the nonlinear equation (16), will allow us to obtain the correct asymptotic
behavior of its solutions, and it is well known in mathematics under the name of “multiple scale
method” [2]. Generally, one considers

u(x, t) = εΦ(1) + ε2Φ(2) + . . . (23)

The derivatives ∂/∂t, ∂/∂x have to be generalized to include the slow variables (22), namely

∂

∂x
→ ∂

∂x
+ ε

∂

∂x1
,
∂

∂t
→ ∂

∂t
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ . . .

Then the linear operator L
(
∂
∂x ,

∂
∂t

)
becomes

L
(
∂

∂x
+ ε

∂

∂x1
,
∂

∂t
+ ε

∂

∂t1
+ ε2

∂

∂t2
+ . . .

)
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and can be expanded in a Taylor series about
(
∂
∂x ,

∂
∂t

)
L →L

(
∂

∂x
,
∂

∂t

)
+ ε

(
L1

∂

∂x1
+ L2

∂

∂t1

)
+

1
2
ε2
(
L11

∂2

∂x2
1

+ 2L12
∂2

∂x1∂t1
+ L22

∂2

∂t22

)
+ . . .

(24)

Here the indexes 1 and 2 refer to partial differentiation of L with respect to ∂/∂x and ∂/∂t respectively
(L is viewed as a polynomial in ∂/∂x and ∂/∂t and differentiated accordingly with respect to these
variables). Assuming that the nonlinear operator N (u) starts with cubic terms (Kerr nonlinearity),
the substitution of (23) and (24) into (16), in different orders of ε, will lead to

O(ε) : LΦ(1) = 0

O(ε2) : LΦ(2) = −
(
L1

∂

∂x1
+ L2

∂

∂t1

)
Φ(1)

O(ε3) : LΦ(3) = −
(
L1

∂

∂x1
+ L2

∂

∂t1

)
Φ(2)−

− 1
2

(
L11 + 2L12

∂2

∂x1∂t1
+ L22

∂2

∂t21
+ 2L2

∂

∂t2

)
Φ(1) +

cubic
nonlinear

terms
.

(25)

In the first equation (25) we recover the linear equation with plane wave solutions

Φ(1) = A(x1, t1, t2, . . .) exp(iθ) + cc.,

with the phase θ(x, t) = kx−ω(k)t, ω(k) - the solution of the algebraic equation (17) and the amplitude
A depending only on the slow variables.

Substituting Φ(1) into the second equation (25) we obtain

LΦ(2) = −i
(
`ω
∂A

∂t1
− `k

∂A

∂x1

)
exp(iθ) + cc. (26)

We use the fact that Φ(1) depends on the fast variables (x, t) only through the argument of the
exponential and we replace ∂/∂x by ik, respectively ∂/∂t by −iω; then

L1e
iθ → −i ∂

∂k
`(ik,−iω) = −i`k

L2e
iθ → i

∂

∂ω
`(ik,−iω) = i`ω.

(27)

The exp(iθ) term in the right-hand side of (26) is a secular term and to keep our perturbation calculus
valid we impose that A(x1, t1, t2, . . .) evolves according to the equation

`ω
∂A

∂t1
− `k

∂A

∂x1
= 0. (28)

The total differentiation of the dispersion relation (17) with respect to k gives

`k +
(

dω
dk

)
`ω = 0

`kk + 2
(

dω
dk

)
`kω +

(
dω
dk

)2

`ωω +
(

d2ω

dk2

)
`ω = 0.

(29)

Using the first equation (29) in (28) we see that A(x1, t1, t2, . . .) depends on (x1, t1) only through the
combination

ξ = x1 −
(

dω
dk

)
t1 (30)
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and hence, on the first (order) slow space-time scales, the wave travels at group velocity
(

dω
dk

)
. Since the

right-hand side of (26) vanishes, Φ(2) has also the form of a plane wave with an amplitude depending
only on the slow variables

Φ(2) = B(x1, t1, t2, . . .)eiθ + cc.

Introducing the expressions of Φ(1) and Φ(2) in the third equation (25), in order to remove the
secular behavior one has to assume that B(x1, t1, t2, . . .) depends on (x1, t1) through the variable ξ
and A(ξ, t2, . . .) satisfies the following relation

i`ω
∂A

∂t2
− 1

2

[
`kk + 2

(
dω
dk

)
`kω +

(
dω
dk

)2

`ωω

]
∂2A

∂ξ2
+ β|A|2A = 0

which, using the second equation (29), writes

i
∂A

∂t2
+

1
2

(
d2ω

dk2

)
∂2A

∂ξ2
+ γ|A|2A = 0. (31)

Here we considered only the simplest form of a cubic nonlinearity ∼ |u|2u (which does not generate
higher harmonics) and as before we used the relation (27) to replace the derivative L11, L12, L22

with the corresponding derivatives of `(ik,−iω). The equation (31) is the well-known cubic nonlinear
Schrödinger equation, a generic equation describing the propagation of quasi-monochromatic waves in
weakly nonlinear media. The literature existent on this topic is very vast and we’ll mention just a few
references where more informations and applications can be found [1,3–11]. It represents a completely
integrable system with multisoliton solution that can be determined through the “Inverse Scattering
Transform” (IST) [4–7,9]. The solution depends on the relative sign of α = (∂2ω/∂k2) and γ. If their
product is positive(focusing case) bright soliton solutions (vanishing at |ξ| → ∞) exist. We give below
the expression of the one-soliton solution

A(ξ, t2) = 2η
exp

{
−i
[
2vξ − 4(v2 − η2)t2 + ϕ0

]}
cosh [2η(ξ + 4vt2 − ξ0)]

, (32)

where η is the amplitude and v is the soliton velocity. If αγ < 0 (defocussing Kerr medium) dark-
soliton solution manifest (having a finite limit when |ξ| → ∞).

3 Short Pulse Equation (SPE)

The key assumption made in the derivation of the nonlinear Schrödinger equation (in nonlinear optics
as well as in any other contexts) is that the pulse width is large in comparison to the oscillations of the
carrier frequency. In most applications this assumption is well satisfied. But with the technological
advance of creating shorter and shorter pulses (e. g. the chirped pulse amplification technique [12])
with durations in the femtosecond range, this assumption is no longer valid. Indeed if a pulse contains
only a few oscillations of the carrier wave, the hypothesis of a slowly varying amplitude is meaningless,
and new approaches are needed to describe the propagation of these ultra-short pulses in dielectric
media. One possibility is to complete the NLS equation with additional higher order nonlinear terms
(quintic or derivative nonlinear terms [13–15]). Recently a new approach, based on the fact that the
pulse is broad in the Fourier space, was developed by several authors [16–19], its merit being that it
leads to a new completely integrable equation as the generic equation describing (in certain simplifying
conditions) the propagation of short pulses in (cubic) nonlinear dielectric media.

The generic equation describing the propagation of linearly polarized light of frequency far from
any resonant frequencies of the medium, is given in (13). We’ll assume that the Fourier transform of
the linear susceptibility can be approximated by a polynomial in λ (λ being the wavelength, related
to the angular frequency ω through the usual relation ω = 2π/λ), namely [18]

χ̂(1)(λ) ' χ̂(1)
0 − χ̂

(1)
2 λ2, (33)
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where χ̂(1)
0 , χ̂(1)

2 are constants. Then the Fourier transform of the linear part of (3) writes (z → x,
E → 0)

∂2u

∂x2
+

1 + χ
(1)
0

c2
ω2û− (2π)2χ(1)

2 û.

As for the nonlinear term, we expect that only the instantaneous contribution will affect the propaga-
tion of short pulses and thus we consider PNL = χ(3)u3 with χ(3) constant. Thus the equation under
study has the form

∂2u

∂x2
=

1
c2`

∂2u

∂t2
+

1
c22
u+ χ(3)∂

2u3

∂t2
, (34)

where c` = c/

√
1 + χ̂

(1)
0 , c2 = 1/

(
2π
√
χ̂

(1)
2

)
and we’ll take c` = 1 for simplicity.

The expression (33) represents the opposite approximation to the one used in the previous section
in deriving the NLS equation (an expansion in power series of frequency was applied). As discussed
in [18] these approximations are well satisfied for infrared light in silica fibers.

In the multiple scales analysis of the equation (34) besides the usual “slow variables”

xn = εnx, (35)

an ultra-fast variable
T =

t− x
ε

(36)

is introduced (the order of magnitude of the small parameter ε is 1/λ). Then u(x, t) may be expanded
in a power series

u(x, t) = εA0(T, x1, x2, . . .) + ε2A1(T, x1, x2, . . .) + . . . (37)

For x = 0
u(x = 0, t) = εA0(t/ε) + ε2A1(t/ε) + . . .

and for functions A0(t/ε), A1(t/ε) decaying at infinity, the function u(x = 0, t) vanishes fast enough
to describe a real short pulse when ε� 1. As

∂

∂t
→ 1

ε

∂

∂T
,

∂

∂x
→ −1

ε

∂

∂T
+ ε

∂

∂x1
+ . . .

it is easily seen that the terms of order ε−1 cancel each other, no terms of order ε0 exist and in order
ε we get

2
∂2

∂T∂x1
A0 =

1
c22
A0 + χ(3) ∂

2

∂T 2
A3

0. (38)

This is the Short Pulse Equation that was sought. With an appropriate scaling and the redefinition
of the variables, it may be written in the standard form

uxt = u+
1
6
(
u3
)
xx
, (39)

where the subscripts x, t represent partial derivation with respect to that variable.
Soon after this equation was deduced and proven to describe better (numerically) the propagation

of short pulses in weakly nonlinear dielectric media [18,19], it was shown that it is completely integrable
[20] and it was solved using the inverse scattering transform method [20,21] (Wadati, Konno, Ichikawa
variant [23]).

An interesting equivalence between SPE and sine-Gordon equation (SGE) was found and various
solutions of SGE were used to derive solutions for SPE [23–26].

The Hamiltonian structure and the short pulse equation hierarchy were discussed in [27, 28]. Re-
cently a vector short pulse equation was studied in [29] and an integrable discretization was investigated
in [30]. It is worth mentioning that the equation (39) appeared some time before in the differential
geometry as one of Rabelo’s equations describing pseudospherical surfaces [31–33].
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In the followings we shall discuss briefly the equivalence between SPE and SGE, and using simple
solutions of SGE we shall derive the corresponding solutions of SPE. According to [25,28] we introduce
a new dependent variable r

r2 = 1 + u2
x (40)

and write the equation (39) as

uxt = u(1 + u2
x) +

1
2
u2uxx. (41)

Multiplying (41) by ux, and using

rrt = uxuxt, rrx = uxuxx

the SPE (41) may be easily expressed as a conservative law

rt =
(

1
2
u2r

)
x

(42)

Let us define the hodograph transformation

dy = rdx+
1
2
u2rdt, dτ = dt. (43)

Then
∂

∂x
→ r

∂

∂y
,

∂

∂t
→ ∂

∂τ
+

1
2
u2r

∂

∂y

and in terms of the new variables the equations (40) and (41) write

r2 = 1 + r2u2
y

rτ = r2uuy.
(44)

We introduce a new dependent variable z = z(y, τ) through the relation

uy = sin z. (45)

Using this relation in the first equation (44) we get

cos z =
1
r
.

Differentiating this equation with respect to τ we obtain successively

sin zzτ =
1
r2
rτ = uuy = u sin z,

so that
u = zt, (46)

which introduced in (45) transforms it into the SGE

zyτ = sin z. (47)

But the hodograph transformation (43) is invertible, namely

dx =
1
r

dy − 1
2
u2dτ, dt = dτ (48)

and x(y, τ) is determined by solving the following system of linear partial differential equations

xy =
1
r

= cos z, xτ = −1
2
u2

x(y, τ) =
∫

dy cos z + C,
(49)
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with C an integration constant. Then if z(y, τ) is a solution of the SGE (47), the corresponding
solution of the SPE is given by (in parametric form)

u(y, τ) =
d
dτ
z(y, τ), (50)

with τ = t and x(y, τ) given by (49). The success of the analysis relies on whether one can perform
the integration over the variable y in (49).

Two solutions of SPE will be determined starting from simple solutions of SGE. As the first
example we consider the one-kink solution of SGE (47)

z(y, τ) = z(y + τ) = 4 arctan [exp(y + τ)] .

Using (50) we find

u(y, τ) =
2

cosh(y + τ)
. (51)

Also the integration in (49) is easily performed giving

x(y, τ) = x(y + τ) = (y + τ)− 2 tanh(y + τ). (52)

We used cos 4α = 1 − 8 sin2 α cos2 α, α = arctan ξ, ξ = exp(y + τ) and sinα = ξ/
√

1 + ξ2, cosα =
1/
√

1 + ξ2 resulting cos 4α = 1− 2
cosh2(y+τ)

. The solution u(x, t) is the one loop soliton moving from
right to left with the velocity c = 1. From (51) and (52) we get (for t = 0)

ux =
uy

dx/dy
=

2 sinh y
cosh2 y − 2

,

so that the solution has two discontinuity points for y = ±y0, cosh y0 =
√

2, x(±y0) ' ∓0.5328 (see
figure 1). It is a multivalued solution and therefore it is not convenient for applications in optical

xH-y0LxHy0L

uHx,tL

x

Figure 1: One loop solution u(x) of SPE for t = 0.

fibers.
A convenient solution may be obtained if one starts from a breather solution of SGE

z(y, t) = −4 arctan
(
m sinψ
n coshφ

)
, (53)

where
n =

√
1−m2, ψ = n(y − t), φ = m(y + t) (54)

and m is a real parameter, 0 < m < 1. The solution of SPE is now given by [23,25]

u(y, t) = 4mn
m sinψ sinhφ+ n cosψ coshφ

m2 sin2 ψ + n2 cosh2 φ

x(y, t) = (y + t) + 2mn
m sin 2ψ − n sinh 2φ
m2 sin2 ψ + n2 cosh2 φ

,

(55)

which is nonsingular and single-valued if m < mcr = sin(π/8) [23], representing a true wave packet.
A typical pulse is represented in figure 2 for m = 0.27 < mcr at two different times.
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Figure 2: The pulse solution u(x, t) of SPE for m = 0.27: (left) t = −4.5, (right) t = 4.5.

4 Conclusions

In the present paper we discussed two opposite limits of a light pulse propagation in a weak nonlinear
dielectric medium. In the first case when the pulse width is large enough, containing many oscillations
of the carrier wave, the relevant equation describing its propagation is the well known NLSE. The
conditions in which it is derived are quite general and this explains its presence in many areas of
physics. In the opposite case, the pulse is so short that it contains just a few oscillations and its
propagation is described by the SPE. Although the conditions are less general, the SPE represents an
attractive result as it is also completely integrable. An interesting link between SPE and SGE was
found, namely that solutions of SPE can be constructed starting from well known solutions of SGE.
Using this method a well-behaving pulse solution was obtained from the breather solutions of SGE.
It should be very interesting to extend these considerations for less restrictive conditions and thus
determine the relevant equation describing the short pulse propagation in more general situations.
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