Two Component Long Wave-Short Wave Resonant Interaction in a Madelung Fluid Description*

Dan Grecu, Anca Visinescu
Department of Theoretical Physics
National Institute of Physics and Nuclear Engineering "Horia Hulubei"
Bucharest, Romania
dgrecu@theory.nipne.ro avisin@theory.nipne.ro

Abstract

The interaction between two bright solitons (short waves) and a dark one (long wave) is discussed and in the resonance condition, using a multiple scales analysis, a two component Zakharov-YajimaOikawa system is obtained. A Madelung fluid description is used to discuss this system and several solutions are presented.

PACS: $42.81 \mathrm{Dp}, 05.45 . \mathrm{Yv}$

1 Introduction

In many physical applications more than one single wave is propagating in a nonlinear medium, and the interaction of several waves has to be taken into account. Such examples are: 1) the propagation of solitonlike pulses in birefringent optical fibers [1]-[4]; 2) nonlinear waves in Bose-Einstein condensates [5], [6]; 3) soliton propagation through optical fiber array [1], [7]-[9]; 4) nonlinear dynamics of gravity waves in crossing sea states [10], to mention only few physical phenomena where these "'vector solitons" ' play a fundamental role.

Many years ago a discussion of bright-dark soliton interaction was given by Kivshar [11]. The interesting fact of this analysis was the reduction of the problem in certain conditions to the completely integrable system of Zakharov-Yajima-Oikawa [12], [13] (see eqs. (9) and (10) of [11]). The special conditions refer to the existence of a "long wave-short wave resonance" (LW-SW resonance). This resonance phenomena has quite a large universality. In plasma physics it describes Langmuir solitons moving near the speed of sound [12], [14], in hydrodynamics it appears in the study of internal gravity waves [15] and a general study of LW-SW resonance [16], [17] in quasi-one-dimensional molecular crystals it describes the resonance between the excitonic and phonon fields in Davydov's model [18], to mention only few such examples. Recently extensions of the LW-SW resonance to two dimensions and more components have been discussed and solved by several authors [22]-[24].

In the present paper the interaction between two bright solitons (short waves) and a dark one (long wave) will be discussed and in the resonance condition a two component Zakharov-Yajima-Oikawa system will be obtained. Besides its relevance in nonlinear optics the same system is describing a Davydov model with two excitonic components [25]. In the next section the basic equations describing the three wave interaction will be written down and using a multiple scales analysis the Zakharov-Yajima-Oikawa system is obtained. In section three a Madelung fluid description is used to discuss this system and several solutions are presented. Few conclusions will be presented in the last section.

2 Basic equations and multiple scales analysis

We consider three nonlinear dispersive waves propagating in an optical fiber. Suppose that the dispersion relations of these weakly nonlinear waves are $\omega_{i}=\omega_{i}\left(k_{i}:\left|A_{1}\right|^{2},\left|A_{2}\right|^{2},\left|A_{3}\right|^{2}\right), i=1,2,3$ and we

[^0]consider $e^{i\left(k_{0} x-\omega_{0} t\right)}$ to be a basic carrier wave. Then a Taylor expansion around $\left(k_{0}, \omega_{0}\right)$ and $\left|A_{i}\right|=0$ of each ω_{i} will give
\[

$$
\begin{gather*}
\omega_{i}-\omega_{0}=\left(\frac{\partial \omega_{i}}{\partial k_{i}}\right)_{0}\left(k_{i}-k_{0}\right)+\frac{1}{2}\left(\frac{\partial^{2} \omega_{i}}{\partial k_{i}^{2}}\right)_{0}\left(k_{i}-k_{0}\right)^{2}+\left(\frac{\partial \omega_{i}}{\partial\left|A_{1}\right|^{2}}\right)_{0}\left|A_{1}\right|^{2}+ \\
\left(\frac{\partial \omega_{i}}{\partial\left|A_{2}\right|^{2}}\right)_{0}\left|A_{2}\right|^{2}+\left(\frac{\partial \omega_{i}}{\partial\left|A_{3}\right|^{2}}\right)_{0}\left|A_{3}\right|^{2}+\ldots \tag{1}
\end{gather*}
$$
\]

Replacing $\omega_{i}-\omega_{0} \simeq-i \frac{\partial}{\partial t}, \quad k_{i}-k_{0} \simeq i \frac{\partial}{\partial x}$, after a translation of coordinate $\left(x \rightarrow x-\left(\frac{\partial \omega_{3}}{\partial k_{3}}\right)_{0} t\right)$, the following nonlinear system of three interacting waves is obtained

$$
\begin{align*}
& i \frac{\partial A_{1}}{\partial t}+i V_{1} \frac{\partial A_{1}}{\partial x}+\frac{\alpha_{1}}{2} \frac{\partial^{2} A_{1}}{\partial x^{2}}+\alpha_{2}\left|A_{1}\right|^{2} A_{1}+\alpha_{3}\left|A_{2}\right|^{2} A_{1}+\alpha_{4}\left|A_{3}\right|^{2} A_{1}=0 \\
& i \frac{\partial A_{2}}{\partial t}+i V_{2} \frac{\partial A_{2}}{\partial x}+\frac{\beta_{1}}{2} \frac{\partial^{2} A_{2}}{\partial x^{2}}+\beta_{2}\left|A_{1}\right|^{2} A_{2}+\beta_{3}\left|A_{2}\right|^{2} A_{2}+\beta_{4}\left|A_{3}\right|^{2} A_{2}=0 \\
& i \frac{\partial A_{3}}{\partial t}+\frac{\gamma_{1}}{2} \frac{\partial^{2} A_{3}}{\partial x^{2}}+\gamma_{2}\left|A_{1}\right|^{2} A_{3}+\gamma_{3}\left|A_{2}\right|^{2} A_{3}+\gamma_{4}\left|A_{3}\right|^{2} A_{3}=0 \tag{2}
\end{align*}
$$

Here we denoted $V_{i}=\left(\frac{\partial \omega_{i}}{\partial k_{i}}\right)_{0}-\left(\frac{\partial \omega_{3}}{\partial k_{3}}\right)_{0}, \quad i=1,2$ and the constants $\alpha_{1}, \beta_{1}, \gamma_{1}$ are related to derivatives of ω_{i} with respect to k_{i} (ex. $\alpha_{1}=-\left(\frac{\partial^{2} \omega_{1}}{\partial k_{1}^{2}}\right)_{0}$,.) while $\alpha_{2}, \ldots \gamma_{4}$ to the derivatives with respect to $\left|A_{i}\right|^{2}$ (ex. $\alpha_{2}=\left(\frac{\partial \omega_{1}}{\partial\left|A_{1}\right|^{2}}\right) \ldots$).

Further on we shall consider channel 3 with normal dispersion and 1 and 2 with anomalous dispersion [1]. Then following Kivshar [11] it is convenient to introduce new field variables

$$
\begin{array}{cl}
A_{1}=\Psi_{1} e^{i \delta_{1} t}, \quad A_{2}=\Psi_{2} e^{i \delta_{2} t}, & A_{3}=\left(u_{0}+a(x, t)\right) e^{i(\Gamma t+\phi(x, t))} \\
\delta_{i}=\left(\frac{\partial \omega_{i}}{\partial\left|A_{3}\right|^{2}}\right)_{0} u_{0}^{2}, & \Gamma=\left(\frac{\partial \omega_{3}}{\partial\left|A_{3}\right|^{2}}\right)_{0} u_{0}^{2} .
\end{array}
$$

(u_{0}, a real quantities) and the system (2) becomes

$$
\begin{align*}
& i \frac{\partial \Psi_{1}}{\partial t}+i V_{1} \frac{\partial \Psi_{1}}{\partial x}+\frac{\alpha_{1}}{2} \frac{\partial^{2} \Psi_{1}}{\partial x^{2}}+\left(\alpha_{2}\left|\Psi_{1}\right|^{2}+\alpha_{3}\left|\Psi_{2}\right|^{2}\right) \Psi_{1}+2 \alpha_{4} u_{0} a \Psi_{1}+\alpha_{4} a^{2} \Psi_{1}=0 \\
& i \frac{\partial \Psi_{2}}{\partial t}+i V_{2} \frac{\partial \Psi_{2}}{\partial x}+\frac{\beta_{1}}{2} \frac{\partial^{2} \Psi_{2}}{\partial x^{2}}+\left(\beta_{2}\left|\Psi_{1}\right|^{2}+\beta_{3}\left|\Psi_{2}\right|^{2}\right) \Psi_{2}+2 \alpha_{4} u_{0} a \Psi_{2}+\beta_{4} a^{2} \Psi_{2}=0 \\
& \frac{\partial^{2} a}{\partial t^{2}}+\gamma_{1} \gamma_{4} u_{0}^{2} \frac{\partial^{2} a}{\partial x^{2}}+\frac{\gamma_{1}^{2}}{4} \frac{\partial^{4} a}{\partial x^{4}}+\frac{\gamma_{1}}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\gamma_{2} u_{0}\left|\Psi_{1}\right|^{2}+\gamma_{3} u_{0}\left|\Psi_{2}\right|^{2}\right) \tag{3}
\end{align*}
$$

$+($ higher order nonlinear terms in (a, ϕ) and their derivatives $)=0$.
The linear part of the a equation corresponds to an acoustic field with dispersion relation ($\gamma_{1}<$ $0, \gamma_{4}>0$)

$$
\omega=c k \sqrt{1+\frac{\gamma_{1}^{2}}{4 c^{2}} k^{2}} \simeq c k\left(1+\frac{\gamma_{1}^{2}}{8 c^{2}} k^{2}\right)
$$

and phase velocity $c=\omega / k$, where $c^{2}=\left|\gamma_{1}\right| \gamma_{4} u_{0}^{2}$.
We shall perform a multiple scales analysis of the system (3) [11]. We introduce new scaled variables

$$
t \Rightarrow \epsilon t, \quad x \Rightarrow \sqrt{\epsilon}(x-c t)
$$

and new functions

$$
a \Rightarrow \epsilon a, \quad \phi \Rightarrow \epsilon \phi, \quad \Psi_{1} \Rightarrow \epsilon^{\frac{3}{4}} \Psi_{1}, \quad \Psi_{2} \Rightarrow \epsilon^{\frac{3}{4}} \Psi_{2} .
$$

Then in order $\frac{5}{2}$ in ϵ from a equation we obtain

$$
\begin{equation*}
-2 c \frac{\partial a}{\partial t}+\frac{\gamma_{1}}{2} \frac{\partial}{\partial x}\left(\gamma_{2} u_{0}\left|\Psi_{1}\right|^{2}+\gamma_{3} u_{0}\left|\Psi_{2}\right|^{2}\right)=0 \tag{4}
\end{equation*}
$$

All the nonlinear terms in a equation contribute to higher order in ϵ. In the order $\frac{5}{4}$ from Ψ_{i} equations we obtain $V_{1}=V_{2}=c$. This is the well known long wave-short wave (LW-SW) resonance condition:" the group velocity V of the $S W$ is equal to the phase velocity of the $L W^{\prime}$ [16]. In the next order ($\left(\frac{7}{4}\right)$ in ϵ from the Ψ equations we get

$$
\begin{align*}
i \frac{\partial \Psi_{1}}{\partial t}+\frac{\alpha_{1}}{2} \frac{\partial^{2} \Psi_{1}}{\partial x^{2}}+2 \alpha_{4} u_{0} a \Psi_{1} & =0 \\
i \frac{\partial \Psi_{2}}{\partial t}+\frac{\beta_{1}}{2} \frac{\partial^{2} \Psi_{2}}{\partial x^{2}}+2 \beta_{4} u_{0} a \Psi_{2} & =0 \tag{5}
\end{align*}
$$

The equations (4)+(5) represent an 1-dimensional 2-components Zakharov [12], Yajima-Oikawa [13] system. As mentioned in the Introduction the same system in the same LW-SW resonance condition was obtained in a Davydov model with two excitonic modes coupled with a phonon field [25]. The same line of reasoning was used in [24] for three interacting waves in 2-dimensions.

3 Madelung fluid description

The special case $\left(\alpha_{i}=\beta_{i}, \quad \gamma_{2}=\gamma_{3}\right)$ is completely integrable [24] and will be considered in the following. In this case, simplifying the notations, the system (5) is written in the following form $(\gamma>0, \beta>0)$

$$
\begin{align*}
& \frac{\partial a}{\partial t}+\gamma \frac{\partial}{\partial x}\left(\left|\Psi_{1}\right|^{2}+\left|\Psi_{2}\right|^{2}\right)=0 \\
& i \frac{\partial \Psi_{i}}{\partial t}+\frac{1}{2} \frac{\partial^{2} \Psi_{i}}{\partial x^{2}}+\beta \Psi_{i} a=0, \quad i=1,2 \tag{6}
\end{align*}
$$

The Ψ_{i} equations will be transformed using a Madelung fluid description [26], [27].

$$
\Psi_{i}=\sqrt{\rho_{i}} e^{i \theta_{i}}
$$

where ρ_{i}, θ_{i} are real functions of (x, t) and moreover ρ_{i} are positive quantities. Introducing this expression into a-equation this becomes

$$
\begin{equation*}
\frac{\partial a}{\partial t}+\gamma \frac{\partial}{\partial x}\left(\rho_{1}+\rho_{2}\right)=0 \tag{7}
\end{equation*}
$$

while from the Ψ_{i} equations, after the separation of real and imaginary parts, we obtain

$$
\begin{equation*}
\frac{\partial \rho_{i}}{\partial t}+\frac{\partial}{\partial x}\left(v_{i} \rho_{i}\right)=0 \tag{8}
\end{equation*}
$$

which is a continuity equation for the fluid densities $\rho_{i}=\left|\Psi_{i}\right|^{2}$ with $v_{i}(x, t)=\frac{\partial \theta_{i}(x, t)}{\partial x}$ the fluid velocities components and

$$
\begin{equation*}
-\frac{\partial \theta_{i}}{\partial t}+\frac{1}{2} \frac{1}{\sqrt{\rho_{i}}} \frac{\partial^{2} \sqrt{\rho_{i}}}{\partial x^{2}}-\frac{1}{2}\left(\frac{\partial \theta_{i}}{\partial x}\right)^{2}+\beta a=0 \tag{9}
\end{equation*}
$$

Derivating this last expression with respect to x the following equations of motion for the fluid velocities v_{i} are obtained

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v_{i} \frac{\partial}{\partial x}\right) v_{i}=\frac{1}{2} \frac{\partial}{\partial x}\left(\frac{1}{\sqrt{\rho_{i}}} \frac{\partial^{2} \sqrt{\rho_{i}}}{\partial x^{2}}\right)+\beta \frac{\partial a}{\partial x} \tag{10}
\end{equation*}
$$

In the right hand side of (10) $a(x, t)$ plays the role of external potential, and the first term is the derivative of the so called Bohm potential, $\frac{1}{2} \frac{1}{\sqrt{\rho_{i}}} \frac{\partial^{2} \sqrt{\rho_{i}}}{\partial x^{2}}$, and contains all the diffraction effects (quantum effects in quantum problems). By a series of transformations the equation (10) is written as [27]

$$
-\rho_{i} \frac{\partial v_{i}}{\partial t}+v_{i} \frac{\partial \rho_{i}}{\partial t}+2\left[c_{i}(t)-\int \frac{\partial v_{i}}{\partial t} d x\right] \frac{\partial \rho_{i}}{\partial x}
$$

$$
\begin{equation*}
+\frac{1}{4} \frac{\partial^{3} \rho_{i}}{\partial x^{3}}+\beta \rho_{i} \frac{\partial}{\partial x} a+2 \beta a \frac{\partial \rho_{i}}{\partial x}=0 \tag{11}
\end{equation*}
$$

where c_{i} are arbitrary integration constants with respect to x, eventually time dependent. Although (11) seams to be more complicated then the initial equation (10), it can be solved in two special situations, namely

- motion with constant velocities $v_{1}=v_{2}=v_{0}$
- motion with stationary profile current velocity, when all the quantities $\rho_{i}(x, t), v_{i}(x, t), a(x, t)$ are depending on x and t through the combination $\xi=x-u_{0} t$.

Both cases will be analyzed in the following.

4 Motion with constant velocity ($v_{1}=v_{2}=v_{0}$)

In this case from the continuity equations (8) one sees that both $\rho_{1}(x, t)$ and $\rho_{2}(x, t)$ depend on $\xi=x-v_{0} t$. We assume that also $a(x, t)$ depends only on ξ. Then the a equation gives

$$
\begin{equation*}
a=\mu\left(\rho_{1}+\rho_{2}\right), \quad \mu=\frac{\gamma}{v_{0}} \tag{12}
\end{equation*}
$$

and the equations (11) writes

$$
\begin{equation*}
\frac{1}{4} \frac{d^{3} \rho_{i}}{d \xi^{3}}-E_{i} \frac{d \rho_{i}}{d \xi}+2 \beta a \frac{d \rho_{i}}{d \xi}+\beta \rho_{i} \frac{d a}{d \xi}=0 \tag{13}
\end{equation*}
$$

where by E_{i} we denoted $-\left(2 c_{i}-v_{0}^{2}\right)$. We shall discuss firstly the situation $E_{1}=E_{2}$, the discussion of the more general case $E_{1} \neq E_{2}$ being postponed for the next section. Then the equations (13) becomes $(\beta \mu \rightarrow \mu)$

$$
\begin{equation*}
\frac{1}{4} \frac{d^{3} \rho_{i}}{d \xi^{3}}-E \frac{d \rho_{i}}{d \xi}+\mu \rho_{i} \frac{d}{d \xi}\left(\rho_{1}+\rho_{2}\right)+2 \mu\left(\rho_{1}+\rho_{2}\right) \frac{d \rho_{i}}{d \xi}=0 \tag{14}
\end{equation*}
$$

These are exactly as the equations obtained in the case of Manakov's model [28] and extensively discussed by us in [29], [30]. In the following we shall present several periodic and traveling wave solutions of (14).

Introducing the quantity $z_{+}=\rho_{1}+\rho_{2} \quad(\xi \rightarrow 2 \xi)$ by adding the two equations (14) we get ($2 \xi \rightarrow \xi$)

$$
\begin{equation*}
\frac{d^{3} z_{+}}{d \xi^{3}}-E \frac{d z_{+}}{d \xi}+\frac{3}{2} \mu \frac{d}{d \xi} z_{+}^{2}=0 \tag{15}
\end{equation*}
$$

which integrated twice gives

$$
\begin{equation*}
\frac{1}{4}\left(\frac{d z_{+}}{d \xi}\right)^{2}=-\mu z_{+}^{3}+E z_{+}^{2}+A z_{+}+B=P_{3}\left(z_{+}\right) \tag{16}
\end{equation*}
$$

Subtracting the two equations (14) and denoting $z_{-}=\rho_{1}-\rho_{2}$ we get

$$
\begin{equation*}
\frac{d^{3} z_{-}}{d \xi^{3}}-E \frac{d z_{-}}{d \xi}+\mu z_{-} \frac{d z_{+}}{d \xi}+2 \mu z_{+} \frac{d z_{-}}{d \xi}=0 \tag{17}
\end{equation*}
$$

a linear differential equation in z_{-}once $z_{+}(\xi)$ is known. A special solution is

$$
\begin{equation*}
z_{-}=\left(p_{1}^{2}-p_{2}^{2}\right) z_{+} \quad p_{1}^{2}+p_{2}^{2}=1 \tag{18}
\end{equation*}
$$

which together with the definition of z_{+}gives

$$
\begin{equation*}
\rho_{1}=p_{1}^{2} z_{+}, \quad \rho_{2}=p_{2}^{2} z_{+} \tag{19}
\end{equation*}
$$

But for constant velocities, as is easily seen from (10) the densities ρ_{i} have to satisfy the additional conditions

$$
\begin{equation*}
\frac{1}{2} \frac{1}{\sqrt{\rho_{i}}} \frac{\partial^{2} \sqrt{\rho_{i}}}{\partial x^{2}}+\mu z_{+}(\xi)=\lambda_{i} \tag{20}
\end{equation*}
$$

which for the previous solutions (19) lead us to the following constraint $\left(\lambda_{1}=\lambda_{2}=\lambda\right)$

$$
\begin{equation*}
\frac{d^{2} z_{+}}{d \xi^{2}}-\frac{1}{2 z_{+}}\left(\frac{d z_{+}}{d \xi}\right)^{2}+\mu z_{+}-\lambda z_{+}=0 \tag{21}
\end{equation*}
$$

It is easily seen that this is satisfied if $\quad \lambda=\frac{E}{2} \quad B=0$.
Now let us assume that the third order polynomial $P_{3}\left(z_{+}\right)$has three distinct roots.

$$
\begin{equation*}
P_{3}\left(z_{+}\right)=-\mu\left(z_{+}-z_{1}\right)\left(z_{+}-z_{2}\right)\left(z_{+}-z_{3}\right) \tag{22}
\end{equation*}
$$

The restriction $B=0$ means that one of the roots z_{2} or z_{3} is zero. We are interested in positive solutions of (16) for which $P_{3}\left(z_{+}\right)$is also positive. The periodic solutions of (16) can be expressed through Jacobi elliptic functions and taking into account the positivity requirement mentioned before we identify two acceptable situations

$$
\begin{gather*}
z_{1}>0, \quad z_{2}=0, \quad z_{3}<0 \\
z_{+}=z_{1} \mathrm{cn}^{2} u \tag{23}\\
u=\frac{2 \sqrt{\mu}}{g} \xi, \quad k^{2}=\frac{z_{1}}{z_{1}+\left|z_{3}\right|}, \quad g=\frac{2}{\sqrt{z_{1}+\left|z_{3}\right|}} \\
z_{3}=0, \quad 0<z_{2}<z_{3} \\
z_{+}=z_{1}-\left(z_{1}-z_{2}\right) \mathrm{sn}^{2} u \tag{24}\\
u=\frac{2 \sqrt{\mu}}{g} \xi, \quad k^{2}=\frac{z_{1}-z_{2}}{z_{1}}, \quad g=\frac{2}{\sqrt{z_{1}}} .
\end{gather*}
$$

Solitary wave solutions are obtained in the limiting case $k=1$ when $\mathrm{cn} u \rightarrow \operatorname{sech} u, \quad$ sn $u \rightarrow \tanh u$, and both solutions (23) and (24) become a bright soliton

$$
\begin{equation*}
z_{+} \rightarrow z_{1} \frac{1}{\cosh ^{2} u} \quad u=\frac{2 \sqrt{\mu}}{g}, \quad g=\frac{2}{\sqrt{z_{1}}} \tag{25}
\end{equation*}
$$

In conclusion, in this case of equal velocities $v_{1}=v_{2}=v_{0}$, and equal "energies" $E_{1}=E_{2}=E$, the solutions of the Ψ equations are bright solitons. It is clear that in this case no energy transfer between the two components takes place.

The phase $\theta(x, t)$ is easily calculated writing $\theta_{i}(x, t)=v_{0} x+\gamma_{i}(t)$; then using (9) we get

$$
\begin{equation*}
\theta_{i}=v_{0} x-\left(\frac{1}{2} v_{0}^{2}-\frac{E}{2}\right) t+\delta_{i} \tag{26}
\end{equation*}
$$

5 Motion with stationary-profile current velocity

In the case when all the functions depend only on $\xi=x-u_{0} t$ integrating the continuity equation (8) we get

$$
\begin{equation*}
v_{i}(x, t)=u_{0}+\frac{A_{i}}{\rho_{i}} \tag{27}
\end{equation*}
$$

with A_{i} some integration constants. It is easily seen that the equations of motion keep the same form as (14) with $E_{i}=-\left(2 c_{i}+u_{0}^{2}\right)$. We shall discuss again the case $E_{1}=E_{2}=E$ and the same equations as before are obtained, but without any restrictions on the roots of the polynomials $P_{3}\left(z_{+}\right)$. The periodic solution is given by $\left(0<z_{2}<z_{1}\right)$

$$
\begin{equation*}
z_{+}=z_{1}-\left(z_{1}-z_{2}\right) \operatorname{sn}^{2} u \tag{28}
\end{equation*}
$$

$$
u=\frac{2 \sqrt{\mu}}{g} \xi, \quad k^{2}=\frac{z_{1}-z_{2}}{z_{1}-z_{3}}, \quad g=\frac{2}{\sqrt{z_{1}-z_{2}}}
$$

which in the degenerate case becomes

$$
\begin{equation*}
z_{+}=z_{1}-\left(z_{1}-z_{2}\right) \tanh ^{2} u \tag{29}
\end{equation*}
$$

describing a bright soliton with nonvanishing values at infinity (shifted-bright soliton). The expression of the phase takes a more complicated form containing incomplete elliptic integral of third kind [29].

For $E_{1} \neq E_{2}$ it is convenient to use a direct method to solve the coupled system of equations (13). We seek after solutions of the form

$$
\begin{equation*}
\rho_{i}=A_{i}+B_{i} \operatorname{sn} u, \quad u=2 \lambda \xi \tag{30}
\end{equation*}
$$

with A_{i}, B_{i}, λ constants to be determined. Introducing into (13) we get [29]

$$
\begin{gather*}
B_{1}+B_{2}=-\frac{4 \lambda^{2} k^{2}}{\gamma} \tag{31}\\
-\left[4 \lambda^{2}\left(1+k^{2}\right)+E_{i}\right] B_{i}+\gamma\left(B_{1}+B_{2}\right) A_{i}+2 \gamma\left(A_{1}+a_{2}\right) B_{i}=0
\end{gather*}
$$

Writing

$$
\begin{equation*}
B_{i}=-\frac{-4 \lambda^{2} k^{2}}{\gamma} b, \quad A_{i}=\frac{4 \lambda^{2} k^{2}}{\gamma} a_{i} \tag{32}
\end{equation*}
$$

the first equation (31) gives

$$
\begin{equation*}
b_{1}+b_{2}=1 \tag{33}
\end{equation*}
$$

It is convenient to write

$$
\begin{equation*}
E_{1}=4 \lambda^{2} k^{2}(e+\delta), \quad E_{2}=4 \lambda^{2} k^{2}(e-\delta) \tag{34}
\end{equation*}
$$

and without any loss of generality to consider $\delta>0$. We get [29]

$$
\begin{align*}
& a_{1}=\frac{1}{3}\left(e+\frac{1+k^{2}}{k^{2}}+\delta+4 \delta\left(1-b_{1}\right)\right) b_{1} \\
& a_{2}=\frac{1}{3}\left(e+\frac{1+k^{2}}{k^{2}}-\delta-4 \delta\left(1-b_{2}\right)\right) b_{2} \tag{35}
\end{align*}
$$

As is expected this result verify the symmetry condition $1 \leftrightarrow 2$ if $\delta \leftrightarrow-\delta$.
Several restrictions result from the positiveness of ρ_{i}. If both b_{i} are positive quantities smaller than unity this requirement implies

$$
\begin{equation*}
a_{i}>b_{i}>0 \tag{36}
\end{equation*}
$$

Introducing the notation

$$
\begin{equation*}
\mu=\frac{1}{3}\left(e+\frac{1+k^{2}}{k^{2}}-\delta(1+4 b)\right) \tag{37}
\end{equation*}
$$

the condition (36) is satisfied if $\mu>1$. In the limiting case $k^{2}=1$ the solutions are [29]

$$
\begin{align*}
& \rho_{1}=\frac{4 \lambda^{2}}{\gamma} b\left(\mu+2 \delta-\tanh ^{2} u\right) \\
& \rho_{2}=\frac{4 \lambda^{2}}{\gamma}(1-b)\left(\mu-\tanh ^{2} u\right) \tag{38}
\end{align*}
$$

representing shifted bright solitons.

6 Conclusions

A special case of a vector soliton problem is considered, namely the interaction of three nonlinear waves, where two of them correspond to bright solitons (anomalous dispersion) and one to a dark one (normal dispersion). Using a multiple scales analysis a two-component one-dimensional Zakharov-YajimaOikawa system is obtained in the case of long wave-short wave resonance. The system corresponding to the bright solitons is discussed further using a Madelung fluid description. Periodic solutions expressed through Jacobi elliptic functions and stationary solutions obtained when $k^{2}=1$ are presented in two simplifying conditions, namely for constant velocity and for motion with stationary profile. This twocomponent Zakharov - Yajima - Oikawa system is completely integrable and many-solitons solutions can be found using different methods, as the bi-linear method of Hirota [24]. The Madelung fluid description could be useful to find various solutions of a generalized ZYO system, containing additional nonlinear terms.

References

[1] Y. Kivshar, G.P. Agrawal, Optical Solitons. From Fibers to Photonic Cristals, Academic Press, San Diego, 2003
[2] M.V. Tratnik, J.E. Sipe, Phys. Rev. A 38, 2011 (1988)
[3] C.R. Menyuk, IEEE J. Quant. Electron. 23, 174 (1988)
[4] P.L. Christiansen, J.C. Eilbeck, V.Z. Enolskii, N.A. Kostov, Proc.Roy.Soc. London A 451, 685 (1995)
[5] R. Carretero-Gonzales, D.J. Frantzeskakis, P.G. Kevrekidis, Nonlinearity 21, R 139 (2008)
[6] V.M. Perez-Garcia, N.G. Berloff, P.G. Kevrekidis, V.V. Konotop, B.A. Malomed, Physics D, 238, 1289 (2009)
[7] G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, NY, 1995, 2-nd edition)
[8] N. Akhmediev, A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Champan and Hall, London, 1997)
[9] A. Hasegawa, Y. Kodama, Solitons in Optical Communications (Oxford Univ. Press, 1995)
[10] M. Onorato, A.R. Osborne, M. Serio, Phys.Rev. Lett. 96, 014503 (2006)
[11] Y. Kivshar, Optics Lett. 171322 (1992)
[12] V.E. Zakharov, Zh. Eksp. Teor. Fiz. 62, 1745 (1972)
[13] N. Yajima, M. Oikawa, Progr.Theor.Phys., 56, 1719 (1976)
[14] E.M. Laedke, K.H. Spatschek, Phys. Fluids 23, 44 (1980)
[15] R.H.J. Grimshaw, Stud. Appl. Math. 56, 241 (1977)
[16] D.J. Benney, Stud. Appl. Math. 56, 81 (1977)
[17] V.D. Djordjevic, L.G. Redekopp, J. Fluid. Mech. 79, 703 (1979)
[18] A.S. Davydov, Solitons in Molecular Systems (Reidel, Dordrecht, 1985)
[19] R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, H.C. Morris, Solitons and Nonlinear Wave Equations (Academic Press, London, 1982)
[20] M. Boiti, J. Leon, F. Pempinelli, A. Spire, J. Phys. A: Math. Gen. 37, 4243 (2004)
[21] A. Visinescu, D. Grecu, Proc. Inst. Math. NAS Ukraine 50(3), 1502 (2004)
[22] R. Radha, C. Senthil Kumar, M. Lakshmanan, X.Y. Tang, S.Y. Lou, J. Phys. A: Math. Gen. 38, 9649 (2005)
[23] M. Yurova, J. Math. Phys. 48, 053516 (2007)
[24] Y. Ohta, K. Maruno, M. Oikawa, J.Phys. A: Math. Theor. 407659 (2007); K. Maruno, Y. Ohta, M. Oikawa, Glasgow Math. 51, 129 (2009)
[25] A.T. Grecu, D. Grecu, A. Visinescu, Rom. J. Phys. $\mathbf{5 6 (3 - 4) , ~ (2 0 1 1) ~ - ~ i n ~ p r e s s ~}$
[26] E. Madelung, Zeit. Physik 40332 (1926)
[27] R. Fedele, Physica Scripta 65502 (2002); R. Fedele, H. Schamel, Eur. Phys. J. B 27, 313 (2002)
[28] S.V. Manakov, Zh. Eksp. Teor. Fiz. 65505 (1973); Soviet Phys. JETP 38, 248 (1974)
[29] D. Grecu, A. Visinescu, R. Fedele, S. DeNicola, Rom.J.Phys. 55585 (2010)
[30] A. Visinescu, D. Grecu, R. Fedele, S. DeNicola, Theor.Math.Phys. 1601066 (2009)

[^0]: *Work supported by CNCSIS research project Idei 571/2008

