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Abstract
The interaction between two bright solitons (short waves) and a dark one (long wave) is discussed

and in the resonance condition, using a multiple scales analysis, a two component Zakharov-Yajima-
Oikawa system is obtained. A Madelung fluid description is used to discuss this system and several
solutions are presented.

PACS: 42.81 Dp, 05.45.Yv

1 Introduction

In many physical applications more than one single wave is propagating in a nonlinear medium, and
the interaction of several waves has to be taken into account. Such examples are: 1) the propagation
of solitonlike pulses in birefringent optical fibers [1]-[4]; 2) nonlinear waves in Bose-Einstein conden-
sates [5], [6]; 3) soliton propagation through optical fiber array [1], [7]-[9]; 4) nonlinear dynamics of
gravity waves in crossing sea states [10], to mention only few physical phenomena where these ”‘vector
solitons”’ play a fundamental role.

Many years ago a discussion of bright-dark soliton interaction was given by Kivshar [11]. The
interesting fact of this analysis was the reduction of the problem in certain conditions to the completely
integrable system of Zakharov-Yajima-Oikawa [12], [13] (see eqs. (9) and (10) of [11]). The special
conditions refer to the existence of a ”long wave-short wave resonance” (LW-SW resonance). This
resonance phenomena has quite a large universality. In plasma physics it describes Langmuir solitons
moving near the speed of sound [12], [14], in hydrodynamics it appears in the study of internal gravity
waves [15] and a general study of LW-SW resonance [16], [17] in quasi-one-dimensional molecular
crystals it describes the resonance between the excitonic and phonon fields in Davydov’s model [18],
to mention only few such examples. Recently extensions of the LW-SW resonance to two dimensions
and more components have been discussed and solved by several authors [22]-[24].

In the present paper the interaction between two bright solitons (short waves) and a dark one (long
wave) will be discussed and in the resonance condition a two component Zakharov-Yajima-Oikawa
system will be obtained. Besides its relevance in nonlinear optics the same system is describing a
Davydov model with two excitonic components [25]. In the next section the basic equations describing
the three wave interaction will be written down and using a multiple scales analysis the Zakharov-
Yajima-Oikawa system is obtained. In section three a Madelung fluid description is used to discuss
this system and several solutions are presented. Few conclusions will be presented in the last section.

2 Basic equations and multiple scales analysis

We consider three nonlinear dispersive waves propagating in an optical fiber. Suppose that the disper-
sion relations of these weakly nonlinear waves are ωi = ωi(ki : |A1|2, |A2|2, |A3|2), i = 1, 2, 3 and we
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consider ei(k0x−ω0t) to be a basic carrier wave. Then a Taylor expansion around (k0, ω0) and |Ai| = 0
of each ωi will give

ωi − ω0 =
(

∂ωi

∂ki

)

0

(ki − k0) +
1
2

(
∂2ωi

∂k2
i

)

0

(ki − k0)2 +
(

∂ωi

∂|A1|2
)

0

|A1|2+
(

∂ωi

∂|A2|2
)

0

|A2|2 +
(

∂ωi

∂|A3|2
)

0

|A3|2 + ... (1)

Replacing ωi − ω0 ' −i ∂
∂t , ki − k0 ' i ∂

∂x , after a translation of coordinate (x → x−
(

∂ω3
∂k3

)
0
t), the

following nonlinear system of three interacting waves is obtained

i
∂A1

∂t
+ iV1

∂A1

∂x
+

α1

2
∂2A1

∂x2
+ α2|A1|2A1 + α3|A2|2A1 + α4|A3|2A1 = 0

i
∂A2

∂t
+ iV2

∂A2

∂x
+

β1

2
∂2A2

∂x2
+ β2|A1|2A2 + β3|A2|2A2 + β4|A3|2A2 = 0

i
∂A3

∂t
+

γ1

2
∂2A3

∂x2
+ γ2|A1|2A3 + γ3|A2|2A3 + γ4|A3|2A3 = 0. (2)

Here we denoted Vi =
(

∂ωi
∂ki

)
0
−

(
∂ω3
∂k3

)
0
, i = 1, 2 and the constants α1, β1, γ1 are related to derivatives

of ωi with respect to ki (ex. α1 = −
(

∂2ω1

∂k2
1

)
0
, .) while α2, ...γ4 to the derivatives with respect to |Ai|2

(ex. α2 =
(

∂ω1
∂|A1|2

)
...).

Further on we shall consider channel 3 with normal dispersion and 1 and 2 with anomalous dis-
persion [1]. Then following Kivshar [11] it is convenient to introduce new field variables

A1 = Ψ1e
iδ1t, A2 = Ψ2e

iδ2t, A3 = (u0 + a(x, t))ei(Γt+φ(x,t))

δi =
(

∂ωi

∂|A3|2
)

0

u2
0, Γ =

(
∂ω3

∂|A3|2
)

0

u2
0.

(u0, a real quantities) and the system (2) becomes

i
∂Ψ1

∂t
+ iV1

∂Ψ1

∂x
+

α1

2
∂2Ψ1

∂x2
+

(
α2|Ψ1|2 + α3|Ψ2|2

)
Ψ1 + 2α4u0aΨ1 + α4a

2Ψ1 = 0

i
∂Ψ2

∂t
+ iV2

∂Ψ2

∂x
+

β1

2
∂2Ψ2

∂x2
+

(
β2|Ψ1|2 + β3|Ψ2|2

)
Ψ2 + 2α4u0aΨ2 + β4a

2Ψ2 = 0

∂2a

∂t2
+ γ1γ4u

2
0

∂2a

∂x2
+

γ2
1

4
∂4a

∂x4
+

γ1

2
∂2

∂x2
(γ2u0|Ψ1|2 + γ3u0|Ψ2|2) (3)

+(higher order nonlinear terms in (a, φ) and their derivatives) = 0.

The linear part of the a equation corresponds to an acoustic field with dispersion relation (γ1 <
0, γ4 > 0)

ω = ck

√
1 +

γ2
1

4c2
k2 ' ck

(
1 +

γ2
1

8c2
k2

)

and phase velocity c = ω/k, where c2 = |γ1|γ4u
2
0.

We shall perform a multiple scales analysis of the system (3) [11]. We introduce new scaled
variables

t ⇒ εt, x ⇒ √
ε(x− ct)

and new functions
a ⇒ εa, φ ⇒ εφ, Ψ1 ⇒ ε

3
4 Ψ1, Ψ2 ⇒ ε

3
4 Ψ2.

Then in order 5
2 in ε from a equation we obtain

−2c
∂a

∂t
+

γ1

2
∂

∂x

(
γ2u0|Ψ1|2 + γ3u0|Ψ2|2

)
= 0. (4)
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All the nonlinear terms in a equation contribute to higher order in ε. In the order 5
4 from Ψi equations

we obtain V1 = V2 = c. This is the well known long wave-short wave (LW-SW) resonance condition:”the
group velocity V of the SW is equal to the phase velocity of the LW” [16]. In the next order

(
7
4

)
in ε

from the Ψ equations we get

i
∂Ψ1

∂t
+

α1

2
∂2Ψ1

∂x2
+ 2α4u0aΨ1 = 0

i
∂Ψ2

∂t
+

β1

2
∂2Ψ2

∂x2
+ 2β4u0aΨ2 = 0 (5)

The equations (4)+(5) represent an 1-dimensional 2-components Zakharov [12], Yajima-Oikawa [13]
system. As mentioned in the Introduction the same system in the same LW-SW resonance condition
was obtained in a Davydov model with two excitonic modes coupled with a phonon field [25]. The
same line of reasoning was used in [24] for three interacting waves in 2-dimensions.

3 Madelung fluid description

The special case (αi = βi, γ2 = γ3) is completely integrable [24] and will be considered in the
following. In this case, simplifying the notations, the system (5) is written in the following form
(γ > 0, β > 0)

∂a

∂t
+ γ

∂

∂x

(|Ψ1|2 + |Ψ2|2
)

= 0

i
∂Ψi

∂t
+

1
2

∂2Ψi

∂x2
+ βΨia = 0, i = 1, 2. (6)

The Ψi equations will be transformed using a Madelung fluid description [26], [27].

Ψi =
√

ρi eiθi ,

where ρi, θi are real functions of (x, t) and moreover ρi are positive quantities. Introducing this
expression into a-equation this becomes

∂a

∂t
+ γ

∂

∂x
(ρ1 + ρ2) = 0, (7)

while from the Ψi equations, after the separation of real and imaginary parts, we obtain

∂ρi

∂t
+

∂

∂x
(viρi) = 0 (8)

which is a continuity equation for the fluid densities ρi = |Ψi|2 with vi(x, t) = ∂θi(x,t)
∂x the fluid velocities

components and

−∂θi

∂t
+

1
2

1√
ρi

∂2√ρi

∂x2
− 1

2

(
∂θi

∂x

)2

+ βa = 0. (9)

Derivating this last expression with respect to x the following equations of motion for the fluid velocities
vi are obtained (

∂

∂t
+ vi

∂

∂x

)
vi =

1
2

∂

∂x

(
1√
ρi

∂2√ρi

∂x2

)
+ β

∂a

∂x
. (10)

In the right hand side of (10) a(x, t) plays the role of external potential, and the first term is the
derivative of the so called Bohm potential, 1

2
1√
ρi

∂2√ρi

∂x2 , and contains all the diffraction effects (quantum
effects in quantum problems). By a series of transformations the equation (10) is written as [27]

−ρi
∂vi

∂t
+ vi

∂ρi

∂t
+ 2

[
ci(t)−

∫
∂vi

∂t
dx

]
∂ρi

∂x
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+
1
4

∂3ρi

∂x3
+ βρi

∂

∂x
a + 2βa

∂ρi

∂x
= 0 (11)

where ci are arbitrary integration constants with respect to x, eventually time dependent. Although
(11) seams to be more complicated then the initial equation (10), it can be solved in two special
situations, namely

• motion with constant velocities v1 = v2 = v0

• motion with stationary profile current velocity, when all the quantities ρi(x, t), vi(x, t), a(x, t)
are depending on x and t through the combination ξ = x− u0t.

Both cases will be analyzed in the following.

4 Motion with constant velocity (v1 = v2 = v0)

In this case from the continuity equations (8) one sees that both ρ1(x, t) and ρ2(x, t) depend on
ξ = x− v0t. We assume that also a(x, t) depends only on ξ. Then the a equation gives

a = µ(ρ1 + ρ2), µ =
γ

v0
(12)

and the equations (11) writes

1
4

d3ρi

dξ3
−Ei

dρi

dξ
+ 2βa

dρi

dξ
+ βρi

da

dξ
= 0, (13)

where by Ei we denoted −(2ci − v2
0). We shall discuss firstly the situation E1 = E2, the discussion

of the more general case E1 6= E2 being postponed for the next section. Then the equations (13)
becomes (βµ → µ)

1
4

d3ρi

dξ3
− E

dρi

dξ
+ µρi

d

dξ
(ρ1 + ρ2) + 2µ(ρ1 + ρ2)

dρi

dξ
= 0. (14)

These are exactly as the equations obtained in the case of Manakov’s model [28] and extensively
discussed by us in [29], [30]. In the following we shall present several periodic and traveling wave
solutions of (14).

Introducing the quantity z+ = ρ1+ρ2 (ξ → 2ξ) by adding the two equations (14) we get (2ξ → ξ)

d3z+

dξ3
− E

dz+

dξ
+

3
2
µ

d

dξ
z2
+ = 0, (15)

which integrated twice gives

1
4

(
dz+

dξ

)2

= −µz3
+ + Ez2

+ + Az+ + B = P3(z+). (16)

Subtracting the two equations (14) and denoting z− = ρ1 − ρ2 we get

d3z−
dξ3

−E
dz−
dξ

+ µz−
dz+

dξ
+ 2µz+

dz−
dξ

= 0, (17)

a linear differential equation in z− once z+(ξ) is known. A special solution is

z− = (p2
1 − p2

2)z+ p2
1 + p2

2 = 1 (18)

which together with the definition of z+ gives

ρ1 = p2
1z+, ρ2 = p2

2z+. (19)
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But for constant velocities, as is easily seen from (10) the densities ρi have to satisfy the additional
conditions

1
2

1√
ρi

∂2√ρi

∂x2
+ µz+(ξ) = λi, (20)

which for the previous solutions (19) lead us to the following constraint (λ1 = λ2 = λ)

d2z+

dξ2
− 1

2z+

(
dz+

dξ

)2

+ µz+ − λz+ = 0. (21)

It is easily seen that this is satisfied if λ = E
2 B = 0.

Now let us assume that the third order polynomial P3(z+) has three distinct roots.

P3(z+) = −µ(z+ − z1)(z+ − z2)(z+ − z3). (22)

The restriction B = 0 means that one of the roots z2 or z3 is zero. We are interested in positive
solutions of (16) for which P3(z+) is also positive. The periodic solutions of (16) can be expressed
through Jacobi elliptic functions and taking into account the positivity requirement mentioned before
we identify two acceptable situations

z1 > 0, z2 = 0, z3 < 0

z+ = z1 cn2u (23)

u =
2
√

µ

g
ξ, k2 =

z1

z1 + |z3| , g =
2√

z1 + |z3|
z3 = 0, 0 < z2 < z3

z+ = z1 − (z1 − z2)sn2u (24)

u =
2
√

µ

g
ξ, k2 =

z1 − z2

z1
, g =

2√
z1

.

Solitary wave solutions are obtained in the limiting case k = 1 when cn u → sech u, sn u → tanh u,
and both solutions (23) and (24) become a bright soliton

z+ → z1
1

cosh2u
u =

2
√

µ

g
, g =

2√
z1

. (25)

In conclusion, in this case of equal velocities v1 = v2 = v0, and equal ”energies” E1 = E2 = E, the
solutions of the Ψ equations are bright solitons. It is clear that in this case no energy transfer between
the two components takes place.

The phase θ(x, t) is easily calculated writing θi(x, t) = v0x + γi(t); then using (9) we get

θi = v0x−
(

1
2
v2
0 −

E

2

)
t + δi (26)

5 Motion with stationary-profile current velocity

In the case when all the functions depend only on ξ = x− u0t integrating the continuity equation (8)
we get

vi(x, t) = u0 +
Ai

ρi
, (27)

with Ai some integration constants. It is easily seen that the equations of motion keep the same form
as (14) with Ei = −(2ci +u2

0). We shall discuss again the case E1 = E2 = E and the same equations as
before are obtained, but without any restrictions on the roots of the polynomials P3(z+). The periodic
solution is given by (0 < z2 < z1)

z+ = z1 − (z1 − z2)sn2u (28)

238



u =
2
√

µ

g
ξ, k2 =

z1 − z2

z1 − z3
, g =

2√
z1 − z2

which in the degenerate case becomes

z+ = z1 − (z1 − z2) tanh2 u, (29)

describing a bright soliton with nonvanishing values at infinity (shifted-bright soliton). The expression
of the phase takes a more complicated form containing incomplete elliptic integral of third kind [29].

For E1 6= E2 it is convenient to use a direct method to solve the coupled system of equations (13).
We seek after solutions of the form

ρi = Ai + Bisn u, u = 2λξ, (30)

with Ai, Bi, λ constants to be determined. Introducing into (13) we get [29]

B1 + B2 = −4λ2k2

γ
(31)

−[4λ2(1 + k2) + Ei]Bi + γ(B1 + B2)Ai + 2γ(A1 + a2)Bi = 0.

Writing

Bi = −−4λ2k2

γ
b, Ai =

4λ2k2

γ
ai (32)

the first equation (31) gives
b1 + b2 = 1. (33)

It is convenient to write

E1 = 4λ2k2(e + δ), E2 = 4λ2k2(e− δ) (34)

and without any loss of generality to consider δ > 0. We get [29]

a1 =
1
3

(
e +

1 + k2

k2
+ δ + 4δ(1− b1)

)
b1

a2 =
1
3

(
e +

1 + k2

k2
− δ − 4δ(1− b2)

)
b2. (35)

As is expected this result verify the symmetry condition 1 ↔ 2 if δ ↔ −δ.
Several restrictions result from the positiveness of ρi. If both bi are positive quantities smaller than

unity this requirement implies
ai > bi > 0. (36)

Introducing the notation

µ =
1
3

(
e +

1 + k2

k2
− δ(1 + 4b)

)
(37)

the condition (36) is satisfied if µ > 1. In the limiting case k2 = 1 the solutions are [29]

ρ1 =
4λ2

γ
b(µ + 2δ − tanh2 u)

ρ2 =
4λ2

γ
(1− b)(µ− tanh2 u) (38)

representing shifted bright solitons.
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6 Conclusions

A special case of a vector soliton problem is considered, namely the interaction of three nonlinear waves,
where two of them correspond to bright solitons (anomalous dispersion) and one to a dark one (normal
dispersion). Using a multiple scales analysis a two-component one-dimensional Zakharov-Yajima-
Oikawa system is obtained in the case of long wave-short wave resonance. The system corresponding to
the bright solitons is discussed further using a Madelung fluid description. Periodic solutions expressed
through Jacobi elliptic functions and stationary solutions obtained when k2 = 1 are presented in two
simplifying conditions, namely for constant velocity and for motion with stationary profile. This two-
component Zakharov - Yajima - Oikawa system is completely integrable and many-solitons solutions
can be found using different methods, as the bi-linear method of Hirota [24]. The Madelung fluid
description could be useful to find various solutions of a generalized ZYO system, containing additional
nonlinear terms.
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