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University of Belgrade, Faculty of Physics
Studentski trg 12, 11000 Beograd, Serbia
dmarija,biljana,rvoja@ipb.ac.rs

Abstract

We discuss one particular model of non(anti)commutative superspace. The deformation is non-
hermitian and given in terms of the SUSY covariant derivatives Dα. We construct a deformed
Wess-Zumino action and analyze its renormalizability properties. One-loop divergences in the two-
point, three-point and four-point Green functions are calculated. In the general model we find that
divergences in the four-point function cannot be absorbed and thus our model is not renormalizable.
However, there is a special choice of the free parameters in the model that renders renormalizability.
We discuss this choice and other possibilities to render the model renormalizable.

Keywords: supersymmetry, nonhermitian twist, deformed Wess-Zumino model, renormaliz-
ability, one-loop effective action

1 Introduction

It is well known that Quantum Field Theory encounters problems at very high energies and very short
distances. This suggests that the structure of space-time has to be modified at these scales. A way to
modify the structure of space-time is to deform the usual commutation relations between coordinates;
this gives a noncommutative (NC) space. Different models of noncommutativity were discussed in
the literature, see [1], [2] and [3] for references. A deformation of Standard Model on the canonically
deformed space-time was constructed in [4] and some phenomenological consequences were analyzed
in [5]. Renormalizability of different noncommutative field theory models was discussed in [6].

A step further in this direction is the modification of superspace and introduction of so-called
non(anti)commutativity. A strong motivation for this comes from string theory. Namely, it was
discovered that a noncommutativity of the superspace coordinates can arise when a superstring moves
in a constant gravitino or graviphoton background [7], [8]. There has been a lot of work on this subject
and different ways of deforming superspace have been discussed. We shall mention some of them in
Section 3.

In this paper we analyze one particular model of the deformed superspace. In the next section
we describe our approach. We use the example of twisted Poincaré symmetry [9] to explain both the
motivation and the technical details. In Section 3 we apply the twist approach to superspace and
construct a deformation of the Wess-Zumino model. In order to see how a deformation (nonanticom-
mutativity) affects the renormalizability properties of the model, we calculate the divergent part of the
one-loop effective action. Our model is not renormalizable in general; however, there exists a special
choice of the free parameters that renders renormalizability. In the last section we discuss our results.

2 Noncommutative spaces and symmetries: twist approach

There are different ways to realize a noncommutative space and to formulate a physical model on it,
see [1] and [2]. We will follow the approach of [2]. In this section we will describe the most important
steps of that approach, the details can be found in [2].
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The noncommutative space Âx̂ can be introduced as a quotient

Âx̂ =
C[x̂0, . . . , x̂3][[h]]

IR̂
. (1)

Here a two-sided ideal IR̂ is given by the linear span of elements

IR̂ : (x̂ . . . x̂)
(
[x̂m, x̂n]− iΘmn(x̂)

)
(x̂ . . . x̂), (2)

where (x̂ . . . x̂) stands for an arbitrary product of the coordinates x̂m in the algebra C[x̂0, . . . , x̂3][[h]].
Note that we work in four dimensions1 and Latin indices go from 0 to 3. The algebra C[x̂0, . . . , x̂3][[h]]
is freely generated by x̂m coordinates and formal power series in the parameter h are included. We
also have that Θmn(x̂) ∈ C[x̂0, . . . , x̂3][[h]] and for h = 0 the usual algebra of commuting coordinates
is obtained.

The defining relation of the deformed space

[x̂m, x̂n] = iΘmn(x̂) (3)

is very general and one usually considers some special examples of it. Among them there are three
very important ones

Canonically deformed [x̂m, x̂m] = iθmn, (4)
Lie algebra deformed [x̂m, x̂n] = iCmn

l x̂l, (5)

q-deformed x̂mx̂m =
1
q
Rmn

rsx̂
rx̂s. (6)

In the case of the canonically deformed spaces θmn = −θnm is an antisymmetric constant matrix of
mass dimension −2. For the Lie algebra deformed spaces Cmn

l are Lie algebra structure constants of
mass dimension −1. Finally, Rmn

rs is the dimensionless R-matrix of the quantum space. These three
examples are important because they fulfill the Poincaré-Birkoff-Witt (PBW) property. This property
enables us to map an arbitrary element f̂(x̂) of Âx̂ to f(x) in the space of commuting coordinates Ax.
The (noncommutative) algebra multiplication is then mapped to the so-called ?-product:

f̂ · ĝ(x̂) 7→ f ? g(x) ∈ Ax. (7)

This product is bilinear and associative but noncommutative. The algebra of noncommuting coordi-
nates Âx̂ is then isomorphic to the algebra of commuting coordinates with the ?-product (instead of
the usual pointwise multiplication) as multiplication. As an example, we write here the ?-product for
the canonically deformed space. It is given by the Moyal ?-product

f ? g (x) = lim
x→y

e
i
2
θrs ∂

∂xr
∂

∂ys f(x)g(y) (8)

=
∞∑

n=1

( i

2

)n 1
n!

θr1s1 . . . θrnsn

(
∂r1 . . . ∂rnf(x)

)

(
∂s1 . . . ∂sng(x)

)
.

Now one can define a noncommutative space as the usual space of commuting coordinates with the
pointwise multiplication replaced by a noncommutative ?-product. This approach is very popular
and different models were constructed. A noncommutative extension of the Standard Model was
constructed in [4] and some phenomenological consequences were analyzed in [5].

However, there is a drawback of this approach. Namely, it is not clear what happens with sym-
metries of the theory in this approach. For example, the commutation relations (4) obviously break
the global Lorentz symmetry, since θmn is constant. Is there a deformed symmetry which replaces the

1Everything said here can easily be generalized to an arbitrary number of dimensions.
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global Lorentz symmetry in this case? If it exists, what is it? An answer to these question could be
given using the twist formalism.

The main idea of this formalism is to first deform the symmetry of the theory and then see the
consequences this deformation has on the space-time itself. Let us take the example of four dimensional
Minkowski space-time and the global Poincare symmetry. The Poincaré algebra Ξ is generated by the
translation generators ∂m and the Lorentz generators Mmn. The full Hopf algebra reads:

[∂m, ∂n] = 0, [Mmn, ∂r] = i(ηnr∂m − ηmr∂n),
[Mmn,Mrs] = i(ηnrMms + ηmsMnr − ηnsMmr − ηmrMns),

∆∂m = ∂m ⊗ 1 + 1⊗ ∂m, ∆Mmn = Mmn ⊗ 1 + 1⊗Mmn,

ε(∂m) = 0, ε(Mmn) = 0,

S(∂m) = −∂m, S(Mmn) = −Mmn. (9)

The comultiplications encodes the Leibniz rule; for example:

∂m(f · g) = µ
(
∆(∂m)(f ⊗ g)

)

= µ
(
(∂mf)⊗ g + f ⊗ (∂mg)

= (∂mf) · g + f · (∂mg), (10)

with µ being the pointwise multiplication.
There is a well defined way to deform the symmetry Hopf algebra. In his papers [10] Drinfel’d

introduced the notion of twist. The twist F is a bidifferential operator which belongs to UΞ ⊗ UΞ,
where UΞ is the universal enveloping algebra of the symmetry Lie algebra Ξ. Let us choose the twist
F for our example in the following way

F = e−
i
2
θrs∂r⊗∂s , (11)

where θrs is a constant antisymmetric matrix. Now we apply the twist (11) to the Hopf algebra (9).
In this way the twisted Poincaré Hopf algebra is obtained

[∂m, ∂n] = 0, [Mmn, ∂r] = i(ηnr∂m − ηmr∂n),
[Mmn,Mrs] = i(ηnrMms + ηmsMnr − ηnsMmr − ηmrMns),

∆F∂m = F∆(∂m)F−1

= ∂m ⊗ 1 + 1⊗ ∂m,

∆FMmn = F∆(Mmn)F−1

= Mmn ⊗ 1 + 1⊗Mmn

+
1
2
θab

(
ηam∂n − ηan∂m)⊗ ∂b + ∂a ⊗ (ηbm∂n − ηbn∂m

)
,

ε(∂m) = 0, ε(Mmn) = 0,

S(∂m) = −∂m, S(Mmn) = −Mmn. (12)

We see immediately that the algebra remains the same, while the comultiplication changes, becomes
“twisted“. The twisted comultiplication is related with the deformed Leibniz rule, as we shall see in
the following.

The inverse of the twist (11),
F−1 = e

i
2
θrs∂r⊗∂s , (13)

defines the ?-product. For arbitrary functions f and g the ?-product reads

f ? g = µ?{f ⊗ g}
= µ{F−1 f ⊗ g}
= µ{e i

2
∂r⊗∂sf ⊗ g}

= f · g +
i

2
θmn(∂mf) · (∂ng) +O(θ2). (14)
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We see immediately that (14) is exactly the Moyal ?-product (8). Therefore ”twisting” of the com-
mutative space-time with the twist (11) gives the canonically deformed space-time.

Now we can define the action of the twisted Poincaré transformations on fields and ?-product of
fields. Let us take scalar fields as an example. The deformed infinitesimal translations and Lorentz
transformations are given by:

δ?
ε φ = −εm∂mφ,

δ?
ωφ = −1

2
ωmnMmnφ, (15)

with ε and ωmn = −ωnm constant parameters. On the ?-product of two scalar fields we have

δ?
ε (φ1 ? φ2) = (δ?

ε φ1) ? φ2 + φ1 ? (δ?
ε φ2)

= −εm∂m(φ1 ? φ2), (16)
δ?
ω(φ1 ? φ2) = (δ?

ωφ1) ? φ2 + φ1 ? (δ?
ωφ2)

+
1
2
θabωmn

(
ηam(∂nφ1)− ηan(∂mφ1)) ? (∂bφ2)

+(∂aφ1) ? (ηbm(∂nφ2 − ηbn(∂mφ2)
)

= −1
2
ωmnMmn(φ1 ? φ2). (17)

The first lines in (16) and (17) follow from the deformed coproduct in (12). We see that the ?-product
of two scalar fields is again a scalar field.

In the similar way we have

δ?
ω(V m ? φ) = −(ωl

nxn)∂l(V m ? φ) + ωm
l (V

l ? φ),
δ?
ω(Vm ? V m) = −(ωl

nxn)∂l(Vm ? V m),
. . .

In this way we learned what is the symmetry of the canonically deformed space-time. The global
Poincaré symmetry is replaced by the twisted Poincaré symmetry. The algebra remains the same,
while the comultiplication changes. This leads to the deformed Leibniz rule (17).

This method is quite general2 and it can be applied to different symmetries: diffeomorphisms,
gauge symmetry, supersymmetry, see [2]. In the next section we describe the application to the
supersymmetry.

3 Noncommutative SUSY field theory:
D-deformation

We have already said in the beginning of this paper that the field theory on non(anti)commutative
space-time is a very active field of research. There are different ways of introducing non(anti)commutativity
and let us briefly mention some of them.

In [12] the authors combine SUSY with the κ-deformation of space-time, while in [13] SUSY
is combined with the canonical deformation of space-time. In [7] a version of non(anti)commutative
superspace is defined and analyzed. The anticommutation relations between the fermionic coordinates
are modified in the following way

{θα ?, θβ} = Cαβ, {θ̄α̇
?, θ̄β̇} = {θα ?, θ̄α̇} = 0 , (18)

where Cαβ = Cβα is a complex, constant symmetric matrix. Such deformation is well defined only
when undotted and dotted spinors are not related by the usual complex conjugation. In [7] the notion

2?-products obtained by twist are just a subclass of the ?-products obtained by the Kontsevich general method [11].
Therefore, this method does not generate the most general ?-products.
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of chirality is preserved, i.e. the deformed product of two chiral superfields is again a chiral superfield.
On the other hand, one half of N = 1 supersymmetry is broken and this is the so-called N = 1/2
supersymmetry. Another type of deformation is introduced in [14] and [15]. There the product of two
chiral superfields is not a chiral superfield but the model is invariant under the full supersymmetry.
Renormalizability of different models (both scalar and gauge theories) has been discussed in [16], [17]
and [15]. The twist approach was discussed in [18].

Now, let us go back to our model. We work in the superspace generated by xm, θα and θ̄α̇

coordinates which fulfill

[xm, xn] = [xm, θα] = [xm, θ̄α̇] = 0, {θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄α̇} = 0, (19)

with m = 0, . . . 3 and α, β = 1, 2. These coordinates we call supercoordinates, to xm we refer as
bosonic and to θα and θ̄α̇ we refer as fermionic coordinates. We work in Minkowski space-time with
the metric (−,+,+,+) and x2 = xmxm = −(x0)2 + (x1)2 + (x2)2 + (x3)2.

A general superfield F (x, θ, θ̄) can be expanded in powers of θ and θ̄,

F (x, θ, θ̄) = f(x) + θφ(x) + θ̄χ̄(x) + θθm(x) + θ̄θ̄n(x) + θσmθ̄vm(x)
+θθθ̄λ̄(x) + θ̄θ̄θϕ(x) + θθθ̄θ̄d(x). (20)

Under the infinitesimal N = 1 SUSY transformations3 it transforms as

δξF = (ξQ + ξ̄Q̄)F, (21)

where ξα and ξ̄α̇ are constant anticommuting parameters and Qα and Q̄α̇ are SUSY generators,

Qα = ∂α − iσm
αα̇θ̄α̇∂m, Q̄α̇ = −∂̄α̇ + iθασm

αα̇∂m. (22)

Following the steps outlined in Section 2 we now introduce a deformation of the infinitesimal SUSY
transformations by choosing the twist F in the following way

F = e
1
2
CαβDα⊗Dβ , (23)

with the complex constant matrix Cαβ = Cβα ∈ C and Dα = ∂α + iσm
αα̇θ̄α̇∂m. Note that this twist4

is not hermitian, F∗ 6= F ; the usual complex conjugation is denoted by ”∗”. It can be shown that
(23) satisfies all requirements for a twist, [2]. The Hopf algebra of infinitesimal SUSY transformations
does not change since

{Qα, Dβ} = {Q̄α̇, Dβ} = 0. (24)

In particular, the comultiplication of the SUSY generators Qα and Q̄α̇ remains undeformed. This
means that the full commutative supersymmetry is preserved.

The inverse of the twist (23),
F−1 = e−

1
2
CαβDα⊗Dβ , (25)

defines the ?-product. For arbitrary superfields F and G the ?-product reads

F ? G = µ?{F ⊗G}
= µ{F−1 F ⊗G}
= F ·G− 1

2
(−1)|F |Cαβ(DαF ) · (DβG)

−1
8
CαβCγδ(DαDγF ) · (DβDδG), (26)

3Everything said here can be applied to N = 2 and higher supersymmetries. We work with N = 1 for simplicity.
4Strictly speaking, the twist F (23) does not belong to the universal enveloping algebra of the Lie algebra of infinites-

imal SUSY transformations. Therefore to be mathematically correct we should enlarge the algebra by introducing the
relations for the operators Dα as well. In this way the deformed SUSY Hopf algebra remains the same as the undeformed
one. However, since [Dα, Mmn] 6= 0 the super Poincaré algebra becomes deformed and different from the super Poincaré
algebra in the commutative case.
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where |F | = 1 if F is odd (fermionic) and |F | = 0 if F is even (bosonic). The second line is in
fact the definition of the multiplication µ?. No higher powers of Cαβ appear since derivatives Dα

are Grassmanian. The ?-product (26) is associative, noncommutative and in the zeroth order in the
deformation parameter Cαβ it reduces to the usual pointwise multiplication. One should also note
that it is not hermitian,

(F ? G)∗ 6= G∗ ? F ∗. (27)

In this way we define the deformed superspace as a superspace generated by the usual bosonic and
fermionic coordinates (19) while the deformation is contained in the new product (26).

The deformed infinitesimal SUSY transformation is defined in the following way

δ?
ξF = (ξQ + ξ̄Q̄)F. (28)

Since the coproduct is not deformed, the usual Leibniz rule follows. The ?-product of two superfields
is again a superfield; its transformation law is given by

δ?
ξ (F ? G) = (ξQ + ξ̄Q̄)(F ? G)

= (δ?
ξF ) ? G + F ? (δ?

ξG). (29)

4 D-deformed Wess-Zumino model

Being interested in a deformation of the Wess-Zumino model, we need to analyze properties of the
?-products of chiral fields. A chiral field Φ fulfills D̄α̇Φ = 0, where D̄α̇ = −∂̄α̇ − iθασm

αα̇∂m and D̄α̇ is
related to Dα by the usual complex conjugation. In terms of the component fields, Φ is given by

Φ(x, θ, θ̄) = A(x) +
√

2θαψα(x) + θθH(x) + iθσlθ̄(∂lA(x))

− i√
2
θθ(∂mψα(x))σm

αα̇θ̄α̇ +
1
4
θθθ̄θ̄(¤A(x)). (30)

The ?-product of two chiral fields reads

Φ ? Φ = Φ · Φ− 1
8
CαβCγδDαDγΦDβDδΦ

= Φ · Φ− 1
32

C2(D2Φ)(D2Φ)

= A2 − C2

2
H2 + 2

√
2Aθαψα

−i
√

2C2Hθ̄α̇σ̄mα̇α(∂mψα) + θθ
(
2AH − ψψ

)

+C2θ̄θ̄
(
−H¤A +

1
2
(∂mψ)σmσ̄l(∂lψ))

)

+iθσmθ̄
(
∂m(A2) + C2H∂mH

)

+i
√

2θθθ̄α̇σ̄mα̇α(∂m(ψαA))

+
√

2
2

θ̄θ̄C2(−Hθ¤ψ + θσmσ̄n∂nψ∂mH)

+
1
4
θθθ̄θ̄(¤A2 − 1

2
C2¤H2), (31)

where C2 = CαβCγδεαγεβδ. Due to the θ̄, θ̄θ̄ and the θθ̄θ̄ terms in (31),Φ ? Φ is not a chiral field.
Following the method developed in [19] we decompose all ?-products of the chiral fields into their
irreducible components by using the projectors defined in [20].

Finally, the deformed Wess-Zumino action is constructed by requiring that the action is invariant
under the deformed SUSY transformations (28) and that in the commutative limit it reduces to the
undeformed Wess-Zumino action. In addition, we try to make a minimal deformation in the sense that

23



we deform by ?-multiplication only the terms already present in the undeformed Wess-Zumino action.
However, as we shall see latter, renormalizability will in fact imply the addition of some ’nonminimal’
terms. Thus, we propose the following action

S =
∫

d4x
{

Φ+ ? Φ
∣∣∣
θθθ̄θ̄

+
[m

2

(
P2(Φ ? Φ)

∣∣∣
θθ

+ 2a1P1(Φ ? Φ)
∣∣∣
θ̄θ̄

)

+
λ

3

(
P2(P2(Φ ? Φ) ? Φ)

∣∣∣
θθ

+ 3a2P1(P2(Φ ? Φ) ? Φ)
∣∣∣
θ̄θ̄

+2a3(P1(Φ ? Φ) ? Φ)
∣∣∣
θθθ̄θ̄

+ 3a4P1(Φ ? Φ) ? Φ+
∣∣∣
θ̄θ̄

+3a5C̄
2P2(Φ ? Φ) ? Φ+

∣∣∣
θθθ̄θ̄

)
+ c.c.

]}
. (32)

Here P2 and P1 are chiral and antichiral projectors respectively. Coefficients a1, . . . , a5 are real and
constant. The terms with the coefficients a4 and a5 obviously represent a non-minimal deformation.
They are both SUSY invariant and vanish in the commutative limit. Note that the vanishing of
the a5-term in the commutative limit was done by hand by multiplication with C̄2. We shall see in
the following that on the level of three-point functions, the a3-term generates divergences of the form
P1(Φ?Φ)?Φ+

∣∣∣
θ̄θ̄

while the a1-term and the a4-term generate divergences of the form P2(Φ?Φ)?Φ+
∣∣∣
θθθ̄θ̄

.
In order to absorb these divergences one needs to introduce the a4-term and the a5-term in the action
(32) from the very beginning.

Using the background field method and the supergraph technique, one can calculate the one-loop
divergent part of the effective action. The details of the calculation are given in [15], here we just
summarize the results. The divergent parts of the one-point, two-point, three-point and four-point
functions are given by:

Γ(1)
1 = 0,

Γ(2)
1

∣∣∣∣
dp

=
λ2(1− (2a1 + a4

2 + 2a5
m )m2(C2 + C̄2))

4π2ε

∫
d8z Φ+(z)Φ(z)

+
λ2(m2a3 −ma4 − a5)

16π2ε

∫
d8z

[
C2Φ(z)D2Φ(z) + c.c.

]
, (33)

Γ(3)
1

∣∣∣∣
dp

= −λ3(ma1 + ma4 + 2a5)
2π2ε

∫
d8z

[
C̄2Φ(z)Φ(z)Φ+(z) + c.c.

]

+
λ3(2ma3 − a4)

8π2ε

∫
d8z

[
C2Φ(z)Φ+(z)D2Φ(z) + c.c.

]
, (34)

Γ(4)
1

∣∣∣∣
dp

=
λ4

8π2ε

∫
d8z

[
C̄2Φ(z)Φ(z)Φ+(z)(a3D̄

2Φ+(z)

−2a4Φ(z)) + c.c.
]
. (35)

One can check that the five-point function and higher order functions are convergent.

5 Discussion and outlook

Let us first repeat the results for the undeformed Wess-Zumino model. There the divergences appear
only in the two-point function. They lead to renormalization of the superfield and there is no mass
counterterm. Three-point and higher-point functions are convergent, which means that there are no
divergent counterterms for the coupling constants; all redefinitions can be expressed in terms of the
field strength renormalization Z. We see that introducing the deformation (23) changes this behavior:
we obtain divergences both in the three-point and in the four-point functions.

From (33), (34) and (35) we see that the two-point and the three-point functions are renormalizable,
while the four-point function is not. Thus, the model with arbitrary coefficients a1, . . . , a5 is not
renormalizable.
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However, there is a special choice of the coefficients a1, . . . a5 which renders the model renormal-
izable. If we fix a3 = a4 = 0, the divergent part of the four-point function vanishes. In that case the
divergent parts of the two- and three-point functions are

Γ(2)
1

∣∣∣∣
dp

=
λ2(1− (2a1 + 2a5

m )m2(C2 + C̄2))
4π2ε

∫
d8z Φ+(z)Φ(z)

− λ2a5

16π2ε

∫
d8z

[
C2Φ(z)D2Φ(z) + c.c.

]
, (36)

Γ(3)
1

∣∣∣∣
dp

= −λ3(ma1 + 2a5)
2π2ε

∫
d8z

[
C̄2Φ(z)Φ(z)Φ+(z) + c.c.

]
. (37)

All divergences in (36) and (37) have the same form as terms in the classical action (32). But this
is only a necessary condition for a theory to be renormalizable; one has to check the consistency of
the field and the coupling constants redefinitions. This was done in [15] and the final conclusion was
that the model is indeed renormalizable if a3 = a4 = 0. Additionally, if a5 = −1

2ma1 the divergent
part of the three-point function also vanishes and the results are then the same as the results for the
undeformed Wess-Zumino model.

Another problem that could be addressed is the choice of deformation. Namely, renormalizability
can be chosen as a criterion to test the deformation. We could chose a dierent deformation compared
to that discussed in this paper. Using our principles (SUSY invariance, commutative limit, minimal
deformation) we could construct an in- variant action and check whether the obtained model has a
better behavior. This could give us an important insight into which deformation of the superspace is
preferred.
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V. Radovanović, Renormalizability of noncommutative SU(N) gauge theory, JHEP 0602, 046
2006, [hep-th/0510133]; C. P. Martin and C. Tamarit, Renormalisability of noncommutative GUT
inspired field theories with anomaly safe groups, JHEP 0912, 042 (2009), 0910.2677[hep-th].

[7] N. Seiberg, Noncommutative superspace, N = 1/2 supersymmetry, field theory and string theory,
JHEP 0306 010 (2003), [hep-th/0305248].

[8] J. de Boer, P. A. Grassi and P. van Nieuwenhuizen, Noncommutative superspace from string the-
ory, Phys. Lett. B 574, 98 (2003), [hep-th/0302078]; B. Nikolić and B. Sazdović, Noncommutativ-
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