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Abstract

Several new results are collected together from the perspective of studying consistent couplings of
linearized gravity to other gauge theories. All three versions of linearized gravity (Pauli-Fierz model
and massless tensor fields with the mixed symmetry (k, 1) and respectively (k, k)) are considered
in various settings. In all cases interactions are obtained under some common hypotheses, specific
to quantum field theory, from computations of the local cohomology of the BRST differential
associated with each free model on certain spaces in the framework of the antifield-BRST method.

PACS number: 11.10.Ef

1 Introduction

Tensor fields characterized by a mixed Young symmetry type (neither completely antisymmetric nor
fully symmetric) [1, 2, 3, 4, 5, 6] attracted the attention lately on some important issues, like the dual
formulation of field theories of spin two or higher [7, 8, 9, 10, 11, 12, 13], or the derivation of some
exotic gravitational interactions [14, 15].

There exist in fact three different dual formulations of linearized gravity (LG) in D dimensions: the
Pauli–Fierz description [16, 17], the version based on a massless tensor field with the mixed symmetry
(D − 3, 1) [3, 8, 18] and the formulation in terms of a massless tensor field with the mixed symmetry
(D − 3, D − 3) [19, 20]. The last two versions are obtained by dualizing on one and respectively on
both indices the Pauli-Fierz field [7]. These dual formulations in terms of mixed symmetry tensor
gauge fields have been systematically investigated from the perspective of M -theory [21, 22, 23].

There is a revived interest in the construction of dual gravity theories, which led to several new
results, viz. a dual formulation of LG in first order tetrad formalism in arbitrary dimensions within
the path integral framework [24] or a reformulation of nonlinear Einstein gravity in terms of the dual
graviton together with the ordinary metric and a shift gauge field [25].

An important matter related to the dual formulations of LG is the study of their consistent
interactions, among themselves as well as with other gauge theories. The most efficient approach
to this problem is the cohomological one, based on the deformation of the solution to the master
equation [26]. Related to the usual Pauli–Fierz formulation of LG, it was believed that its only
consistent interactions produce the standard couplings from General Relativity. Nevertheless, it was
proved that there are allowed different couplings, at least in the presence of p-form gauge fields, which
break the PT invariance [29]. On the other hand, since the mixed symmetry tensor fields involved
in dual formulations of LG allow no self-interactions, it was believed that they are also rigid under
the introduction of couplings to other gauge theories. Nevertheless, some recent results prove the
contrary. More precisely, it was shown that some theories with massless tensor fields exhibiting the
mixed symmetry (k, 1) can be consistently coupled to a vector field (k = 3) [30], to an arbitrary p-form
(k = 3) [31], to a topological BF model (k = 2) [32], and to a massless tensor field with the mixed
symmetry of the Riemann tensor (k = 3) [33]. In addition, the study of cross-couplings among a
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collection of massless tensor fields with the mixed symmetry (3, 1) and a collection of massless tensor
fields with the mixed symmetry of the Riemann tensor reveals a case of special interest [34]. In this
paper we collect all these yes-go results on a systematic basis.

2 General method of constructing interacting gauge field theories

We begin with a “free” gauge theory, described by a Lagrangian action SL
0 [Φα0 ], invariant under some

gauge transformations δεΦα0 = Z̄α0
α1

εα1 , i.e. δSL
0

δΦα0 Z̄α0
α1

= 0, and consider the problem of constructing
consistent interactions among the fields Φα0 such that the couplings preserve the field spectrum and
the original number of gauge symmetries. This matter is addressed by means of reformulating the
problem of constructing consistent interactions as a deformation problem of the solution to the master
equation corresponding to the “free” theory [26, 27, 28]. Such a reformulation is possible due to the
fact that the solution to the master equation contains all the information on the gauge structure of
the theory. If an interacting gauge theory can be consistently constructed, then the solution S̄ to the
master equation associated with the “free” theory,

(
S̄, S̄

)
= 0, can be deformed into a solution S

S̄ → S = S̄ + λS1 + λ2S2 + · · · = S̄ + λ

∫
dDx a + λ2

∫
dDx b + · · · (1)

of the master equation for the deformed theory

(S, S) = 0, (2)

such that both the ghost and antifield spectra of the initial theory are preserved. The projection of
equation (2) on the various orders in the coupling constant λ leads to the equivalent tower of equations

(
S̄, S̄

)
= 0, (3)

2
(
S1, S̄

)
= 0, (4)

2
(
S2, S̄

)
+ (S1, S1) = 0, (5)

...

Equation (3) is fulfilled by hypothesis. The next equation requires that the first-order deformation
of the solution to the master equation, S1, is a co-cycle of the “free” BRST differential s, sS1 = 0.
However, only cohomologically nontrivial solutions to (4) should be taken into account, since the
BRST-exact ones can be eliminated by some (in general nonlinear) field redefinitions. This means
that S1 pertains to the ghost number zero cohomological space of s, H0 (s), which is nonempty because
it is isomorphic to the space of physical observables of the “free” theory. It has been shown (by of
the triviality of the antibracket map in the cohomology of the BRST differential) that there are no
obstructions in finding solutions to the remaining equations, namely (5), etc. However, the resulting
interactions may be nonlocal and there might even appear obstructions if one insists on their locality.
The analysis of these obstructions can be done with the help of cohomological techniques.

3 Nonstandard couplings of Pauli-Fierz model

3.1 Pauli-Fierz plus an Abelian vector field (one-form)

Our starting point is represented by a free Lagrangian action, written as the sum between the linearized
Hilbert-Einstein action (also known as the Pauli-Fierz action [16, 17]) and Maxwell’s action in D > 2
spacetime dimensions

SL
0 [hµν , Aµ] =

∫
dDx

[
−1

2
(∂µhνρ) ∂µhνρ + (∂µhµρ) ∂νhνρ − (∂µh) ∂νh

νµ +
1
2

(∂µh) ∂µh− 1
4
FµνF

µν

]

≡
∫

dDx
(
L(PF)

0 + L(vect)
0

)
. (6)
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The restriction D > 2 is required by the spin-two field action, which is known to reduce to a total
derivative in D = 2. Throughout the paper we work with the flat metric of ‘mostly plus’ signature,
σµν = (−+ . . .+). In the above h denotes the trace of the Pauli-Fierz field, h = σµνh

µν , and Fµν

represents the Abelian field-strength of the massless vector field (Fµν ≡ ∂[µAν]). The theory described
by action (6) possesses an Abelian and irreducible generating set of gauge transformations

δεhµν = ∂(µεν), δεAµ = ∂µε, (7)

with εµ and ε bosonic gauge parameters. The notation [µ . . . ν] (or (µ . . . ν)) signifies antisymmetry
(or symmetry) with respect to all indices between brackets without normalization factors (i.e., the
independent terms appear only once and are not multiplied by overall numerical factors).

After applying the cohomological technique based on the local BRST cohomology of the starting
free theory in ghost number zero and maximum form degree, we are able to prove the next theorem
[29].

Theorem 3.1 Under the assumptions of analyticity in the coupling constant, locality, Lorentz covari-
ance, Poincaré invariance and at most two derivatives in the Lagrangian, there are two complementary
types of consistent interactions between a graviton and an Abelian vector field.

3.1.1 Type I solutions (standard General Relativity)

The fully interacting Lagrangian action in case I reads as

SL(I)
[
gµν , Āµ

]
=

∫
dDx

[
2
λ2

√−g
(
R− 2λ2Λ

)− 1
4
√−ggµνgρλF̄µρF̄νλ

+λ
(
q1δ

D
3 εµ1µ2µ3Āµ1F̄µ2µ3 + q2δ

D
5 εµ1µ2µ3µ4µ5Āµ1F̄µ2µ3F̄µ4µ5

)]
(8)

and is invariant under the deformed gauge transformations

δ(I)
ε gµν = λε̄(µ;ν), δ(I)

ε Āµ = ∂µε + λ (∂µε̄ν) Āν + λ
(
∂νĀµ

)
ε̄ν . (9)

In the above gµν is the metric tensor gµν = σµν + λhµν , Āµ = ea
µAa represents the vector field

with curved indices, and eµ
a is the vielbein field (its inverse being denoted by ea

µ). We use the common
convention according to which Latin indices are flat and Greek ones are curved. Related to the vielbein
components we use the partial gauge-fixing conditions σµ[ae

µ
b] = 0 (see [35]). Regarding the right-hand

side of (8),
√−g denotes the square root from the minus determinant of the metric tensor, R means

the full scalar curvature, Λ the cosmological constant, gµν represent the elements of the inverse of the
metric tensor, and F̄µρ the fully deformed field strength of the vector field, F̄µν = ∂[µ

(
ea
ν]Aa

)
. Finally,

q1,2 are two arbitrary real constants and εµ1...µD means the Levi-Civita symbol with curved indices in D
dimensions, εµ1...µD =

√−geµ1
a1 · · · eµD

aD εa1...aD . In the gauge transformations (9) the gauge parameters
with curved indices, ε̄ν , follow from the condition δε

(
σµ[ae

µ
b]

)
= 0, with δεe

µ
a = ε̄ρ∂ρe

µ
a−eρ

a∂ρε̄
µ + ε b

a eµ
b

and εab the flat gauge parameters associated with Lorentz transformations. The notation ε̄µ;ν signifies
the (full) covariant derivative of ε̄µ, such that the terms ε̄(µ;ν) implement diffeomorphisms as the gauge
transformations of the metric tensor components.

3.1.2 Type II solutions (new, nonstandard results)

In this situation the coupled Lagrangian action ‘lives’ only in D = 3 and is given by

SL(II)[hµν , Aµ] =
∫

d3x

[
L(PF)

0 − 1
4
FµνF

µν − 2λΛh− λFµνεµνρ∂
[θh

ρ]
θ + 2λ2

(
∂[µhρ]

µ

)
∂[νh

ν
ρ]

]
,

(10)
where L(PF)

0 is the Pauli-Fierz Lagrangian and Λ the cosmological constant, being invariant under a
generating set of gauge transformations of the form

δ(II)
ε hµν = ∂(µεν), δ(II)

ε Aµ = ∂µε + λεµνρ∂
[νερ]. (11)
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Action (10) can be set in a more suggestive form by introducing the deformed field strength of the
vector field

F ′
µν = Fµν + 2λεµνρ∂

[θh
ρ]

θ, (12)

in terms of which we can write

SL(II)[hµν , Aµ] =
∫

d3x

(
L(PF)

0 − 2λΛh− 1
4
F ′

µνF
′µν

)
. (13)

Under this form, action (13) is manifestly invariant under the gauge transformations (11): its first
two terms are known to be invariant under linearized diffeomorphisms and the third is gauge-invariant
under (11) since the deformed field strength is so, δ

(II)
ε F ′

µν = 0.
This result is new and will be generalized in the sequel to the case of couplings between a graviton

and an arbitrary p-form. In conclusion, this case yields another possibility to establish nontrivial
couplings between the Pauli-Fierz field and a vector field. It is complementary to case I (General
Relativity) and is valid only in D = 3. The resulting Lagrangian action and gauge transformations
are not series in the coupling constant. The Lagrangian contains pieces of maximum order two in the
coupling constant, which are mixing-component terms (there is no interaction vertex at least cubic in
the fields) and emphasize the deformation of the standard Abelian field strength of the vector field like
in (12). Concerning the new gauge transformations, only those of the massless vector field are modified
at order one in the coupling constant by adding to the original U (1) gauge symmetry a term linear
in the antisymmetric first-order derivatives of the Pauli-Fierz gauge parameters. As a consequence,
the gauge algebra, defined by the commutators among the deformed gauge transformations, remains
Abelian, just like for the free theory. We cannot stress enough that these two cases (I and II) cannot
coexist, even in D = 3.

3.2 Pauli-Fierz plus an Abelian p-form gauge field

Next, we approach the generalization of the previous results to the case of consistent couplings between
the Pauli-Fierz model and an arbitrary p-form gauge field [29], with p > 1. The starting point is given
now by the sum between the Pauli-Fierz action and the Lagrangian action of an Abelian p-form with
p > 1

SL
0 [hµν , Aµ1...µp ] =

∫
dDx

(
L(PF)

0 − 1
2 · (p + 1)!

Fµ1...µp+1F
µ1...µp+1

)
, (14)

in D ≥ p+1 spacetime dimensions, with Fµ1...µp+1 the Abelian field strength of the p-form gauge field
Aµ1...µp , Fµ1...µp+1 = ∂[µ1

Aµ2...µp+1]. This action is known to be invariant under the gauge transforma-
tions

δεhµν = ∂(µεν), δεAµ1...µp = ∂[µ1
ε(p)
µ2...µp]

. (15)

Unlike the Maxwell field (p = 1), the gauge transformations of the p-form for p > 1 are off-shell
reducible of order (p− 1). This property has strong implications at the level of the BRST complex
and of the BRST cohomology in the form sector: a whole tower of ghosts of ghosts and of antifields will
be required in order to incorporate the reducibility, only the ghost of maximum pure ghost number,
p, will enter H (γ), and the local characteristic cohomology will be richer. In spite of these new
cohomological ingredients, which complicate the analysis of deformations, the previous results for
p = 1 can still be generalized.

Thus, after applying the cohomological tools and consequently computing the possible consistent
interactions, two complementary cases are again revealed [29].

Theorem 3.2 Under the assumptions of analyticity in the coupling constant, locality, Lorentz covari-
ance, Poincaré invariance and at most two derivatives in the Lagrangian, there are two complementary
types of consistent interactions between a graviton and an Abelian p-form gauge field.

One describes the standard graviton-p-form interactions from General Relativity and leads to a La-
grangian action similar to (8) up to replacing (1/4) gµνgρλF̄µρF̄νλ with the expression (2 · (p + 1)!)−1×
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×gµ1ν1 · · · gµp+1νp+1F̄µ1...µp+1F̄ν1...νp+1 and, if p is odd, also the terms containing the factors δD
3 εµ1µ2µ3

and respectively δD
5 εµ1µ2µ3µ4µ5 with some densities involving δD

2p+1ε
µ1...µ2p+1 and δD

3p+2ε
µ1...µ3p+2 re-

spectively (if p is even, the terms proportional with either q1 or q2 must be suppressed). The other
case emphasizes that it is possible to construct some new deformations in D = p + 2, describing a
spin two-field coupled to a p-form and having (14) and (15) as a free limit, which are consistent to all
orders in the coupling constant and are not subject to the rules of General Relativity. Performing the
necessary computations, we find the Lagrangian action

SL[hµν , Aµ1...µp ] =
∫

dp+2x

(
L(PF)

0 − 2λΛh− 1
2 · (p + 1)!

F ′
µ1...µp+1

F ′µ1...µp+1

)
, (16)

where the field strength of the p-form is deformed as

F ′
µ1...µp+1

= Fµ1...µp+1 + 2 (−)p+1 λy3εµ1...µp+1ρ∂
[θh

ρ]
θ. (17)

This action is fully invariant under the original Pauli-Fierz gauge transformations and

δ̄εAµ1...µp = ∂[µ1
ε(p)
µ2...µp]

+ λy3εµ1...µpνρ∂
[νερ]. (18)

The gauge algebra remains Abelian and the reducibility of (18) is not affected by these couplings: the
associated functions and relations are the initial ones.

3.3 Side note: collection of Pauli-Fierz fields and a p-form gauge field

It is known that one cannot construct in a consistent manner multi-graviton theories, meaning that
there are no consistent cross-couplings among different Hilbert-Einstein or Weyl gravitons, neither
direct nor intermediated by other fields. There still remains open the question whether the couplings
of the type revealed in the above, between several spin-two fields described in the free limit by Pauli-
Fierz models and a p-form, still enforce this restriction. The answer is positive.

More precisely, we begin with a finite sum of Pauli-Fierz actions and a single Abelian p-form with
p ≥ 1 (D ≥ p + 1)

SL
0

[
hA

µν , Aµ1...µp

]
=

∫
dDx

[
−1

2
(
∂µhA

νρ

)
∂µhνρ

A +
(
∂µhµρ

A

)
∂νhA

νρ −
(
∂µhA

)
∂νh

νµ
A

+
1
2

(
∂µhA

)
∂µhA − 1

2 · (p + 1)!
Fµ1...µp+1F

µ1...µp+1

]
, (19)

where hA is the trace of the Pauli-Fierz field hµν
A (hA = σµνh

µν
A ) and A = 1, n, for n > 1. The collection

indices A, B, etc., are raised and lowered with a quadratic form kAB that determines a positively-
defined metric in the internal space. Action (19) is invariant under the gauge transformations

δεh
A
µν = ∂(µεA

ν), δεAµ1...µp = ∂[µ1
ε(p)
µ2...µp]

. (20)

Under these considerations, the next theorem can be proved by means of the deformation theory
combined with specific BRST cohomological computations [29].

Theorem 3.3 Under the assumptions of analyticity in the coupling constant, locality, Lorentz covari-
ance, Poincaré invariance, a positive-definite metric tensor in the inner space of collection indices and
at most two derivatives in the Lagrangian, there are no cross-couplings among different spin-two fields
intermediated by a p-form gauge field.

In fact, only one of the spin-two fields gets coupled to the p-form exactly like in the previous
subsection, while the other spin-two fields remain free.
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4 Nontrivial couplings of dual formulations of LG

4.1 Massless tensor field with the mixed symmetry (3, 1) plus an Abelian vector
field (one-form)

In this situation we start from the Lagrangian action

S0

[
tλµν|α, Aµ

]
=

∫
dDx

{
1
2

[(
∂ρtλµν|α

) (
∂ρtλµν|α

)−
(
∂αtλµν|α

)(
∂βtλµν|β

)]

−3
2

[(
∂λtλµν|α

) (
∂ρtρµν|α

)
+

(
∂ρtλµ

)
(∂ρtλµ)

]
+ 3

(
∂αtλµν|α

)
(∂λtµν)

+3 (∂ρt
ρµ)

(
∂λtλµ

)
− 1

4
FµνF

µν

}
≡ St

0

[
tλµν|α

]
+ SA

0 [Aµ] , (21)

in D ≥ 5 spacetime dimensions. The massless tensor field tλµν|α has the mixed symmetry (3, 1) and
hence transforms according to an irreducible representation of GL(D,R) corresponding to a 4-cell
Young diagram with two columns and three rows. It is thus completely antisymmetric in its first three
indices and satisfies the identity t[λµν|α] ≡ 0. The field strength of the vector field Aµ is defined in the
standard manner by Fµν = ∂µAν − ∂νAµ. The trace of tλµν|α is defined by tλµ = σναtλµν|α and it is
obviously an antisymmetric tensor. A generating set of gauge transformations for action (21) can be
taken of the form

δε,χtλµν|α = −3∂[λ εµνα] + 4∂[λ εµν]α + ∂[λ χµν]|α, δεAµ = ∂µε, (22)

where the gauge parameters ελµν determine a completely antisymmetric tensor, the other set of gauge
parameters displays the mixed symmetry (2, 1), such that they are antisymmetric in the first two
indices and satisfy the identity χ[µν|α] ≡ 0, and the gauge parameter ε is a scalar. The generating
set of gauge transformations (22) is off-shell, second-stage reducible, the accompanying gauge algebra
being obviously Abelian. More precisely, the gauge transformations (22) are off-shell, second-stage
reducible. This is because: 1. 1. If in the first relation (22) we make the transformations

εµνα → ε(ω,ψ)
µνα = −1

2
∂[µ ωνα], χµν|α → χ

(ω,ψ)
µν|α = ∂[µ ψν]α + 2∂αωµν − ∂[µ ων]α, (23)

with ωνα antisymmetric and ψνα symmetric (but otherwise arbitrary), then the gauge variation of the
tensor field identically vanishes δε(ω,ψ),χ(ω,ψ)tλµν|α ≡ 0. 2. If in (23) we perform the changes

ωνα → ω(θ)
να = ∂[µ θν], ψνα → ψ(θ)

να = −3∂(µ θν), (24)

with θν an arbitrary vector field, where (µν · · · ) signifies symmetrization with respect to the indices
between parentheses without normalization factors, then the transformed gauge parameters (23) iden-

tically vanish ε
(ω(θ),ψ(θ))
µνα ≡ 0, χ

(ω(θ),ψ(θ))
µν|α ≡ 0. 3. There is no nonvanishing local transformation of θν

that simultaneously annihilates ω
(θ)
να and ψ

(θ)
να of the form (24) and hence no further local reducibility

identity.
After applying the entire cohomological procedure of finding all consistent interactions that can

be added to this free model, we are able to prove the next theorem [30].

Theorem 4.1 Under the assumptions of analyticity in the coupling constant, locality, Lorentz co-
variance, Poincaré invariance and at most two derivatives in the Lagrangian, there appear consistent
couplings between a massless tensor field with the mixed symmetry (3, 1) and an Abelian vector field,
but only in D = 5.

These couplings ‘live’ only in a five-dimensional spacetime, the corresponding Lagrangian action
being written as

S̄0

[
tλµν|α, Aµ

]
= St

0

[
tλµν|α

]− 1
4

∫
d5x F̄µνF̄

µν , (25)
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in terms of the deformed field strength

F̄µν = Fµν +
4λ

3
εµναβγ∂[ρ t ρ

αβγ]| , (26)

where St
0

[
tλµν|α

]
is the Lagrangian action of the massless tensor field tλµν|α appearing in (21) in

D = 5. We observe that the action (25) contains only mixing-component terms of order one and two
in the coupling constant. The deformed gauge transformations of the above action read as

δ̄ε,χtλµν|α = −3∂[λ εµνα] + 4∂[λ εµν]α + ∂[λ χµν]|α, δ̄ε,χAµ = ∂µε + 4λεµαβγδ∂
αεβγδ. (27)

It is interesting to note that only the gauge transformations of the vector field are modified during the
deformation process. This is enforced at order one in the coupling constant by a term linear in the
antisymmetrized first-order derivatives of some gauge parameters from the (3, 1) sector. The gauge
algebra and the reducibility structure of the coupled model are not modified during the deformation
procedure, being the same like in the case of the starting free action (21) with the gauge transformations
(22). It is easy to see from (25) and (27) that if we impose the PT-invariance at the level of the coupled
model, then we obtain no interactions (we must set λ = 0 in these formulas).

It is important to stress that the problem of obtaining consistent interactions strongly depends on
the spacetime dimension. For instance, if one starts with action (21) in D > 5, then no term can be
added to either the original Lagrangian or its gauge transformations.

4.2 Massless tensor field with the mixed symmetry (3, 1) plus an Abelian p-form
gauge field

In this situation the starting point is given by a free model describing a massless tensor field tλµν|α
and an Abelian p-form

S0

[
tλµν|α, Aµ1...µp

]
= St

0

[
tλµν|α

]
+ SA

0

[
Aµ1...µp

]
, (28)

where SA
0

[
Aµ1...µp

]
and St

0

[
tλµν|α

]
follow respectively from formulas (21) and (14). The spacetime

dimension is subject to the inequality D ≥ max (5, p + 1), which ensures that the number of physical
degrees of freedom of this free model is nonnegative. The Abelian p-form field strength is defined in
the usual manner as before. Action (28) is invariant under a generating set of gauge transformations
given by the first relation in (22) for the field tλµν|α and respectively by the latter formula in (15)
for the p-form gauge field. The gauge symmetries of St

0

[
tλµν|α

]
are reducible of order two, while the

gauge transformations of Aµ1...µp are reducible of order (p− 1), such that the overall reducibility order
will be equal to max (2, p− 1).

Although the cohomological structure in the case of a p-form with p > 1 is clearly richer than in the
presence of a vector field, nevertheless the cohomology of the tensor fields with the mixed symmetry
(3, 1) is dominant. Just like in the previous situation of a vector field, we can prove the next theorem
[30].

Theorem 4.2 Under the assumptions of analyticity in the coupling constant, locality, Lorentz co-
variance, Poincaré invariance and at most two derivatives in the Lagrangian, there appear consistent
couplings between a massless tensor field with the mixed symmetry (3, 1) and an Abelian p-form gauge
field, but only in D = p + 4.

Regarding the Lagrangian structure of this coupled model, we mention that the associated La-
grangian action takes the form

S̄0

[
tλµν|α, Aµ1...µp

]
= St

0

[
tλµν|α

]− 1
2 · (p + 1)!

∫
dp+4xF̄µ1...µp+1F̄

µ1...µp+1 , (29)

in terms of the deformed field strength

F̄µ1...µp+1 = Fµ1...µp+1 + (−)p+1 4λ

3
εµ1...µp+1αβγ∂[ρ t ρ

αβγ]| , (30)
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where St
0

[
tλµν|α

]
is the free action for the tensor field with the mixed symmetry (3, 1) evolving on a

spacetime of dimension D = p + 4. The deformed gauge transformations reduce to the first relation
in (22) in D = p + 4 for the field tλµν|α and respectively to

δ̄ε,χAµ1...µp = ∂[µ1
ε(p)
µ2...µp]

+ 4λεµ1...µpαβγδ∂
αεβγδ, (31)

such that only the gauge symmetries of the p-form are modified.
The couplings reduce to mixing-component terms, like in the vector case and, again, only the gauge

transformations of the p-form gauge field are modified during the deformation process at order one in
the coupling constant by a term linear in the antisymmetrized first-order derivatives of some gauge
parameters from the (3, 1) sector. The gauge algebra and the reducibility structure of the coupled
model are not modified during the deformation procedure. Meanwhile if we impose the PT-invariance
at the level of the coupled model, then we obtain no interactions.

All the results of this subsection apply to the case of a collection of massless tensor fields with the
mixed symmetry (3, 1) plus an Abelian p-form gauge field, described by the Lagrangian action

S0

[
tAλµν|α, Aµ1...µp

]
=

n∑

A=1

St
0

[
tAλµν|α

]
+ SA

0

[
Aµ1...µp

]
, n > 1, (32)

where each St
0

[
tAλµν|α

]
reads as in (21) modulo the replacement tAλµν|α → tλµν|α, and subject to the

gauge transformations
δε,χtAλµν|α = −3∂[λ εA

µνα] + 4∂[λ εA
µν]α + ∂[λ χA

µν]|α (33)

and respectively the latter formula in (15). The uppercase indices A, B, etc. stand for the collection
indices of the fields with the mixed symmetry (3, 1) and are assumed to take discrete values: 1, 2,
. . ., n. They are lowered with a symmetric, constant, and invertible matrix, of elements kAB, and
are raised with the help of the elements kAB of its inverse. In this situation we obtain the following
(rather disappointing, although expected) result [31], which expresses the fact that there can be only
a single massless tensor field with the mixed symmetry (3, 1) in a given universe, just like in the case
of the multi-graviton problem.

Theorem 4.3 Under the assumptions of analyticity in the coupling constant, locality, Lorentz covari-
ance, Poincaré invariance, a positive-definite metric tensor in the inner space of collection indices and
at most two derivatives in the Lagrangian, there are no cross-couplings among different tensor fields
with the mixed symmetry (3, 1) intermediated by a p-form gauge field.

In fact, only one of the mixed symmetry-type fields gets coupled to the p-form like in (29), while
the others remain free.

4.3 Massless tensor field with the mixed symmetry (2, 1) plus an Abelian BF model
with a maximal field spectrum in D = 5

The starting point is a free theory in D = 5, whose Lagrangian action is written as the sum between
the Lagrangian action of an Abelian BF model with a maximal field spectrum (a single scalar field ϕ,
two types of one-forms Hµ and Vµ, two kinds of two-forms Bµν and φµν , and one three-form Kµνρ) and
the Lagrangian action of a free, massless tensor field with the mixed symmetry (2, 1) tµν|α (meaning
it is antisymmetric in its first two indices tµν|α = −tνµ|α and fulfills the identity t[µν|α] ≡ 0)

SL
0 [Φα0 ] =

∫
d5x

[
Hµ∂µϕ + 1

2Bµν∂[µVν] + 1
3Kµνρ∂[µφνρ]

− 1
12

(
Fµνρ|αFµνρ|α − 3FµνF

µν
)]

≡
∫

d5x
(LBF

0 + Lt
0

)
, (34)
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where we used the notations

Φα0 =
(
ϕ,Hµ, Vµ, Bµν , φµν ,K

µνρ, tµν|α
)
, (35)

Fµνρ|α = ∂[µtνρ]|α, Fµν = σραFµνρ|α. (36)

We work with the same conventions like in the previous (sub)sections.
Action (34) is found invariant under the gauge transformations

δΩϕ = 0, δΩHµ = 2∂νε
µν , (37)

δΩVµ = ∂µε, δΩBµν = −3∂ρε
µνρ, (38)

δΩφµν = ∂[µξν], δΩKµνρ = 4∂λξµνρλ, (39)

δΩtµν|α = ∂[µθν]α + ∂[µχν]α − 2∂αχµν , (40)

where all the gauge parameters are bosonic, with εµν , εµνρ, ξµνρλ, and χµν completely antisymmetric
and θµν symmetric. By Ω we denoted collectively all the gauge parameters as

Ωα1 ≡
(
εµν , ε, εµνρ, ξµ, ξµνρλ, θµν , χµν

)
. (41)

The gauge transformations given by (37)–(40) are off-shell reducible of order three (the reducibility
relations hold everywhere in the space of field history, and not only on the stationary surface of
field equations). We observe that the free theory under study is a usual linear gauge theory (its
field equations are linear in the fields), whose generating set of gauge transformations is third-order
reducible, such that we can define in a consistent manner its Cauchy order, which is found to be equal
to five.

After completing the cohomological computations based on the antifield-BRST differential of the
free model, we are led to the following results regarding its consistent interactions [32].

Theorem 4.4 Under the assumptions of analyticity in the coupling constant, locality, Lorentz covari-
ance, Poincaré invariance and preservation of the number of derivatives on each field with respect to
the free Lagrangian, there appear consistent couplings between dual linearized gravity in D = 5 and a
topological BF model.

More precisely, the Lagrangian action of the interacting theory is

SL [Φα0 ] =
∫

d5x
{
Hµ∂µϕ + 1

2Bµν∂[µVν] + 1
3Kµνρ∂[µφνρ]

+λ
[
W1VµHµ + W2Bµνφ

µν −W3φ[µνVρ]K
µνρ + M̄(ϕ)

+εαβγδε
(
9W4VαK̃βγK̃δε + 1

4W5Vαφβγφδε + W6BαβKγδε

)]

− 1
12

(
Fµνρ|αFµνρ|α − 3FµνF

µν
)

+λ
(
k1φ

µν − k2
20K̃µν

) [
Fµν + 3λ

2

(
k1φµν − k2

20K̃µν

)]}
, (42)

where Φα0 is the field spectrum (35). The above action is parameterized by six functions depending
only on the undifferentiated scalar field, (Wa (ϕ))a=1,6 and by two real constants. We cannot stress
enough that these functions and constants are not arbitrary. The consistency of interactions at all
orders in the coupling constant λ requires that they satisfy the equations

dM̄ (ϕ)
dϕ

W1 (ϕ) = 0, W1 (ϕ) W2 (ϕ) = 0, (43)

W1 (ϕ)
dW2 (ϕ)

dϕ
− 3W2 (ϕ) W3 (ϕ) + 6W5 (ϕ) W6 (ϕ) = 0, (44)

W2 (ϕ) W3 (ϕ) + W5 (ϕ)W6 (ϕ) = 0, (45)
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W1 (ϕ)
dW6 (ϕ)

dϕ
+ 3W3 (ϕ) W6 (ϕ)− 6W2 (ϕ) W4 (ϕ) = 0, (46)

W1 (ϕ)W6 (ϕ) = 0, W2 (ϕ) W4 (ϕ) + W3 (ϕ) W6 (ϕ) = 0, (47)
W2 (ϕ) W5 (ϕ) = 0, W4 (ϕ) W6 (ϕ) = 0, (48)

k1W3 + k2
60W5 = 0, k1W4 + k2

2·5!W3 = 0, (49)

k1W6 + k2
5! W2 = 0. (50)

The concrete form of the gauge transformations of action (42) can be written in the form

δ̄Ωϕ = −λW1ε, (51)

δ̄ΩHµ = 2Dνε
µν + λ

(
dW1

dϕ
Hµ − 3

dW3

dϕ
Kµνρφνρ

)
ε

−3λ
dW2

dϕ
φνρε

µνρ + 2λ

(
dW2

dϕ
Bµν − 3

dW3

dϕ
KµνρVρ

)
ξν

+12λ
dW3

dϕ
Vνφρλξµνρλ + 2λ

dW6

dϕ
Bµνεναβγδξ

αβγδ

+3λKµνρ

(
4
dW4

dϕ
Vνεραβγδξ

αβγδ − dW6

dϕ
ενραβγεαβγ

)

+λεµνρλσ

[
1
4

dW4

dϕ
ενραβγKαβγελσα′β′γ′K

α′β′γ′ε

−dW5

dϕ
φνρ

(
Vλξσ − 1

4φλσε
)]

, (52)

δ̄ΩVµ = ∂µε− 2λW2ξµ − 2λεµνρλσW6ξ
νρλσ, (53)

δ̄ΩBµν = −3∂ρε
µνρ − 2λW1ε

µν + 6λW3

(
2φρλξµνρλ + Kµνρξρ

)

+λ
(
12W4K

µνρεραβγδξ
αβγδ −W5ε

µνρλσφρλξσ

)
, (54)

δ̄Ωφµν = D
(−)
[µ ξν] + 3λ

(
W3φµνε− 2W4V[µεν]αβγδξ

αβγδ
)

+3λεµνρλσ

(
2W4K

ρλσε + W6ε
ρλσ − k2

180∂[ρχλσ]
)

, (55)

δ̄ΩKµνρ = 4D
(+)
λ ξµνρλ − 3λ (W2ε

µνρ + W3K
µνρε)

−λεµνρλσW5

(
Vλξσ − 1

2φλσε
)− 2λk1∂

[µχνρ], (56)

δ̄Ωtµν|α = ∂[µθν]α + ∂[µχν]α − 2∂αχµν + λk1σα[µξν] − λk2
5! σα[µεν]βγδεξ

βγδε, (57)

where, in addition, we used the notations

Dν = ∂ν − λ
dW1

dϕ
Vν , D(±)

ν = ∂ν ± 3λW3Vν . (58)

We observe that the cross-interaction terms,

λ
(
k1φ

µν − k2
20K̃µν

)
Fµν ,

are only of order one in the deformation parameter and couple the tensor field tλµ|α to the two-form
φµν and to the three-form Kµνρ from the BF sector. Also, it is interesting to see that the interaction
components

3λ2

2

(
k1φ

µν − k2
20K̃µν

)(
k1φµν − k2

20K̃µν

)
,
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which describe self-interactions in the BF sector, are strictly due to the presence of the tensor tλµ|α
(in its absence k1 = k2 = 0, so they would vanish). The gauge transformations of the BF fields φµν

and Kµνρ are deformed in such a way to include gauge parameters from the (2, 1) sector. Related to
the other BF fields, ϕ, Hµ, Vµ, and Bµν , their gauge transformations are also modified with respect
to the free theory, but only with terms specific to the BF sector. A remarkable feature is that the
gauge transformations of the tensor tλµ|α are modified by shift terms in some of the gauge parameters
from the BF sector.

Regarding the gauge structure of the interacting theory, we mention that the gauge algebra corre-
sponding to the interacting theory is open (the commutators among the deformed gauge transforma-
tions only close on-shell), by contrast to the free theory, where the gauge algebra is Abelian, while the
reducibility relations associated with the interacting model only hold on-shell, by contrast to those
corresponding to the free theory, which hold off-shell.

Finally, a word of caution. The existence of cross-couplings is entirely determined by the existence
of solutions to the consistency equations (43)–(50). Such solutions in fact exist and can be synthesized
as follows [32].

I. The real constants k1 and k2 are arbitrary (k2
1 +k2

2 > 0), functions M̄ and W2 are some arbitrary,
real, smooth functions of the undifferentiated scalar field, and

W1 (ϕ) = W3 (ϕ) = W4 (ϕ) = W5 (ϕ) = 0, (59)

W6 (ϕ) = − k2

5!k1
W2 (ϕ) . (60)

The above formulas allow one to infer directly the solution in the general case k2 = 0. This class
of solutions can be equivalently reformulated as: the real constants k1 and k2 are arbitrary (k2

1 +
k2

2 > 0), functions M̄ and W6 are some arbitrary, real, smooth functions of the undifferentiated
scalar field, and

W1 (ϕ) = W3 (ϕ) = W4 (ϕ) = W5 (ϕ) = 0, (61)

W2 (ϕ) = −5!k1

k2
W6 (ϕ) . (62)

The last formulas are useful at writing down the solution in the particular case k1 = 0.

II. The real constants k1 and k2 are arbitrary (k2
1 +k2

2 > 0), functions M̄ and W5 are some arbitrary,
real, smooth functions of the undifferentiated scalar field, and

W1 (ϕ) = W2 (ϕ) = W6 (ϕ) = 0, (63)

W3 (ϕ) = − k2

60k1
W5 (ϕ) , W4 (ϕ) =

(
k2

5!k1

)2

W5 (ϕ) . (64)

The above formulas allow one to infer directly the solution in the general case k2 = 0. This class
of solutions can be equivalently reformulated as: the real constants k1 and k2 are arbitrary (k2

1 +
k2

2 > 0), functions M̄ and W4 are some arbitrary, real, smooth functions of the undifferentiated
scalar field, and

W1 (ϕ) = W2 (ϕ) = W6 (ϕ) = 0, (65)

W3 (ϕ) = −2 · 5!
k1

k2
W4 (ϕ) , W5 (ϕ) =

(
5!k1

k2

)2

W4 (ϕ) . (66)

The last formulas are useful at writing down the solution in the particular case k1 = 0.

III. The real constants k1 and k2 are arbitrary (k2
1+k2

2 > 0), functions W1 and W5 are some arbitrary,
real, smooth functions of the undifferentiated scalar field, and

W2 (ϕ) = W6 (ϕ) = M̄ (ϕ) = 0, (67)
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W3 (ϕ) = − k2

60k1
W5 (ϕ) , W4 (ϕ) =

(
k2

5!k1

)2

W5 (ϕ) . (68)

The above formulas allow one to infer directly the solution in the general case k2 = 0. This class
of solutions can be equivalently reformulated as: the real constants k1 and k2 are arbitrary (k2

1 +
k2

2 > 0), functions W1 and W4 are some arbitrary, real, smooth functions of the undifferentiated
scalar field, and

W2 (ϕ) = W6 (ϕ) = M̄ (ϕ) = 0, (69)

W3 (ϕ) = −2 · 5!
k1

k2
W4 (ϕ) , W5 (ϕ) =

(
5!k1

k2

)2

W4 (ϕ) . (70)

The last formulas are useful at writing down the solution in the particular case k1 = 0.

For all classes of solutions the emerging interacting theories display the following common features:

1. there appear nontrivial cross-couplings between the BF fields and the tensor field with the mixed
symmetry (2, 1);

2. the gauge transformations are modified with respect to those of the free theory and the gauge
algebras become open (only close on-shell);

3. the first-order reducibility functions are changed during the deformation process and the first-
order reducibility relations take place on-shell.

Nevertheless, there appear the following differences between the above classes of solutions at the
level of the higher-order reducibility:

a) for class I the second-order reducibility functions are modified with respect to the free ones
and the corresponding reducibility relations take place on-shell. The third-order reducibility
functions remain those from the free case and hence the associated reducibility relations hold
off-shell;

b) for class II both the second- and third-order reducibility functions remain those from the free
case and hence the associated reducibility relations hold off-shell;

c) for class III all the second- and third-order reducibility functions are deformed and the corre-
sponding reducibility relations only close on-shell.

4.4 Massless tensor fields with the mixed symmetries (3, 1) and (2, 2)

We begin with the free Lagrangian action

S0

[
tλµν|α, rµν|αβ

]
= St

0

[
tλµν|α

]
+ Sr

0

[
rµν|αβ

]
, (71)

in D ≥ 5 spacetime dimensions, where St
0

[
tλµν|α

]
follows from (21) and

Sr
0

[
rµν|αβ

]
=

∫
dDx

[
1
8

(
∂λrµν|αβ

) (
∂λrµν|αβ

)− 1
2

(
∂µrµν|αβ

)(
∂λrλν|αβ

)

−
(
∂µrµν|αβ

)
(∂βrνα)− 1

2

(
∂λrνβ

)
(∂λrνβ)

+
(
∂νr

νβ
)(

∂λrλβ

)
− 1

2

(
∂νr

νβ
)

(∂βr) +
1
8

(
∂λr

)
(∂λr)

]
. (72)

The massless tensor field tλµν|α has the mixed symmetry (3, 1). The trace of tλµν|α is defined by
tλµ = σναtλµν|α and it is obviously an antisymmetric tensor. The massless tensor field rµν|αβ of degree
four has the mixed symmetry of the linearized Riemann tensor, and hence transforms according to an
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irreducible representation of GL (D,R), corresponding to the rectangular Young diagram (2, 2) with
two columns and two rows. Thus, it is separately antisymmetric in the pairs {µ, ν} and {α, β}, is
symmetric under the interchange of these pairs ({µ, ν} ←→ {α, β}), and satisfies the identity r[µν|α]β ≡
0 associated with the above diagram. The notation rνβ signifies the trace of the original tensor field,
rνβ = σµαrµν|αβ , which is symmetric, rνβ = rβν , while r denotes its double trace, r = σνβrνβ ≡ rµν

|µν ,
which is a scalar.

A generating set of gauge transformations for action (71) can be taken of the form given by the
first relation in (22) for the field tλµν|α and respectively by

δξrµν|αβ = ∂µξαβ|ν − ∂νξαβ|µ + ∂αξµν|β − ∂βξµν|α. (73)

The gauge parameters ελµν determine a completely antisymmetric tensor, while the gauge parameters
χµν|α and ξµν|α display the mixed symmetry (2, 1), such that they are antisymmetric in the first
two indices and satisfy the identities χ[µν|α] ≡ 0 and ξ[µν|α] ≡ 0. This generating set of gauge
transformations is off-shell, second-stage reducible, the accompanying gauge algebra being obviously
Abelian.

By means of cohomological arguments, we can prove the next theorem [33].

Theorem 4.5 Under the assumptions of analyticity in the coupling constant, locality, Lorentz co-
variance, Poincaré invariance and at most two derivatives in the Lagrangian, there appear consistent
couplings between massless tensor fields with the mixed symmetry (3, 1) and respectively (2, 2), but only
in D = 6.

These consistent couplings ‘live’ in a six-dimensional spacetime. The Lagrangian action can be
organized as

S̄0

[
tλµν|α, rµν|αβ

]
= S0

[
tλµν|α, rµν|αβ

]
+ λ

∫
d6x [r

−2tλµν|ρελµναβγ

(
∂σ∂αr σρ

βγ| − 1
2
δρ

γ∂τ∂αrβτ

)

−λ
(
5rλρ|[αβ,γ]rλρ|[αβ,γ] − 6r

[αβ,ρ]
λρ| r

λσ|
[αβ,σ]

)]
, (74)

where S0

[
tλµν|α, rµν|αβ

]
is the Lagrangian action appearing in (71) in D = 6. We observe that action

(74) contains only mixing-component terms of order one and two in the coupling constant. The
deformed gauge transformations of the coupled action can be set in the form

δ̄ε,χ,ξtλµν|α = 3∂αελµν + ∂[λ εµν]α + ∂[λ χµν]|α

−2λελµνρβγ

(
∂ρξβγ|

α −
1
4
δγ

α∂[ρ ξ βτ ]|
τ

)
, (75)

δ̄ξrµν|αβ = ∂µξαβ|ν − ∂νξαβ|µ + ∂αξµν|β − ∂βξµν|α = δξrµν|αβ. (76)

It is interesting to note that only the gauge transformations of the tensor field (3, 1) are modified during
the deformation process. This is enforced at order one in the coupling constant by a term linear in the
first-order derivatives of the gauge parameters from the (2, 2) sector. Regarding the reducibility, only
the first-order reducibility functions are modified at order one in the coupling constant, the others
coinciding with the original ones

εµνα → ε̄(ω,ϕ)
µνα = −1

2
∂[µ ωνα] + λεµναλβγ∂λϕβγ , (77)

χµν|α → χ
(ω,ψ)
µν|α = 2∂αωµν − ∂[µ ων]α + ∂[µ ψν]α, (78)

ξµν|α → ξ
(ϕ)
µν|α = 2∂αϕµν − ∂[µ ϕν]α. (79)

Consequently, the first-order reducibility relations for tλµν|α become

δ̄ε̄(ω,ϕ),χ(ω,ψ),ξ(ϕ)tλµν|α ≡ 0, (80)
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while those for rµν|αβ are not changed with respect to the free theory. Moreover, the gauge algebra of
the coupled model is unchanged by the deformation procedure, being the same Abelian one like for
the starting free theory and also the second-order reducibility functions remain the same, and hence
the second-order reducibility relations are exactly the initial ones. If we impose the PT-invariance at
the level of the coupled model, then we obtain no interactions.

4.5 Collections of massless tensor fields with the mixed symmetries (3, 1) and (2, 2)

In this situation we start from a free theory in D ≥ 5 that describes two finite collections of massless
tensor fields with the mixed symmetries (3, 1) and respectively (2, 2)

S0

[
tAλµν|κ, ra

µν|κβ

]
= St

0

[
tAλµν|κ

]
+ Sr

0

[
ra
µν|κβ

]
, (81)

where

St
0

[
tAλµν|κ

]
=

∫ {
1
2

[(
∂ρt

λµν|κ
A

)(
∂ρt

A
λµν|κ

)
−

(
∂κt

λµν|κ
A

) (
∂βtAλµν|β

)]

−3
2

[(
∂λt

λµν|κ
A

)(
∂ρtAρµν|κ

)
+

(
∂ρtλµ

A

) (
∂ρt

A
λµ

)]

+3
[(

∂κt
λµν|κ
A

) (
∂λtAµν

)
+

(
∂ρt

ρµ
A

) (
∂λtAλµ

)]}
dDx, (82)

Sr
0

[
ra
µν|κβ

]
=

∫ {
−1

2

[(
∂µrµν|κβ

a

)(
∂λra

λν|κβ

)
+

(
∂λrνβ

a

) (
∂λra

νβ

)

+
(
∂νr

νβ
a

)
(∂βra)

]
+

1
8

[(
∂λrµν|κβ

a

)(
∂λra

µν|κβ

)
+

(
∂λra

)
(∂λra)

]

−
(
∂µrµν|κβ

a

)
(∂βra

νκ) +
(
∂νr

νβ
a

)(
∂λra

λβ

)}
dDx. (83)

The uppercase indices A, B, etc. stand for the collection indices of the fields with the mixed symmetry
(3, 1) and are assumed to take discrete values: 1, 2, . . ., N . They are lowered with a symmetric,
constant, and invertible matrix, of elements kAB, and are raised with the help of the elements kAB

of its inverse. This means that t
λµν|κ
A = kABtBλµν|κ and tAλµν|κ = kABtBλµν|κ. Each field tAλµν|κ is

completely antisymmetric in its first three (Lorentz) indices and satisfies the identity tA[λµν|κ] ≡ 0. The
notation tAλµ signifies the trace of tAλµν|κ, defined by tAλµ = σνκtAλµν|κ. The trace components define an
antisymmetric tensor, tAλµ = −tAµλ. The lowercase indices a, b, etc. stand for the collection indices
of the fields with the mixed symmetry (2, 2) and are assumed to take the discrete values 1, 2, . . ., n.
They are lowered with a symmetric, constant, and invertible matrix, of elements kab, and are raised
with the help of the elements kab of its inverse, such that r

µν|κβ
a = kabr

bµν|κβ and ra
λν|κβ = kabrbλν|κβ.

Each tensor field ra
µν|κβ is separately antisymmetric in the pairs {µ, ν} and {κ, β}, is symmetric under

their permutation ({µ, ν} ←→ {κ, β}), and satisfies the identity ra
[µν|κ]β ≡ 0. The notations ra

νβ signify
the traces of ra

µν|κβ, ra
νβ = σµκra

µν|κβ, which are symmetric, ra
νβ = ra

βν , while ra represent their double
traces, ra = σνβra

νβ, which are scalars.
A generating set of gauge transformations of action (81) can be taken as

δε,χtAλµν|κ = 3εA
λµν,κ + ∂[λ εA

µν]κ + ∂[λ χA
µν]|κ, (84)

δξr
a
µν|κβ = ξa

κβ|[ν,µ] + ξa
µν|[β,κ], (85)

where we used the standard notation f,µ = ∂f/∂xµ. All the gauge parameters are bosonic, with
εA
λµν completely antisymmetric and χA

µν|κ together with ξa
µν|κ defining two collections of tensor fields

with the mixed symmetry (2, 1). The former gauge transformations, (84), are off-shell, second-order
reducible in the space of all field histories, the associated gauge algebra being Abelian, while the gauge
symmetries (85) are off-shell, first-order reducible, the corresponding algebra being also Abelian. It

229



follows that the free theory (81) is a linear gauge theory with the Cauchy order equal to four. The
simplest gauge invariant quantities are precisely the curvature tensors

K
λµνξ|κβ
A = t

[µνξ,λ]|[β,κ]
A , F a

µνλ|κβγ = ra
[µν,λ]|[κβ,γ], (86)

and their space-time derivatives. It is easy to check that they display the mixed symmetry (4, 2) and
(3, 3) respectively.

In order to determine all consistent interactions that can be added to this free model, we apply
the general procedure based on the deformation of the generator of the antifield-BRST symmetry and
find the following results [34].

Theorem 4.6 Under the assumptions of analyticity in the coupling constant, locality, Lorentz co-
variance, Poincaré invariance and at most two derivatives in the Lagrangian, there appear consistent
cross-couplings between two collections of massless tensor fields with the mixed symmetry (3, 1) and
respectively (2, 2), but only in D = 6.

As a consequence, we deduce the coupled Lagrangian action

S̄0

[
tAλµν|κ, ra

µν|κβ

]
= S0

[
tAλµν|κ, ra

µν|κβ

]

+λ

∫ [
car

a − 2fA
a ελµνκβγtAλµν|ρ

(
∂σ∂κra σρ

βγ| − 1
2
δρ
γ∂τ∂κra

βτ

)

−λfa
AfA

b

(
5rλρ|[κβ,γ]

a rb
λρ|[κβ,γ] − 6r

[κβ,ρ]
aλρ| r

bλσ|
[κβ,σ]

)]
d6x, (87)

where S0

[
tAλµν|κ, ra

µν|κβ

]
is the free action (81) in D = 6 space-time dimensions. We observe that

action (87) contains only mixing-component terms of order one and two in the coupling constant.
Apparently, it seems that (87) contains non-trivial couplings between different tensor fields with the
mixed symmetry of the Riemann tensor

−λ2fa
AfA

b

(
5rλρ|[κβ,γ]

a rb
λρ|[κβ,γ] − 6r

[κβ,ρ]
aλρ| r

bλσ|
[κβ,σ]

)
, a 6= b. (88)

The appearance of these cross-couplings is dictated by the properties of the matrix M of elements
Ma

b = fa
AfA

b .
Let us analyze the properties of the quadratic matrix M . It is more convenient to work with the

symmetric matrix M̂ = (Mab), of elements Mab = fA
a fB

b kAB. From (83) and (87) we observe that

there appear effective cross-couplings among different fields from the collection
{

ra
µν|κβ

}
a=1,n

if and

only if the symmetric matrices M̂ = (Mab) and k̂ = (kab) are simultaneously diagonalizable. We recall
k̂ is the quadratic form defined by the kinetic terms of action (83), or, in other words, the metric
tensor in the inner space of collection indices a = 1, n. This means that there exists an orthogonal
matrix Ô = (Oa

b) that diagonalizes simultaneously [36] M̂ and k̂, i.e.

Oc
aO

d
bkcd = kaδab, Oc

aO
d

bMcd = maδab, (89)

where ka represent the eigenvalues of the matrix k̂ and ma those of M̂ . Indeed, if there exists a matrix
Ô that satisfies the conditions (89), then action (87) can be brought to the form

S̄0

[
tAλµν|κ, ra

µν|κβ

]
= S̄′0

[
tAλµν|κ, r′aµν|κβ

]
= St

0

[
tAλµν|κ

]

+
∫ n∑

a=1

ka

{
−1

2

[(
∂µr′aµν|κβ

)(
∂λr′aλν|κβ

)
+

(
∂λr′aνβ

) (
∂λr′aνβ

)

+
(
∂νr

′aνβ
) (

∂βr′a
)]

+
1
8

[(
∂λr′aµν|κβ

)(
∂λr′aµν|κβ

)
+

(
∂λr′a

) (
∂λr′a

)]

−
(
∂µr′aµν|κβ

) (
∂βr′aνκ

)
+

(
∂νr

′aνβ
) (

∂λr′aλβ

)}
d6x
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+λ

∫ [
c′ar

′a − 2f ′Aa ελµνκβγtAλµν|ρ

(
∂σ∂κr′a σρ

βγ| − 1
2
δρ
γ∂τ∂κr′aβτ

)

−λ
n∑

a=1

ma

(
5r′aλρ|[κβ,γ]r′aλρ|[κβ,γ] − 6r

′a [κβ,ρ]
λρ| r

′aλσ|
[κβ,σ]

)]
d6x, (90)

where we made the transformations

ra
µν|κβ → r′aµν|κβ = Ōa

br
b
µν|κβ, (91)

and used the notations
c′a = cbO

b
a, f ′Aa = fA

b Ob
a. (92)

The quantities Ōa
b from (91) denote the elements of the inverse of Ô. These considerations allow us

to conclude that:

1. If the matrix k̂ is positive-definite, then the symmetric matrices M̂ = (Mab) and k̂ = (kab)
are simultaneously diagonalizable and hence there appear no cross-couplings among different
fields from the collection

{
ra
µν|κβ

}
a=1,n

. Taking k̂ to be positive-definite might be essential for

the physical consistency of the theory (absence of negative-energy excitations or stability of the
Minkowski vacuum);

2. If the matrix k̂ is indefinite, then the matrices M̂ and k̂ cannot be diagonalized simultaneously
(because then the matrix Ĉ = k̂−1M̂ is not normal [36]) and therefore there appear cross-
couplings among different fields from the collection

{
ra
µν|κβ

}
a=1,n

.

The gauge transformations of the deformed Lagrangian action, (87) are given by

δ̄ε,χ,ξt
A
λµν|κ = 3∂κεA

λµν + ∂[λ εA
µν]κ + ∂[λ χA

µν]|κ

−2λfA
a ελµνρβγ

(
∂ρξaβγ|

κ −
1
4
δγ
κ∂[ρ ξaβτ ]|

τ

)
, (93)

δ̄ξr
a
µν|κβ = ∂µξa

κβ|ν − ∂νξ
a
κβ|µ + ∂κξa

µν|β − ∂βξa
µν|κ = δξr

a
µν|κβ. (94)

It is interesting to note that only the gauge transformations of the tensor fields (3, 1) are modified
during the deformation process. This is enforced at order one in the coupling constant by terms
linear in the first-order derivatives of the gauge parameters from the (2, 2) sector. Only the first-order
reducibility functions are modified at order one in the coupling constant, the others coinciding with
the original ones. Consequently, the first-order reducibility relations corresponding to the fields tAλµν|κ
take place off-shell, like the free ones, while the first-order reducibility relations associated with the
fields ra

µν|κβ remain the original ones. The gauge algebra of the coupled model is unchanged by the
deformation procedure, being the same Abelian one like for the starting free theory. Along the same
line, the second-order reducibility functions remain the same, and hence the second-order reducibility
relations are exactly the initial ones. It is easy to see from (87) and (93)–(94) that if we impose the
PT-invariance at the level of the coupled model, then we obtain no interactions at all.

5 Conclusion

There are three main conclusions of this paper. First, the spin-two field, described in the free limit
by the Pauli-Fierz model, allows for new, consistent interactions that do not fall under the general
prescriptions of General Relativity, like those with massless p-form gauge fields. Nevertheless, these
new couplings still forbid the existence of more than one dual formulations in a given world, agreeing
thus with the impossibility of multi-graviton theories. Second, some of the dual formulations of
linearized gravity can be coupled consistently to other gauge theories or one to each other, breaking
thus the common belief that they are rather rigid to couplings. Third, topological BF models, which
are known to describe gravity theories (sometimes in the presence of extra constraints) can be coupled
to some dual formulations of linearized gravity.
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B794 (2008) 442
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