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Abstract

The purpose of this note is to find a new criteria by which a foliation is Riemannian. We con-
struct an integration operator and prove that the existence of a positively admissible and transverse
Hamiltonian implies that the foliation is Riemanian.

Following E. Ghys’ Appendix E of [6], Miernowski and Mozgawa formulated in [4, Theorem 3.2]
the following question: is any Finslerian foliation (see [3, 4, 7]) a Riemannian foliation? A partial
result of the problem is given in [3], for a Finslerian foliation on a compact manifold. Using a different
method, the general form of the result is proved in a Lagrangian setting in [7, Theorem 4]: a foliation
that allows a positively allowed transverse Lagrangian (in particular a transverse Finslerian) is a
Riemannian foliation. The main idea in the proof is averaging the transverse vertical Hessian of the
Lagrangian, using a measure that in the Finslerian case is the Bussemann-Hausdorff measure (see [8,
Section 5.1]). A similar idea is used also in the present paper, applied to transverse Lagrangians on
transverse vector bundles. Moreover, we give some new criteria for a foliation to be a Riemannian one,
as follows. We prove a dual Hamiltonian result: the existence of a transverse, allowed and positively
Hamiltonian implies that the foliation is Riemanian (Proposition 7). Taking into account the fact
that the Legendre duality does not assure the allowance of the dual Hamiltonian in the general case
(it works only in the Finsler-Cartan case), we are compelled to make a direct proof, using similar
techniques.

All the objects considered are of class C∞. We use notations and general statements on vector
bundles and Lagrangians from [5]. Let E

p→ M be a vector bundle. A positively allowed Lagrangian
on E is a differentiable map L : E∗ = E\{0} → IR, where {0} is the image of the null section, such
that the following two conditions hold: 1) L is positively defined (i.e. its basic Hessian is positively
defined) and L(x, y) ≥ 0 = L(x, 0), (∀)x ∈ M and y ∈ Ex = p−1(x); 2) the Lagrangian L has the
property that there is a smooth function ϕ : M → (0,∞), such that for every x ∈ M there is y ∈ Ex

such that L(x, y) = ϕ(x). If a positively Lagrangian F is 2–homogeneous (i.e. F (x, λy) = λ2F (x, y),
(∀)λ > 0), one say that F is a Finslerian; it is also a positively allowed Lagrangian, since one can take
ϕ ≡ 1, or any positive constant.

Proposition 1 There is anF(M)–linear integration operator ΦL : F(E∗) → F(M).

Proof. The ideea is averaging the vertical Hessian of L, using a measure that in the Finsler case
is the Bussemann-Hausdorff measure (see [8, Section 5.1]). Let us consider a local trivialisation map
p−1(U) → U × IRk and local coordinates (xi, ya) on p−1(U), where (xi) are local of coordinates on
an open subset U ⊂ M . Let us consider in x ∈ U the compact subset Bx = {(ya) ∈ Rk: ϕ(xi)

2 ≤
L(xi, ya) ≤ ϕ(xi)} ⊂ Rk. Let us denote by vol(Bx) the euclidean volume of Bx, according to the
usual euclidean structure of Rk. Let us suppose that the change rule of coordinates (xi, ya), on the
intersection of two domains that correspond to U and U ′ is xi′ = xi′(xi), ya′ = yaga′

a (xi). Let us
denote by J(x) =

(
ga′
a (xi)

)
and consider B′

x, corresponding to the new coordinates. Then it is easy
to see that B′

x = J(x)Bx, vol(B′
x) = vol(Bx) det J(x). Taking a differentiable function f : E∗ → R,
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then
∫
B′x

f(x, ya′)dv′ = (detJ(x))
∫
Bx

f(x, ya)dv, thus

ΦL(f)(x) =

∫
Bx

f(xi, ya)dv

vol(Bx)
(1)

does not depend on local coordinates; ΦL(f) : M → IR is differentiable and ΦL is F(M)–linear. ¤
The next step is to consider the foliate case. This case worths to be studied as a special case,

when the Lagrangian is not regular. Let F be a given foliation on the base M of the vector bundle
E

p→ M . One say that the vector bundle is foliated if there is a vectorial atlas of local trivialisations on
E such that all the components of the structural matrices are basic functions. Notice that a canonical
foliation FE on E is induced. Let us consider now a local base (sa) of the module of sections on the
restriction of an open U ⊂ U0 ⊂ M , where U0 is an open domain of a vectorial chart of the atlas.
A section s on U is called foliated if s = fasa and fa are basic functions. For example every section
sa is foliated. It is easy to see that a section s on U ∪ U ′, foliated on U and U ′ is also foliated on
U ∩ U ′, thus the definition of a foliated section can be extended to every section on an open U ⊂ M ,
particulary on M .

Examples of foliated vector bundles are the transverse bundle of the foliation itself, denoted by
νF , and the various tensor bundles constructed using νF . Analogously, given a foliated vector bundle,
its tensor bundles give rise to foliated vector bundles. For example, one can consider the transverse
vector bundle of bilinear forms on the fibers of E; a transverse bilinear form b on E is a section in
this vector bundle; a bilinear forms b on the fibers of E is transverse iff for any two transverse (local)
sections s1, s2, then b(s1, s2) is a (local) basic function. A transverse bilinear form b gives rise to a
(canonical) transverse Lagrangian on E, given by the quadratic form defined by b. A special case can
be considered when the foliated vector bundle is transversely parallelizable; if νF is parallelizable, then
F is a Riemannian foliation. A transverse Lagrangian on the foliate vector bundle E is a Lagrangian
L : E∗ → IR, such that for every foliated section s : U → E, the function x → L(x, s(x)) is basic
on U . The definition of a positively allowed transverse Lagrangian is analogous to the definition of
a positively allowed Lagrangian, asking in the second condition that ϕ ∈ F(M) be a basic function.
The integration operator can be adapted to the transverse structure, as follows.

Proposition 2 Let E
p→ M be a transverse vector bundle and L : E∗ → IR be a positively allowed

transverse Lagrangian. Then there is anF(M)–linear integration operator Φ̄L : F(E∗) → F(M) that
sends basic functions to basic functions.

Nevertheless, we use in the sequel only basic functions. Let us consider a foliation F on M and
two arbitary transverse vector bundles E1

p1→ M and E2
p2→ M . Let us consider the induced vector

bundle p0 = p∗2p1 : p∗1E1 → E2; this is a foliated vector bundle, according to the canonical foliation
FE2 on E2.

Proposition 3 Let us suppose that the vector bundle E2 allows a positively allowed transverse La-
grangian L and the foliated vector bundle p0 : p∗2E1 → E2∗ allows a transverse Riemannian metric b
on fibers. Then the foliated bundle E1 allows a transverse Riemannian metric.

We remark that the condition that b be Riemannian in every point can be replaced with the
condition that b be Riemannian in the points of its non-void support of a strict positive measure, of
every fiber of E1 → M . We use this weeker condition below in the proof of Proposition ??, but of
sake of simplicity we do not insist on this. We consider now some special cases of Proposition 3. First,
let us consider the case when the first transverse bundle E1

p1→ M is the transverse vector bundle
νF

pF→ M of the foliation F and the second transverse bundle E1
p1→ M is an arbitary transverse vector

bundle E
p→ M . Then Proposition 3 have the following form.

Proposition 4 Let us suppose that the vector bundle E allows a positively allowed transverse La-
grangian L and the foliated vector bundle p0 : p∗νF → E allows a transverse Riemannian metric b on
fibers. Then the foliation F is Riemannian.
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In the second place, let us take E1 = E2 = E and p1 = p2 = p. The vertical Hessian H of
a Lagrangian L : E∗ → IR can be regarded as a bilinear form on the fibers of the vector bundle
p∗E → E. If the vector bundle E is foliated and L is a positively allowed transverse Lagrangian, then
H is strict positively defined and we obtain the following result.

Proposition 5 Let us suppose that the vector bundle E is foliated and L is a positively allowed
transverse Lagrangian on E. Then the vector bundle E allows a transverse Riemannian metric b on
fibers.

In particular, let us consider the case when E = νF is the transverse vector bundle of the foliation
F .

Proposition 6 Let us suppose that there is a transverse allowed Lagrangian L : νF∗ → IR. Then the
foliation F is a Riemanian foliation.

The above result is proved in [7, Theorem 4] and it gives a positive answer to an old question rised
by E. Ghys, as stated in introduction. The particular case, when L is homogeneous is known as the
Finslerian case. An other particular case of Proposition 5, gives the dual case of Proposition 6, i.e.
the case of a Hamiltonian foliation. A Lagrangian H : (E∗)∗ = E∗∗ → IR on the dual bundle E∗ π→ M

is called a Hamiltonian on the vector bundle E
p→ M . If H is homogeneous, it is known as a Cartan

map (the dual notion of a Finsler map). Let us suppose that E
p→ M is a foliated vector bundle.

Then its dual bundle E∗ π→ M is a foliated vector bundle as well.
A positively allowed transverse Hamiltonian is, by definition, a positively allowed transverse La-

grangian on E∗. Let us remark that a dual positively transverse Hamiltonian can be associated with
a positively transverse Lagrangian, via a Legendre map. But if the Hamiltonian is allowed (according
to a basic function ϕ′), it seems no simple to prove the existenve of a basic function ϕ for its dual
Lagrangian L, such that L be allowed. However, as in the case of a Lagrangian, we prove that a
positively allowed transverse Hamiltonian gives rise also to a Riemannian foliation. It can be regarded
as well as a particular case of Proposition 5, since a transverse Riemannian metric on ν∗F = (νF )∗ is
equivalent with a transverse Riemannian metric on νF .

Proposition 7 Let us suppose that there is a transverse, positively and allowed Hamiltonian H :
ν∗F∗ → IR. Then the foliation F is Riemanian.
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