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Abstract

The aim of the paper is to extend Lagrangian dynamics to Pfaff form dynamics, where a Pfaff
form is a differential form on a tangent bundle, non necessary closed. Considering the action of
a Pfaff form on curves, given by a second order Lagrangian linear in accelerations, we obtain the
equations of the first and second variations, using variational methods. In the non-singular case,
considered mainly in the paper, the generalized Euler-Lagrange equation is a third order differential
equation. As examples, we find that the solutions of the differential equations of motion of a charge
in a field and the Euler equations for the rotational dynamics of a rigid body about its center
of mass can be obtained as particular solutions of suitable Pfaff forms, with non-negative second
variations.

1 Introduction

The Euler-Lagrange equation of a first order Lagrangian is a well-known and widely used variational
equation which arises from many problems from mathematics, mechanics, physics and other scientific
fields. Its solutions are the critical curves of the action defined by the Lagrangians on curves; in the
case when the Lagrangian comes from a Riemannian, a non-Riemannian or a Finslerian metric, these
solutions are known as geodesics, since they locally minimise the distance. The second variation can
decide if the solution is an extreme one (see [9, Ch.1, Sect.2]). The local expression of the first order
Euler-Lagrange equation contains the second derivatives and, in the case of a hyperregular Lagrangian,
its solutions are integral curves of a global second order differential equation.

In this paper we consider actions on curves of Pfaff forms instead of Lagrangians. Pfaff forms are
differential one forms on tangent spaces of manifolds, or on open subsets of the tangent spaces. In fact,
the action of a Pfaff form is the same as the action of a second order Lagrangian, linear in accelerations
(see, for example, [4, 6]). In the non-singular case, the local expression of the Euler-Lagrange equation,
obtained by a variational method on the action, involves the third derivatives; in the regular case the
solutions are integral curves of a global third order differential equation (Proposition 3.1).

The dynamics of Pfaff forms has different behaviors. In the case when the Pfaff form comes from
a non-Lagrangian, the dynamics is given by the classical Euler-Lagrange equation of a suitable first
order Lagrangian. For a Pfaff form on a one dimensional manifold, the Euler-Lagrange equation (16),
admits a standard Lagrangian description (Proposition 3.2). The case of a non-singular Pfaff form
is mainly considered in the paper. If the Pfaff form is regular, its action on curves can be described
by the action of a second order Lagrangian, linear in the second order velocities (accelerations). The
Euler-Lagrange equation of a higher order Lagrangian is originary due to Ostrogradski, then used in
a modern form, as in [10] or [4]. For a second order Lagrangian linear in accelerations, the Euler-
Lagrange equations are called in the paper as the generalized Euler-Lagrange equations. A formula
for the second variational derivative is also given.

As concrete examples, we consider the differential equations of motion of a charge in a field (for-
mulas (17) in [3, Section 17]) and the Euler equations for the rotational dynamics of a rigid body
about its center of mass [5]. We prove that there are suitable Pfaff forms in each case, such that
the solutions of the considered differential equations are also extremal solutions for the generalized
Euler-Lagrange equations of the Pfaff forms, i.e. the second variation has a constant sign along these
solutions (Propositions 3.4 and 3.6).
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2 Actions of Pfaff forms on curves

Let L : IR×TM → IR be a (time dependent) Lagrangian. If γ : [a, b] → M is a curve γ(t) = (t, xi(t)),
then the action of L on γ is

I(γ) =
∫ b

a
L

(
t, xi(t),

dxi

dt
(t)

)
dt. (1)

Integrating by parts, one obtain
I(γ) = bL

(
b, xi(b), dxi

dt (b)
)
− aL

(
a, xi(a), dxi

dt (a)
)
−

∫ b
a t

[
∂L
∂t

(
t, xi, dxi

dt

)
+ ∂L

∂xi
dxi

dt + ∂L
∂yi

dyi

dt

]
dt

A Pfaff form is a differentiable form ω ∈ X ∗(IR× TM), ω = ω0dt + ωidxi + ω̄idyi.
Let us consider a Lagrangian L : IR × TM → IR and a Pfaff form ω. The action of ω and L on a

curve γ : [a, b] → M can be defined as

I1 (γ) = bL(b, xi(b),
dxi

dt
(b))− aL

(
a, xi(a),

dxi

dt
(a)

)

−
∫ b

a
t(ω0 + ωi

dxi

dt
+ ω̄i

d2xi

dt2
)dt. (2)

Let us compute the action (1) in a different way as above. One have
I(γ) =

∫ b
a dτ

(∫ τ
a

d
dtL

(
t, xi, dxi

dt

)
dt + L

(
a, xi(a), dxi

dt (a)
))

=
∫ b
a (b− t)

[
∂L
∂t

(
t, xi, dxi

dt

)
+ ∂L

∂xi
dxi

dt + ∂L
∂yi

d2xi

dt2

]
dt + (b− a)L

(
a, xi(a), dxi

dt (a)
)
.

Given a Pfaff form ω and a Lagrangian L, one can consider a new action I2 of ω and L on a curve
γ by

I2 (γ) =
∫ b

a
(b− t) (ω0 + ωi

dxi

dt
+ ω̄i

d2xi

dt2
)dt+ (3)

(b− a)L
(

a, xi(a),
dxi

dt
(a)

)
.

The actions (2) and (3) have the form

I3 (γ) =
∫ b

a
ϕ(t)(ω0 + ωi

dxi

dt
+ ω̄i

d2xi

dt2
)dt+ (4)

αL

(
b, xi(b),

dxi

dt
(b)

)
− βL

(
a, xi(a),

dxi

dt
(a)

)
,

where α, β ∈ IR. The above formula suggests to consider the most general action determined by a
Pfaff form ω, a Lagrangian L and α, β ∈ IR, as follows

I0 (γ) =
∫ b

a
(ω0 + ωi

dxi

dt
+ ω̄i

d2xi

dt2
)dt+ (5)

αL

(
b, xi(b),

dxi

dt
(b)

)
− βL

(
a, xi(a),

dxi

dt
(a)

)
,

If ωi = ω̄i ≡ 0, α = β = 0, ω0 = L, then we obtain I0 = I for the Lagrangian L.
Denoting L′(t, xi, y(1)i, y(2)i) = ω0(t, xi, y(1)i)+ ωi(t, xi, y(1)i)y(1)i+ ω̄i(t, xi, y(1)i)y(2)i, we obtain

that I0 is in fact the variation of a second order Lagrangian, affine in the second order velocities (see
[4, 6]).

Let us consider two points x, y ∈ M and γ0 = (xi
0(t)) a curve joining x and y, i.e. xi

0(0) = x and
xi

0(1) = y. Let us consider two classes of variations of γ0, as curves joining x and y, locally given by
γε = (xi

ε(t)), where xi
ε(t) = xi

0(t) + εhi(t).
We say that a variation is:
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– in the first class if the following condition holds:

hi(a) = hi(b) = 0; (6)

– in the second class if the conditions (6) and

dhi

dt
(a) =

dhi

dt
(b) = 0 (7)

hold.
Obviously, a variation in the second class is also in the first class, i.e. a variation in the second class

is more restrictive that a variation in the first class. We say that a variation is allowed, if it belongs
to one of the above two classes. We consider below these variations according to some properties of
the Pfaff form ω.

3 First and second derivatives of a variation in the Pfaff form case

The first variational derivative of the action I0 has the following form:
d
dεI0 (γε) |ε=0 =
αhi(b) ∂L

∂xi (b, xi
0(b),

dxi

dt (b)) + αdhi

dt (b) ∂L
∂yi (b, xi

0(b),
dxi

dt (b))−
βhi(a) ∂L

∂xi (a, xi
0(a), dxi

dt (a))− β dhi

dt (a) ∂L
∂yi (a, xi

0(a), dxi

dt (a))+
∫ b
a (∂ω0

∂xi hi + ∂ω0

∂yi
dhi

dt )dt+
∫ b
a (∂ωj

∂xi h
i + ∂ωj

∂yi
dhi

dt )dxj
0

dt dt+
∫ b
a ωi

dhi

dt dt+
∫ b
a (∂ω̄j

∂xi h
i + ∂ω̄j

∂yi
dhi

dt )d2xj
0

dt2
dt +

∫ b
a ω̄i

d2hi

dt2
dt.

3.1 The case of non-Lagrangian systems

A Pfaff form ω ∈ X ∗(IR × TM), ω = ω0dt + ωidxi + ω̄idyi is singular if its top component ω̄idyi,
viewed as a vertical form, is closed, i.e. ∂ω̄i

∂yj − ∂ω̄j

∂yi = 0.
A non-Lagrangian system is given by a Pfaff form ω for which there is a Lagrangian L : IR×TM →

IR such that ω − dL = µ0dt + µidxi, thus ω0 = ∂L
∂t + µ0, ωi = ∂L

∂xi + µi and ω̄i = ∂L
∂yi . One can relax

the above condition asking that ω − ω̃ = µ0dt + µidxi, where ω̃ is closed; but since every closed form
is locally exact (local Poincaré Lemma), one can suppose, for brevity, that ω̃ is exact.

For example, the Pfaff form ω = Ldt, associated with a non-constant Lagrangian L, defines a
non-Lagrangian system.

The action I1, associated with the Pfaff form ω = dL + µ0dt + µidxi and the Lagrangian L, has
the form

I1 (γ) =
∫ b

a
(L− tµ0 − tµi

dxi

dt
)dt. (8)

It is easy to see that this action corresponding to the action I, given by (1), is associated with the
new Lagrangian L′(t, xi, yi) = L(t, xi, yi)− µ0(t, xj , yj)− yiµi(t, xj , yj).

The action I2, associated with the Pfaff form ω = dL + µ0dt + µidxi and the Lagrangian L, has
the form

I2 (γ) =
∫ b

a
(L− (b− t)µ0 − (b− t)µi

dxi

dt
)dt. (9)

This action is the same as the action I given by (1) and associated with the Lagrangian L′′ =
L + (b− t)µ0 + (b− t)µiy

i. We extend below this fact.
The action I3, associated with the real function ϕ, the Pfaff form ω = dL + µ0dt + µidxi, the

Lagrangian L and α = −ϕ(b), β = ϕ(a), has the form

I3 (γ) =
∫ b

a
(−ϕ′L + ϕµ0 + ϕµi

dxi

dt
)dt. (10)
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This is the action corresponding to the action I, given by (1), associated with the new Lagrangian

L̃(t, xi, yi) = −ϕ′(t)L(t, xi, yi) + ϕ(t)µ0(t, xj , yj) + ϕ(t)µi(t, xj , yj)yi. (11)

The Euler-Lagrange equation of L̃ is

−ϕ′
∂L

∂xi
+ ϕ

∂µ0

∂xi
+ ϕ

∂µj

∂xi
yj− d

dt
(−ϕ′

∂L

∂yi
+ ϕ

∂µ0

∂yi
+ ϕ

∂µj

∂yi
yj + ϕµi) = 0,

or (
ϕ′

∂L

∂xi
− d

dt
(ϕ′

∂L

∂yi
)
)

= ϕ
∂µ0

∂xi
+ ϕ

∂µj

∂xi
yj− d

dt
(ϕ

∂µ0

∂yi
+ ϕ

∂µj

∂yi
yj + ϕµi). (12)

The Euler-Lagrange equation of the Lagrangian L̃ is obtained using variations in the first class,
subject to conditions (2).

For ϕ = 1, α = −1 and β = 1 the action (5) is the usual action on the Lagrangian L̃(t, xi, yi) =
µ0(t, xj , yj)+ µi(t, xj , yj)yi. The Euler-Lagrange equation (12) has the form

∂µ0

∂xi
+

∂µj

∂xi
yj− d

dt
(
∂µ0

∂yi
+

∂µj

∂yi
yj + µi) = 0. (13)

We can say that a non-Lagrangian system defined by the Pfaff form ω = dL+µ0dt+µidxi is regular
if the Lagrangian L̃ = µ0 +µiy

i is regular. It is easy to see that the the solutions of its Euler-Lagrange
equation does not depend on L. Therefore, for L to influence the solutions of the Euler-Lagrange
equation of action, one can consider actions when ϕ is not constant.

Since the actions of non-Lagrangian systems that we considered are reduced only to usual actions
of suitable Lagrangians, in the next sections we focus on actions of non-singular Pfaff forms.

3.2 The case of non-singular Pfaff forms

A Pfaff form ω given locally by ω = ω0dt + ωidxi + ω̄idyi is regular if the vertical 2-form (∂ω̄j

∂yi −
∂ω̄i

∂yj ) dy
i ∧ dyj is regular, i.e. the matrix (∂ω̄j

∂yi − ∂ω̄i

∂yj ) is non-singular. If the vertical 2-form (∂ω̄j

∂yi −
∂ω̄i

∂yj )dy
i ∧ dyj does not vanish, i.e. the matrix (∂ω̄j

∂yi − ∂ω̄i

∂yj ) is only non-null, we say that the Pfaff form
is non-singular.

Let us consider now a variation in the second class. Taking into account of the conditions (6) and
(7), we have:

d
dεI0 (γε) |ε=0 =

∫ b
a (∂ω0

∂xi hi + ∂ω0

∂yi
dhi

dt )dt+
∫ b
a (∂ωj

∂xi h
i + ∂ωj

∂yi
dhi

dt )dxj
0

dt dt+
∫ b
a ωi

dhi

dt dt+
∫ b
a (∂ω̄j

∂xi h
i + ∂ω̄j

∂yi
dhi

dt )d2xj
0

dt2
dt+

∫ b
a ω̄i

d2hi

dt2
dt =

∫ b
a (∂ω0

∂xi − d
dt

∂ω0

∂yi )hidt+
∫ b
a (∂ωj

∂xi

dxj
0

dt − d
dt(

∂ωj

∂yi

dxj
0

dt ))hidt−
∫ b
a

d
dtωih

idt+
∫ b
a (∂ω̄j

∂xi

d2xj
0

dt2
− d

dt(
∂ω̄j

∂yi

d2xj
0

dt2
))hidt+

∫ b
a

d2

dt2
ω̄ih

idt.
Thus we obtain:

∂ω0

∂xi
− d

dt

∂ω0

∂yi
+ (

∂ωj

∂xi

dxj
0

dt
− d

dt
(
∂ωj

∂yi

dxj
0

dt
))− d

dt
ωi+ (14)

∂ω̄j

∂xi

d2xj
0

dt2
− d

dt
(
∂ω̄j

∂yi

d2xj
0

dt2
) +

d2

dt2
ω̄i=0.

or
∂ω0

∂xi
+

∂ωj

∂xi

dxj
0

dt
+

∂ω̄j

∂xi

d2xj
0

dt2
− d

dt
(
∂ω0

∂yi
+

∂ωj

∂yi

dxj
0

dt
+ ωi +

∂ω̄j

∂yi

d2xj
0

dt2
) +

d2

dt2
ω̄i = 0. (15)

The above equations become
∂ω0

∂xi − ∂2ω0

∂t∂yi − ∂2ω0

∂xj∂yi

dxj
0

dt − ∂2ω0

∂yj∂yi

d2xj
0

dt2
+ (∂ωj

∂xi − ∂2ωj

∂t∂yi − ∂ωj

∂xj∂yi−
∂ωj

∂yj∂yi )
dxj

0
dt −

∂ωj

∂yi

d2xj
0

dt2
− ∂ωi

∂t − ∂ωi

∂xj

dxj
0

dt −∂ωi

∂yj

d2xj
0

dt2
+ (∂ω̄j

∂xi−
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∂2ω̄j

∂t∂yi− ∂ω̄j

∂xk∂yi

dxk
0

dt −
∂ω̄j

∂yk∂yi

d2xk
0

dt2
)d2xj

0
dt2

− ∂ω̄j

∂yi

d3xj
0

dt3
+ ∂2ω̄i

∂t2
+

∂2ω̄i

∂xj∂t

dxj
0

dt + ∂2ω̄i

∂yj∂t

d2xj
0

dt2
+ ( ∂2ω̄i

∂t∂xj + ∂2ω̄i

∂xk∂xj

dxk
0

dt + ∂2ω̄i

∂yk∂xj

d2xk
0

dt2
)dxj

0
dt +

∂ω̄i

∂xj

d2xj
0

dt2
+ ( ∂2ω̄i

∂t∂yj + ∂2ω̄i

∂xk∂yj

dxk
0

dt + ∂2ω̄i

∂yk∂yj

d2xk
0

dt2
)d2xj

0
dt2

+ ∂ω̄i

∂yj

d3xj
0

dt3
= 0.

Thus if the Pfaff form ω is non-singular, then the equation is of third order. For a regular Pfaff
form one can prove the following result.

Proposition 3.1 If the Pfaff form ω is regular, then the solutions of the generalized Euler-Lagrange
equation (15) are exactly the solutions of a third order equation given by a global second order semi-
spray S : T 2M → T 3M .

Some important class of Pfaff forms are:
– when ωi = ω̄i = 0, then ω = ω0dt, we recover the classical action of a Lagrangian ω0.
– when ω0 = 0; for example, this is the case of time independent Lagrangians L = L(xi, yi), since

ω0 = ∂L
∂t ;

– when ω0 = ωi = 0; for example, this is the case of Lagrangians that depend only on direction:
L = L(yi).

If ω = ω̄j(yi)dyj , then the equation (14) has the form d
dt(

∂ω̄j

∂yi

d2xj
0

dt2
)− d2

dt2
ω̄i = 0, or ∂ω̄j

∂yi

d2xj
0

dt2
− d

dt ω̄i = ci

⇔ (∂ω̄j

∂yi − ∂ω̄j

∂yi )d2xj
0

dt2
= ci.

Example 1. In IR2, let us consider coordinates (x, y) on IR2 and (x, y, X, Y ) on IR4 = TIR2. Let
ω = Y dX − XdY . The equations (14) have the form: − d

dt

(
d2y
dt2

)
− d2

dt2

(
dy
dt

)
= 0, or d3y

d3t
= 0, and

d
dt

(
d2x
dt2

)
+ d2

dt2

(
dx
dt

)
= 0, or d3x

d3t
= 0. Exact solution is: x(t) = C1 +C2t+C3t

2, y(t) = C4 +C5t+C6t
2.

Example 2. In IR2, let us consider coordinates (x, y) on IR2 and (x, y, X, Y ) on IR4 = TIR2. Let

ω = −ydx+xdy+Y dX−XdY . The equations (14) have the form ∂ωj

∂xi

dxj
0

dt − d
dt(ωi+

∂ω̄j

∂yi

d2xj
0

dt2
)+ d2

dt2
ω̄i = 0.

For j = 1, dy
dt − d

dt(−y − d2y
dt2

) + d2

dt2

(
dy
dt

)
= 0, or dy

dt + d3y
d3t

= 0 and

For j = 2, −dx
dt − d

dt(x + d2x
dt2

)− d2

dt2

(
dx
dt

)
= 0, or dx

dt + d3x
d3t

= 0.
The general solution is x(t) = c1 cos t + c3 sin t + c5, x(t) = c2 cos t + c4 sin t + c6. The integral

curves are ellipses and straight lines. If t1 < t2 < t3 are given, then for every 3 distinct points
Aα(xα, yα) ∈ IR2, α = 1, 3, there is only one integral curve in the family passing through these points,
i.e. t → (x(t), y(t)), x(tα) = xα, y(tα) = yα, α = 1, 3.

This feature characterizes the dynamics generated by a third order differential equation, when an
integral curve is determinated in general by three distinct points. Analogously, an integral curve of a
second order differential equation is generally determinated by two distinct points.

Let us consider now the case dimM = 1. In this case, since the only sqew-symmetric matrix
of first order is the null matrix, the equation (14) is always of second order, for every Pfaff form
ω̃ = ω0dt + ωdx + ω̄dy, having the form

( ∂2ω̄
∂t∂y−2∂ω

∂y +2∂ω̄
∂x )d2x0

dt2
+ ∂2ω̄

∂x2 (dx0
dt )

2
+ (− ∂2ω

∂t∂y − ∂2ω
∂x∂y − ∂ω

∂y2 + 2 ∂2ω̄
∂x∂t)

dx0
dt + ∂ω0

∂x − ∂2ω0
∂t∂y− ∂ω

∂t + ∂2ω̄
∂t2

= 0.
In the case when the local functions ω0, ω and ω̄ does not depend on y, the above equation becomes

2
∂ω̄

∂x

d2x0

dt2
+

∂2ω̄

∂x2

(
dx0

dt

)2

+2
∂2ω̄

∂x∂t

dx0

dt
+

∂ω0

∂x
− ∂ω

∂t
+

∂2ω̄

∂t2
= 0. (16)

According to [1, Section 2.], a standard Lagrangian has the form

L(t, x, y) =
1
2
P (t, x)y2 + Q(t, x)y + R(t, x). (17)

The following result can be proved by a straightforward computation using [1].

Proposition 3.2 The equation (16) admits a standard Lagrangian description.
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3.3 The second derivative of the variation

We continue with the second derivative of I (γε).
Taking into account of the conditions (6) and (7), one obtain:
d2

dε2 I0 (γε) |ε=0 =
1
2

∫ b
a ( ∂2ω0

∂xi∂xj hihj − d
dt(

∂2ω0

∂xi∂yj + ∂2ω0

∂yi∂xj )hihj + ∂2ω0

∂yi∂yj
dhi

dt
dhj

dt )dt+
1
2

∫ b
a ( ∂2ωk

∂xi∂xj

dxk
0

dt hihj − d
dt((

∂2ωk

∂xi∂yj + ∂2ωk

∂yi∂xj )dxk
0

dt )hihj + ∂2ωk

∂yi∂yj

dxk
0

dt
dhi

dt
dhj

dt )dt+
1
2

∫ b
a (− d

dt(
∂ωj

∂xi + ∂ωi

∂xj )hihj + (∂ωj

∂yi +∂ωi

∂yj )dhi

dt
dhj

dt )dt+
1
2

∫ b
a ( ∂2ω̄k

∂xi∂xj

d2xk
0

dt2
hihj − d

dt((
∂2ω̄k

∂xi∂yj + ∂2ω̄k

∂yi∂xj )d2xk
0

dt2
)hihj + ∂2ω̄k

∂yi∂yj

d2xk
0

dt2
dhi

dt
dhj

dt )dt+
1
2

∫ b
a (− d2

dt2
(∂ω̄j

∂xi + ∂ω̄i

∂xj )hihj − 2(∂ω̄j

∂xi + ∂ω̄i

∂xj )dhi

dt
dhj

dt − d
dt(

∂ω̄j

∂yi +∂ω̄i

∂yj )dhi

dt
dhj

dt )dt

3.4 Some examples

If ω = ω̄j(yi)dyj , then the equation (14) becomes d
dt(

∂ω̄j

∂yi

d2xj
0

dt2
)− d2

dt2
(ω̄i)=0.

We have: ∂ω̄j

∂yi

d2xj
0

dt2
− d

dt ω̄i = ci, or

(
∂ω̄j

∂yi
− ∂ω̄i

∂yj

)
d2xj

0

dt2
= ci. (18)

In this case, the second derivative of the variation is

d2

dε2
I0 (γε) |ε=0 =

(
∂2ω̄k

∂yi∂yj

d2xk
0

dt2
− d

dt
(
∂ω̄i

∂yj
+

∂ω̄j

∂yi
)
)

dhi

dt

dhj

dt

= (
∂2ω̄k

∂yi∂yj
− ∂2ω̄i

∂yk∂yj
− ∂2ω̄j

∂yk∂yi
)
d2xk

0

dt2
dhi

dt

dhj

dt
.

The matrix of the quadratic form is
((

∂2ω̄k

∂yi∂yj
− ∂2ω̄i

∂yk∂yj
− ∂2ω̄j

∂yk∂yi

)
d2xk

0

dt2

)

i,j=1,m

, (19)

where m = dim M .
Let us consider now two examples. Even the equation of motions in the examples has the second

order, their integral curves are obtained from some suitable equations of Pfaff forms.
First, we consider a system that has the form





x′′ = c1 + cy′ − bz′

y′′ = c2 + az′ − cx′

z′′ = c3 + bx′ − ay′
(20)

where the coefficients are constants. The equations of motion of a charge in a field (formulas (17) in
[3, Section 17]) have this form.

Proposition 3.3 There is a Pfaff form ω = ω̄j(yi)dyj on IR3 such that the solutions of the system
(20) are solutions of the generalized Euler-Lagrange equation (18).

Some Pfaff forms with the property asked in Proposition 3.3 are

ω1(yj) = c3y
2 + by1y2 + cy1y3,

ω2(yj) = c1y
3 + ay1y2 + cy2y3,

ω3(yj) = −c2y
1 + ay1y3 + by2y3.

Concerning the second derivative of the variation, we have the following result.
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Proposition 3.4 Let us consider the system (20).
Then there is a Pfaff form ω = ω̄j(yi)dyj defined for (yi) ∈ IR3, such that the solutions of the

system (20) are extremal solutions for the generalized Euler-Lagrange equation (18), i.e. the second
variation has a constant sign along these solutions.

An other example is constructed using the Euler equations for the rotational dynamics of a rigid
body about its center of mass, as follows.

Let us consider a system of the form




x′′ = β1y
′z′

y′′ = β2z
′x′

z′′ = β3x
′y′

. (21)

According to [5] the equations of a rigid body have the above form (21), where β1 = I2−I3
I1

, β2 = I3−I1
I2

,
β3 = I1−I2

I3
.

Proposition 3.5 There is a Pfaff form ω = ω̄j(yi)dyj on IR3 such that the solutions of the system
(21) are solutions of the generalized Euler-Lagrange equation (18).

In the case of the Euler equations for the rotational dynamics of a rigid body about its center of
mass, when β1 = I2−I3

I1
, β2 = I3−I1

I2
, β3 = I1−I2

I3
, one can take

ω1(y1, y2, y3) = I1
2I3

y1
(
y2

)2 + I1
2I2

y1
(
y3

)2 + δ1(I3−I2)
6

(
y1

)3,

ω2(y1, y2, y3) = I2
2I1

y2
(
y3

)2 + I2
2I3

y2
(
y1

)2 + δ2(I1−I3)
6

(
y2

)3,

ω3(y1, y2, y3) = I3
2I2

y3
(
y1

)2 + I3
2I1

y3
(
y2

)2 + δ3(I2−I1)
6

(
y3

)3.
Considering the second derivative of the variation. we take γi = 0.

Proposition 3.6 Let us consider the system (21) coming from the Euler equations for the rotational
dynamics of a rigid body about its center of mass, in an bounded domain U where y1y2y3 6= 0.

Then there is a Pfaff form ω = ω̄j(yi)dyj defined for (yi) ∈ U , such that the solutions of the system
(21) are extremal solutions for the generalized Euler-Lagrange equation (18), i.e. the second variation
has a constant sign along these solutions.

Using the Lagrangian description given in our paper, one can follow a dual Hamiltonian approach.
Other intersting applications can be given in applied mechanics, as for example in biomechanics, in
the study of sinovial joints of a human body, following the Lagrangian description given in [2].
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